/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS //#define LOG_NDEBUG 0 // This is needed for stdint.h to define INT64_MAX in C++ #define __STDC_LIMIT_MACROS #include #include #include #include #include #include #include #include "DispSync.h" #include "EventLog/EventLog.h" #include using std::max; using std::min; namespace android { // Setting this to true enables verbose tracing that can be used to debug // vsync event model or phase issues. static const bool kTraceDetailedInfo = false; // Setting this to true adds a zero-phase tracer for correlating with hardware // vsync events static const bool kEnableZeroPhaseTracer = false; // This is the threshold used to determine when hardware vsync events are // needed to re-synchronize the software vsync model with the hardware. The // error metric used is the mean of the squared difference between each // present time and the nearest software-predicted vsync. static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared // This is the offset from the present fence timestamps to the corresponding // vsync event. static const int64_t kPresentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS; #undef LOG_TAG #define LOG_TAG "DispSyncThread" class DispSyncThread: public Thread { public: DispSyncThread(const char* name): mName(name), mStop(false), mPeriod(0), mPhase(0), mReferenceTime(0), mWakeupLatency(0), mFrameNumber(0) {} virtual ~DispSyncThread() {} void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) { if (kTraceDetailedInfo) ATRACE_CALL(); Mutex::Autolock lock(mMutex); mPeriod = period; mPhase = phase; mReferenceTime = referenceTime; ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64 " mReferenceTime = %" PRId64, mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime)); mCond.signal(); } void stop() { if (kTraceDetailedInfo) ATRACE_CALL(); Mutex::Autolock lock(mMutex); mStop = true; mCond.signal(); } virtual bool threadLoop() { status_t err; nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); while (true) { Vector callbackInvocations; nsecs_t targetTime = 0; { // Scope for lock Mutex::Autolock lock(mMutex); if (kTraceDetailedInfo) { ATRACE_INT64("DispSync:Frame", mFrameNumber); } ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber); ++mFrameNumber; if (mStop) { return false; } if (mPeriod == 0) { err = mCond.wait(mMutex); if (err != NO_ERROR) { ALOGE("error waiting for new events: %s (%d)", strerror(-err), err); return false; } continue; } targetTime = computeNextEventTimeLocked(now); bool isWakeup = false; if (now < targetTime) { if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting"); if (targetTime == INT64_MAX) { ALOGV("[%s] Waiting forever", mName); err = mCond.wait(mMutex); } else { ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime)); err = mCond.waitRelative(mMutex, targetTime - now); } if (err == TIMED_OUT) { isWakeup = true; } else if (err != NO_ERROR) { ALOGE("error waiting for next event: %s (%d)", strerror(-err), err); return false; } } now = systemTime(SYSTEM_TIME_MONOTONIC); // Don't correct by more than 1.5 ms static const nsecs_t kMaxWakeupLatency = us2ns(1500); if (isWakeup) { mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64; mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency); if (kTraceDetailedInfo) { ATRACE_INT64("DispSync:WakeupLat", now - targetTime); ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency); } } callbackInvocations = gatherCallbackInvocationsLocked(now); } if (callbackInvocations.size() > 0) { fireCallbackInvocations(callbackInvocations); } } return false; } status_t addEventListener(const char* name, nsecs_t phase, const sp& callback) { if (kTraceDetailedInfo) ATRACE_CALL(); Mutex::Autolock lock(mMutex); for (size_t i = 0; i < mEventListeners.size(); i++) { if (mEventListeners[i].mCallback == callback) { return BAD_VALUE; } } EventListener listener; listener.mName = name; listener.mPhase = phase; listener.mCallback = callback; // We want to allow the firstmost future event to fire without // allowing any past events to fire listener.mLastEventTime = systemTime() - mPeriod / 2 + mPhase - mWakeupLatency; mEventListeners.push(listener); mCond.signal(); return NO_ERROR; } status_t removeEventListener(const sp& callback) { if (kTraceDetailedInfo) ATRACE_CALL(); Mutex::Autolock lock(mMutex); for (size_t i = 0; i < mEventListeners.size(); i++) { if (mEventListeners[i].mCallback == callback) { mEventListeners.removeAt(i); mCond.signal(); return NO_ERROR; } } return BAD_VALUE; } // This method is only here to handle the kIgnorePresentFences case. bool hasAnyEventListeners() { if (kTraceDetailedInfo) ATRACE_CALL(); Mutex::Autolock lock(mMutex); return !mEventListeners.empty(); } private: struct EventListener { const char* mName; nsecs_t mPhase; nsecs_t mLastEventTime; sp mCallback; }; struct CallbackInvocation { sp mCallback; nsecs_t mEventTime; }; nsecs_t computeNextEventTimeLocked(nsecs_t now) { if (kTraceDetailedInfo) ATRACE_CALL(); ALOGV("[%s] computeNextEventTimeLocked", mName); nsecs_t nextEventTime = INT64_MAX; for (size_t i = 0; i < mEventListeners.size(); i++) { nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now); if (t < nextEventTime) { nextEventTime = t; } } ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime)); return nextEventTime; } Vector gatherCallbackInvocationsLocked(nsecs_t now) { if (kTraceDetailedInfo) ATRACE_CALL(); ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now)); Vector callbackInvocations; nsecs_t onePeriodAgo = now - mPeriod; for (size_t i = 0; i < mEventListeners.size(); i++) { nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], onePeriodAgo); if (t < now) { CallbackInvocation ci; ci.mCallback = mEventListeners[i].mCallback; ci.mEventTime = t; ALOGV("[%s] [%s] Preparing to fire", mName, mEventListeners[i].mName); callbackInvocations.push(ci); mEventListeners.editItemAt(i).mLastEventTime = t; } } return callbackInvocations; } nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) { if (kTraceDetailedInfo) ATRACE_CALL(); ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName, ns2us(baseTime)); nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency; ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime)); if (baseTime < lastEventTime) { baseTime = lastEventTime; ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime)); } baseTime -= mReferenceTime; ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime)); nsecs_t phase = mPhase + listener.mPhase; ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase)); baseTime -= phase; ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime)); // If our previous time is before the reference (because the reference // has since been updated), the division by mPeriod will truncate // towards zero instead of computing the floor. Since in all cases // before the reference we want the next time to be effectively now, we // set baseTime to -mPeriod so that numPeriods will be -1. // When we add 1 and the phase, we will be at the correct event time for // this period. if (baseTime < 0) { ALOGV("[%s] Correcting negative baseTime", mName); baseTime = -mPeriod; } nsecs_t numPeriods = baseTime / mPeriod; ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods); nsecs_t t = (numPeriods + 1) * mPeriod + phase; ALOGV("[%s] t = %" PRId64, mName, ns2us(t)); t += mReferenceTime; ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t)); // Check that it's been slightly more than half a period since the last // event so that we don't accidentally fall into double-rate vsyncs if (t - listener.mLastEventTime < (3 * mPeriod / 5)) { t += mPeriod; ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t)); } t -= mWakeupLatency; ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t)); return t; } void fireCallbackInvocations(const Vector& callbacks) { if (kTraceDetailedInfo) ATRACE_CALL(); for (size_t i = 0; i < callbacks.size(); i++) { callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime); } } const char* const mName; bool mStop; nsecs_t mPeriod; nsecs_t mPhase; nsecs_t mReferenceTime; nsecs_t mWakeupLatency; int64_t mFrameNumber; Vector mEventListeners; Mutex mMutex; Condition mCond; }; #undef LOG_TAG #define LOG_TAG "DispSync" class ZeroPhaseTracer : public DispSync::Callback { public: ZeroPhaseTracer() : mParity(false) {} virtual void onDispSyncEvent(nsecs_t /*when*/) { mParity = !mParity; ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0); } private: bool mParity; }; DispSync::DispSync(const char* name) : mName(name), mRefreshSkipCount(0), mThread(new DispSyncThread(name)) { mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE); reset(); beginResync(); if (kTraceDetailedInfo) { // If we're not getting present fences then the ZeroPhaseTracer // would prevent HW vsync event from ever being turned off. // Even if we're just ignoring the fences, the zero-phase tracing is // not needed because any time there is an event registered we will // turn on the HW vsync events. if (!kIgnorePresentFences && kEnableZeroPhaseTracer) { addEventListener("ZeroPhaseTracer", 0, new ZeroPhaseTracer()); } } } DispSync::~DispSync() {} void DispSync::reset() { Mutex::Autolock lock(mMutex); mPhase = 0; mReferenceTime = 0; mModelUpdated = false; mNumResyncSamples = 0; mFirstResyncSample = 0; mNumResyncSamplesSincePresent = 0; resetErrorLocked(); } bool DispSync::addPresentFence(const sp& fence) { Mutex::Autolock lock(mMutex); mPresentFences[mPresentSampleOffset] = fence; mPresentTimes[mPresentSampleOffset] = 0; mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES; mNumResyncSamplesSincePresent = 0; for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { const sp& f(mPresentFences[i]); if (f != NULL) { nsecs_t t = f->getSignalTime(); if (t < INT64_MAX) { mPresentFences[i].clear(); mPresentTimes[i] = t + kPresentTimeOffset; } } } updateErrorLocked(); return !mModelUpdated || mError > kErrorThreshold; } void DispSync::beginResync() { Mutex::Autolock lock(mMutex); ALOGV("[%s] beginResync", mName); mModelUpdated = false; mNumResyncSamples = 0; } bool DispSync::addResyncSample(nsecs_t timestamp) { Mutex::Autolock lock(mMutex); ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp)); size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES; mResyncSamples[idx] = timestamp; if (mNumResyncSamples == 0) { mPhase = 0; mReferenceTime = timestamp; ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, " "mReferenceTime = %" PRId64, mName, ns2us(mPeriod), ns2us(mReferenceTime)); mThread->updateModel(mPeriod, mPhase, mReferenceTime); } if (mNumResyncSamples < MAX_RESYNC_SAMPLES) { mNumResyncSamples++; } else { mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES; } updateModelLocked(); if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) { resetErrorLocked(); } if (kIgnorePresentFences) { // If we don't have the sync framework we will never have // addPresentFence called. This means we have no way to know whether // or not we're synchronized with the HW vsyncs, so we just request // that the HW vsync events be turned on whenever we need to generate // SW vsync events. return mThread->hasAnyEventListeners(); } // Check against kErrorThreshold / 2 to add some hysteresis before having to // resync again bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2); ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked"); return !modelLocked; } void DispSync::endResync() { } status_t DispSync::addEventListener(const char* name, nsecs_t phase, const sp& callback) { Mutex::Autolock lock(mMutex); return mThread->addEventListener(name, phase, callback); } void DispSync::setRefreshSkipCount(int count) { Mutex::Autolock lock(mMutex); ALOGD("setRefreshSkipCount(%d)", count); mRefreshSkipCount = count; updateModelLocked(); } status_t DispSync::removeEventListener(const sp& callback) { Mutex::Autolock lock(mMutex); return mThread->removeEventListener(callback); } void DispSync::setPeriod(nsecs_t period) { Mutex::Autolock lock(mMutex); mPeriod = period; mPhase = 0; mReferenceTime = 0; mThread->updateModel(mPeriod, mPhase, mReferenceTime); } nsecs_t DispSync::getPeriod() { // lock mutex as mPeriod changes multiple times in updateModelLocked Mutex::Autolock lock(mMutex); return mPeriod; } void DispSync::updateModelLocked() { ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples); if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) { ALOGV("[%s] Computing...", mName); nsecs_t durationSum = 0; nsecs_t minDuration = INT64_MAX; nsecs_t maxDuration = 0; for (size_t i = 1; i < mNumResyncSamples; i++) { size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES; nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev]; durationSum += duration; minDuration = min(minDuration, duration); maxDuration = max(maxDuration, duration); } // Exclude the min and max from the average durationSum -= minDuration + maxDuration; mPeriod = durationSum / (mNumResyncSamples - 3); ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod)); double sampleAvgX = 0; double sampleAvgY = 0; double scale = 2.0 * M_PI / double(mPeriod); // Intentionally skip the first sample for (size_t i = 1; i < mNumResyncSamples; i++) { size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; nsecs_t sample = mResyncSamples[idx] - mReferenceTime; double samplePhase = double(sample % mPeriod) * scale; sampleAvgX += cos(samplePhase); sampleAvgY += sin(samplePhase); } sampleAvgX /= double(mNumResyncSamples - 1); sampleAvgY /= double(mNumResyncSamples - 1); mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale); ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase)); if (mPhase < -(mPeriod / 2)) { mPhase += mPeriod; ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase)); } if (kTraceDetailedInfo) { ATRACE_INT64("DispSync:Period", mPeriod); ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2); } // Artificially inflate the period if requested. mPeriod += mPeriod * mRefreshSkipCount; mThread->updateModel(mPeriod, mPhase, mReferenceTime); mModelUpdated = true; } } void DispSync::updateErrorLocked() { if (!mModelUpdated) { return; } // Need to compare present fences against the un-adjusted refresh period, // since they might arrive between two events. nsecs_t period = mPeriod / (1 + mRefreshSkipCount); int numErrSamples = 0; nsecs_t sqErrSum = 0; for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { nsecs_t sample = mPresentTimes[i] - mReferenceTime; if (sample > mPhase) { nsecs_t sampleErr = (sample - mPhase) % period; if (sampleErr > period / 2) { sampleErr -= period; } sqErrSum += sampleErr * sampleErr; numErrSamples++; } } if (numErrSamples > 0) { mError = sqErrSum / numErrSamples; } else { mError = 0; } if (kTraceDetailedInfo) { ATRACE_INT64("DispSync:Error", mError); } } void DispSync::resetErrorLocked() { mPresentSampleOffset = 0; mError = 0; for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { mPresentFences[i].clear(); mPresentTimes[i] = 0; } } nsecs_t DispSync::computeNextRefresh(int periodOffset) const { Mutex::Autolock lock(mMutex); nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); nsecs_t phase = mReferenceTime + mPhase; return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase; } void DispSync::dump(String8& result) const { Mutex::Autolock lock(mMutex); result.appendFormat("present fences are %s\n", kIgnorePresentFences ? "ignored" : "used"); result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n", mPeriod, 1000000000.0 / mPeriod, mRefreshSkipCount); result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase); result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError)); result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n", mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT); result.appendFormat("mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples, MAX_RESYNC_SAMPLES); result.appendFormat("mResyncSamples:\n"); nsecs_t previous = -1; for (size_t i = 0; i < mNumResyncSamples; i++) { size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; nsecs_t sampleTime = mResyncSamples[idx]; if (i == 0) { result.appendFormat(" %" PRId64 "\n", sampleTime); } else { result.appendFormat(" %" PRId64 " (+%" PRId64 ")\n", sampleTime, sampleTime - previous); } previous = sampleTime; } result.appendFormat("mPresentFences / mPresentTimes [%d]:\n", NUM_PRESENT_SAMPLES); nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); previous = 0; for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES; bool signaled = mPresentFences[idx] == NULL; nsecs_t presentTime = mPresentTimes[idx]; if (!signaled) { result.appendFormat(" [unsignaled fence]\n"); } else if (presentTime == 0) { result.appendFormat(" 0\n"); } else if (previous == 0) { result.appendFormat(" %" PRId64 " (%.3f ms ago)\n", presentTime, (now - presentTime) / 1000000.0); } else { result.appendFormat(" %" PRId64 " (+%" PRId64 " / %.3f) (%.3f ms ago)\n", presentTime, presentTime - previous, (presentTime - previous) / (double) mPeriod, (now - presentTime) / 1000000.0); } previous = presentTime; } result.appendFormat("current monotonic time: %" PRId64 "\n", now); } } // namespace android