/* * Key Wrapping: RFC3394 / NIST SP800-38F * * Copyright (C) 2015, Stephan Mueller * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL2 * are required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ /* * Note for using key wrapping: * * * The result of the encryption operation is the ciphertext starting * with the 2nd semiblock. The first semiblock is provided as the IV. * The IV used to start the encryption operation is the default IV. * * * The input for the decryption is the first semiblock handed in as an * IV. The ciphertext is the data starting with the 2nd semiblock. The * return code of the decryption operation will be EBADMSG in case an * integrity error occurs. * * To obtain the full result of an encryption as expected by SP800-38F, the * caller must allocate a buffer of plaintext + 8 bytes: * * unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm); * u8 data[datalen]; * u8 *iv = data; * u8 *pt = data + crypto_skcipher_ivsize(tfm); * * sg_init_one(&sg, ptdata, ptlen); * skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); * * ==> After encryption, data now contains full KW result as per SP800-38F. * * In case of decryption, ciphertext now already has the expected length * and must be segmented appropriately: * * unsigned int datalen = CTLEN; * u8 data[datalen]; * * u8 *iv = data; * u8 *ct = data + crypto_skcipher_ivsize(tfm); * unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm); * sg_init_one(&sg, ctdata, ctlen); * skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); * * ==> After decryption (which hopefully does not return EBADMSG), the ct * pointer now points to the plaintext of size ctlen. * * Note 2: KWP is not implemented as this would defy in-place operation. * If somebody wants to wrap non-aligned data, he should simply pad * the input with zeros to fill it up to the 8 byte boundary. */ #include #include #include #include #include struct crypto_kw_ctx { struct crypto_cipher *child; }; struct crypto_kw_block { #define SEMIBSIZE 8 u8 A[SEMIBSIZE]; u8 R[SEMIBSIZE]; }; /* convert 64 bit integer into its string representation */ static inline void crypto_kw_cpu_to_be64(u64 val, u8 *buf) { __be64 *a = (__be64 *)buf; *a = cpu_to_be64(val); } /* * Fast forward the SGL to the "end" length minus SEMIBSIZE. * The start in the SGL defined by the fast-forward is returned with * the walk variable */ static void crypto_kw_scatterlist_ff(struct scatter_walk *walk, struct scatterlist *sg, unsigned int end) { unsigned int skip = 0; /* The caller should only operate on full SEMIBLOCKs. */ BUG_ON(end < SEMIBSIZE); skip = end - SEMIBSIZE; while (sg) { if (sg->length > skip) { scatterwalk_start(walk, sg); scatterwalk_advance(walk, skip); break; } else skip -= sg->length; sg = sg_next(sg); } } static int crypto_kw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_blkcipher *tfm = desc->tfm; struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); struct crypto_cipher *child = ctx->child; unsigned long alignmask = max_t(unsigned long, SEMIBSIZE, crypto_cipher_alignmask(child)); unsigned int i; u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask]; struct crypto_kw_block *block = (struct crypto_kw_block *) PTR_ALIGN(blockbuf + 0, alignmask + 1); u64 t = 6 * ((nbytes) >> 3); struct scatterlist *lsrc, *ldst; int ret = 0; /* * Require at least 2 semiblocks (note, the 3rd semiblock that is * required by SP800-38F is the IV. */ if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) return -EINVAL; /* Place the IV into block A */ memcpy(block->A, desc->info, SEMIBSIZE); /* * src scatterlist is read-only. dst scatterlist is r/w. During the * first loop, lsrc points to src and ldst to dst. For any * subsequent round, the code operates on dst only. */ lsrc = src; ldst = dst; for (i = 0; i < 6; i++) { u8 tbe_buffer[SEMIBSIZE + alignmask]; /* alignment for the crypto_xor and the _to_be64 operation */ u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1); unsigned int tmp_nbytes = nbytes; struct scatter_walk src_walk, dst_walk; while (tmp_nbytes) { /* move pointer by tmp_nbytes in the SGL */ crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes); /* get the source block */ scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE, false); /* perform KW operation: get counter as byte string */ crypto_kw_cpu_to_be64(t, tbe); /* perform KW operation: modify IV with counter */ crypto_xor(block->A, tbe, SEMIBSIZE); t--; /* perform KW operation: decrypt block */ crypto_cipher_decrypt_one(child, (u8*)block, (u8*)block); /* move pointer by tmp_nbytes in the SGL */ crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes); /* Copy block->R into place */ scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE, true); tmp_nbytes -= SEMIBSIZE; } /* we now start to operate on the dst SGL only */ lsrc = dst; ldst = dst; } /* Perform authentication check */ if (crypto_memneq("\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", block->A, SEMIBSIZE)) ret = -EBADMSG; memzero_explicit(block, sizeof(struct crypto_kw_block)); return ret; } static int crypto_kw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_blkcipher *tfm = desc->tfm; struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); struct crypto_cipher *child = ctx->child; unsigned long alignmask = max_t(unsigned long, SEMIBSIZE, crypto_cipher_alignmask(child)); unsigned int i; u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask]; struct crypto_kw_block *block = (struct crypto_kw_block *) PTR_ALIGN(blockbuf + 0, alignmask + 1); u64 t = 1; struct scatterlist *lsrc, *ldst; /* * Require at least 2 semiblocks (note, the 3rd semiblock that is * required by SP800-38F is the IV that occupies the first semiblock. * This means that the dst memory must be one semiblock larger than src. * Also ensure that the given data is aligned to semiblock. */ if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) return -EINVAL; /* * Place the predefined IV into block A -- for encrypt, the caller * does not need to provide an IV, but he needs to fetch the final IV. */ memcpy(block->A, "\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", SEMIBSIZE); /* * src scatterlist is read-only. dst scatterlist is r/w. During the * first loop, lsrc points to src and ldst to dst. For any * subsequent round, the code operates on dst only. */ lsrc = src; ldst = dst; for (i = 0; i < 6; i++) { u8 tbe_buffer[SEMIBSIZE + alignmask]; u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1); unsigned int tmp_nbytes = nbytes; struct scatter_walk src_walk, dst_walk; scatterwalk_start(&src_walk, lsrc); scatterwalk_start(&dst_walk, ldst); while (tmp_nbytes) { /* get the source block */ scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE, false); /* perform KW operation: encrypt block */ crypto_cipher_encrypt_one(child, (u8 *)block, (u8 *)block); /* perform KW operation: get counter as byte string */ crypto_kw_cpu_to_be64(t, tbe); /* perform KW operation: modify IV with counter */ crypto_xor(block->A, tbe, SEMIBSIZE); t++; /* Copy block->R into place */ scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE, true); tmp_nbytes -= SEMIBSIZE; } /* we now start to operate on the dst SGL only */ lsrc = dst; ldst = dst; } /* establish the IV for the caller to pick up */ memcpy(desc->info, block->A, SEMIBSIZE); memzero_explicit(block, sizeof(struct crypto_kw_block)); return 0; } static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key, unsigned int keylen) { struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent); struct crypto_cipher *child = ctx->child; int err; crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_cipher_setkey(child, key, keylen); crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int crypto_kw_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct crypto_spawn *spawn = crypto_instance_ctx(inst); struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_cipher *cipher; cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; return 0; } static void crypto_kw_exit_tfm(struct crypto_tfm *tfm) { struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher(ctx->child); } static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb) { struct crypto_instance *inst = NULL; struct crypto_alg *alg = NULL; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER); if (err) return ERR_PTR(err); alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK); if (IS_ERR(alg)) return ERR_CAST(alg); inst = ERR_PTR(-EINVAL); /* Section 5.1 requirement for KW */ if (alg->cra_blocksize != sizeof(struct crypto_kw_block)) goto err; inst = crypto_alloc_instance("kw", alg); if (IS_ERR(inst)) goto err; inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; inst->alg.cra_priority = alg->cra_priority; inst->alg.cra_blocksize = SEMIBSIZE; inst->alg.cra_alignmask = 0; inst->alg.cra_type = &crypto_blkcipher_type; inst->alg.cra_blkcipher.ivsize = SEMIBSIZE; inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize; inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize; inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx); inst->alg.cra_init = crypto_kw_init_tfm; inst->alg.cra_exit = crypto_kw_exit_tfm; inst->alg.cra_blkcipher.setkey = crypto_kw_setkey; inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt; inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt; err: crypto_mod_put(alg); return inst; } static void crypto_kw_free(struct crypto_instance *inst) { crypto_drop_spawn(crypto_instance_ctx(inst)); kfree(inst); } static struct crypto_template crypto_kw_tmpl = { .name = "kw", .alloc = crypto_kw_alloc, .free = crypto_kw_free, .module = THIS_MODULE, }; static int __init crypto_kw_init(void) { return crypto_register_template(&crypto_kw_tmpl); } static void __exit crypto_kw_exit(void) { crypto_unregister_template(&crypto_kw_tmpl); } module_init(crypto_kw_init); module_exit(crypto_kw_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Stephan Mueller "); MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)"); MODULE_ALIAS_CRYPTO("kw");