/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "bluetooth_hidl_hal_test" #include #include #include #include #include #include #include #include #include #include using ::android::sp; using ::android::hardware::hidl_vec; using ::android::hardware::Return; using ::android::hardware::Void; using ::android::hardware::bluetooth::V1_0::IBluetoothHci; using ::android::hardware::bluetooth::V1_0::IBluetoothHciCallbacks; using ::android::hardware::bluetooth::V1_0::Status; #define HCI_MINIMUM_HCI_VERSION 5 // Bluetooth Core Specification 3.0 + HS #define HCI_MINIMUM_LMP_VERSION 5 // Bluetooth Core Specification 3.0 + HS #define NUM_HCI_COMMANDS_BANDWIDTH 1000 #define NUM_SCO_PACKETS_BANDWIDTH 1000 #define NUM_ACL_PACKETS_BANDWIDTH 1000 #define WAIT_FOR_INIT_TIMEOUT std::chrono::milliseconds(2000) #define WAIT_FOR_HCI_EVENT_TIMEOUT std::chrono::milliseconds(2000) #define WAIT_FOR_SCO_DATA_TIMEOUT std::chrono::milliseconds(1000) #define WAIT_FOR_ACL_DATA_TIMEOUT std::chrono::milliseconds(1000) #define COMMAND_HCI_SHOULD_BE_UNKNOWN \ { 0xff, 0x3B, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 } #define COMMAND_HCI_READ_LOCAL_VERSION_INFORMATION \ { 0x01, 0x10, 0x00 } #define COMMAND_HCI_READ_BUFFER_SIZE \ { 0x05, 0x10, 0x00 } #define COMMAND_HCI_WRITE_LOOPBACK_MODE_LOCAL \ { 0x02, 0x18, 0x01, 0x01 } #define COMMAND_HCI_RESET \ { 0x03, 0x0c, 0x00 } #define COMMAND_HCI_WRITE_LOCAL_NAME \ { 0x13, 0x0c, 0xf8 } #define HCI_STATUS_SUCCESS 0x00 #define HCI_STATUS_UNKNOWN_HCI_COMMAND 0x01 #define EVENT_CONNECTION_COMPLETE 0x03 #define EVENT_COMMAND_COMPLETE 0x0e #define EVENT_COMMAND_STATUS 0x0f #define EVENT_NUMBER_OF_COMPLETED_PACKETS 0x13 #define EVENT_LOOPBACK_COMMAND 0x19 #define EVENT_CODE_BYTE 0 #define EVENT_LENGTH_BYTE 1 #define EVENT_FIRST_PAYLOAD_BYTE 2 #define EVENT_COMMAND_STATUS_STATUS_BYTE 2 #define EVENT_COMMAND_STATUS_ALLOWED_PACKETS_BYTE 3 #define EVENT_COMMAND_STATUS_OPCODE_LSBYTE 4 // Bytes 4 and 5 #define EVENT_COMMAND_COMPLETE_ALLOWED_PACKETS_BYTE 2 #define EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE 3 // Bytes 3 and 4 #define EVENT_COMMAND_COMPLETE_STATUS_BYTE 5 #define EVENT_COMMAND_COMPLETE_FIRST_PARAM_BYTE 6 #define EVENT_LOCAL_HCI_VERSION_BYTE EVENT_COMMAND_COMPLETE_FIRST_PARAM_BYTE #define EVENT_LOCAL_LMP_VERSION_BYTE EVENT_LOCAL_HCI_VERSION_BYTE + 3 #define EVENT_CONNECTION_COMPLETE_PARAM_LENGTH 11 #define EVENT_CONNECTION_COMPLETE_TYPE 11 #define EVENT_CONNECTION_COMPLETE_TYPE_SCO 0 #define EVENT_CONNECTION_COMPLETE_TYPE_ACL 1 #define EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE 3 #define EVENT_COMMAND_STATUS_LENGTH 4 #define EVENT_NUMBER_OF_COMPLETED_PACKETS_NUM_HANDLES 2 #define ACL_BROADCAST_FLAG_OFFSET 6 #define ACL_BROADCAST_FLAG_POINT_TO_POINT 0x0 #define ACL_BROADCAST_POINT_TO_POINT \ (ACL_BROADCAST_FLAG_POINT_TO_POINT << ACL_BROADCAST_FLAG_OFFSET) #define ACL_PACKET_BOUNDARY_FLAG_OFFSET 4 #define ACL_PACKET_BOUNDARY_FLAG_FIRST_AUTO_FLUSHABLE 0x2 #define ACL_PACKET_BOUNDARY_FIRST_AUTO_FLUSHABLE \ (ACL_PACKET_BOUNDARY_FLAG_FIRST_AUTO_FLUSHABLE \ << ACL_PACKET_BOUNDARY_FLAG_OFFSET) constexpr char kCallbackNameAclEventReceived[] = "aclDataReceived"; constexpr char kCallbackNameHciEventReceived[] = "hciEventReceived"; constexpr char kCallbackNameInitializationComplete[] = "initializationComplete"; constexpr char kCallbackNameScoEventReceived[] = "scoDataReceived"; class ThroughputLogger { public: ThroughputLogger(std::string task) : task_(task), start_time_(std::chrono::steady_clock::now()) {} ~ThroughputLogger() { if (total_bytes_ == 0) return; std::chrono::duration duration = std::chrono::steady_clock::now() - start_time_; double s = duration.count(); if (s == 0) return; double rate_kb = (static_cast(total_bytes_) / s) / 1024; ALOGD("%s %.1f KB/s (%zu bytes in %.3fs)", task_.c_str(), rate_kb, total_bytes_, s); } void setTotalBytes(size_t total_bytes) { total_bytes_ = total_bytes; } private: size_t total_bytes_; std::string task_; std::chrono::steady_clock::time_point start_time_; }; // Test environment for Bluetooth HIDL HAL. class BluetoothHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase { public: // get the test environment singleton static BluetoothHidlEnvironment* Instance() { static BluetoothHidlEnvironment* instance = new BluetoothHidlEnvironment; return instance; } virtual void registerTestServices() override { registerTestService(); } private: BluetoothHidlEnvironment() {} }; // The main test class for Bluetooth HIDL HAL. class BluetoothHidlTest : public ::testing::VtsHalHidlTargetTestBase { public: virtual void SetUp() override { // currently test passthrough mode only bluetooth = ::testing::VtsHalHidlTargetTestBase::getService(); ASSERT_NE(bluetooth, nullptr); ALOGI("%s: getService() for bluetooth is %s", __func__, bluetooth->isRemote() ? "remote" : "local"); bluetooth_cb = new BluetoothHciCallbacks(*this); ASSERT_NE(bluetooth_cb, nullptr); max_acl_data_packet_length = 0; max_sco_data_packet_length = 0; max_acl_data_packets = 0; max_sco_data_packets = 0; initialized = false; event_cb_count = 0; acl_cb_count = 0; sco_cb_count = 0; ASSERT_FALSE(initialized); // Should not be checked in production code ASSERT_TRUE(bluetooth->initialize(bluetooth_cb).isOk()); bluetooth_cb->SetWaitTimeout(kCallbackNameInitializationComplete, WAIT_FOR_INIT_TIMEOUT); bluetooth_cb->SetWaitTimeout(kCallbackNameHciEventReceived, WAIT_FOR_HCI_EVENT_TIMEOUT); bluetooth_cb->SetWaitTimeout(kCallbackNameAclEventReceived, WAIT_FOR_ACL_DATA_TIMEOUT); bluetooth_cb->SetWaitTimeout(kCallbackNameScoEventReceived, WAIT_FOR_SCO_DATA_TIMEOUT); EXPECT_TRUE( bluetooth_cb->WaitForCallback(kCallbackNameInitializationComplete) .no_timeout); ASSERT_TRUE(initialized); } virtual void TearDown() override { // Should not be checked in production code ASSERT_TRUE(bluetooth->close().isOk()); handle_no_ops(); EXPECT_EQ(static_cast(0), event_queue.size()); EXPECT_EQ(static_cast(0), sco_queue.size()); EXPECT_EQ(static_cast(0), acl_queue.size()); } void setBufferSizes(); // Functions called from within tests in loopback mode void sendAndCheckHCI(int num_packets); void sendAndCheckSCO(int num_packets, size_t size, uint16_t handle); void sendAndCheckACL(int num_packets, size_t size, uint16_t handle); // Helper functions to try to get a handle on verbosity void enterLoopbackMode(std::vector& sco_handles, std::vector& acl_handles); void handle_no_ops(); void wait_for_event(bool timeout_is_error); void wait_for_command_complete_event(hidl_vec cmd); int wait_for_completed_packets_event(uint16_t handle); // A simple test implementation of BluetoothHciCallbacks. class BluetoothHciCallbacks : public ::testing::VtsHalHidlTargetCallbackBase, public IBluetoothHciCallbacks { BluetoothHidlTest& parent_; public: BluetoothHciCallbacks(BluetoothHidlTest& parent) : parent_(parent){}; virtual ~BluetoothHciCallbacks() = default; Return initializationComplete(Status status) override { parent_.initialized = (status == Status::SUCCESS); NotifyFromCallback(kCallbackNameInitializationComplete); ALOGV("%s (status = %d)", __func__, static_cast(status)); return Void(); }; Return hciEventReceived( const ::android::hardware::hidl_vec& event) override { parent_.event_cb_count++; parent_.event_queue.push(event); NotifyFromCallback(kCallbackNameHciEventReceived); ALOGV("Event received (length = %d)", static_cast(event.size())); return Void(); }; Return aclDataReceived( const ::android::hardware::hidl_vec& data) override { parent_.acl_cb_count++; parent_.acl_queue.push(data); NotifyFromCallback(kCallbackNameAclEventReceived); return Void(); }; Return scoDataReceived( const ::android::hardware::hidl_vec& data) override { parent_.sco_cb_count++; parent_.sco_queue.push(data); NotifyFromCallback(kCallbackNameScoEventReceived); return Void(); }; }; sp bluetooth; sp bluetooth_cb; std::queue> event_queue; std::queue> acl_queue; std::queue> sco_queue; bool initialized; int event_cb_count; int sco_cb_count; int acl_cb_count; int max_acl_data_packet_length; int max_sco_data_packet_length; int max_acl_data_packets; int max_sco_data_packets; }; // Discard NO-OPs from the event queue. void BluetoothHidlTest::handle_no_ops() { while (event_queue.size() > 0) { hidl_vec event = event_queue.front(); EXPECT_GE(event.size(), static_cast(EVENT_COMMAND_COMPLETE_STATUS_BYTE)); bool event_is_no_op = (event[EVENT_CODE_BYTE] == EVENT_COMMAND_COMPLETE) && (event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE] == 0x00) && (event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1] == 0x00); event_is_no_op |= (event[EVENT_CODE_BYTE] == EVENT_COMMAND_STATUS) && (event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE] == 0x00) && (event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1] == 0x00); if (event_is_no_op) { event_queue.pop(); } else { return; } } } // Receive an event, discarding NO-OPs. void BluetoothHidlTest::wait_for_event(bool timeout_is_error = true) { hidl_vec event; do { bool no_timeout = bluetooth_cb->WaitForCallback(kCallbackNameHciEventReceived).no_timeout; EXPECT_TRUE(no_timeout || !timeout_is_error); if (no_timeout && timeout_is_error) { EXPECT_LT(static_cast(0), event_queue.size()); } if (event_queue.size() == 0) { // WaitForCallback timed out. return; } handle_no_ops(); } while (event_queue.size() == 0); } // Wait until a COMMAND_COMPLETE is received. void BluetoothHidlTest::wait_for_command_complete_event(hidl_vec cmd) { wait_for_event(); hidl_vec event = event_queue.front(); event_queue.pop(); EXPECT_GT(event.size(), static_cast(EVENT_COMMAND_COMPLETE_STATUS_BYTE)); EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]); EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]); EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]); EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]); } // Send the command to read the controller's buffer sizes. void BluetoothHidlTest::setBufferSizes() { hidl_vec cmd = COMMAND_HCI_READ_BUFFER_SIZE; bluetooth->sendHciCommand(cmd); wait_for_event(); if (event_queue.size() == 0) return; hidl_vec event = event_queue.front(); event_queue.pop(); EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]); EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]); EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]); EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]); max_acl_data_packet_length = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 1] + (event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 2] << 8); max_sco_data_packet_length = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 3]; max_acl_data_packets = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 4] + (event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 5] << 8); max_sco_data_packets = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 6] + (event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 7] << 8); ALOGD("%s: ACL max %d num %d SCO max %d num %d", __func__, static_cast(max_acl_data_packet_length), static_cast(max_acl_data_packets), static_cast(max_sco_data_packet_length), static_cast(max_sco_data_packets)); } // Send an HCI command (in Loopback mode) and check the response. void BluetoothHidlTest::sendAndCheckHCI(int num_packets) { ThroughputLogger logger = {__func__}; int command_size = 0; for (int n = 0; n < num_packets; n++) { // Send an HCI packet std::vector write_name = COMMAND_HCI_WRITE_LOCAL_NAME; // With a name char new_name[] = "John Jacob Jingleheimer Schmidt ___________________0"; size_t new_name_length = strlen(new_name); for (size_t i = 0; i < new_name_length; i++) write_name.push_back(static_cast(new_name[i])); // And the packet number size_t i = new_name_length - 1; for (int digits = n; digits > 0; digits = digits / 10, i--) write_name[i] = static_cast('0' + digits % 10); // And padding for (size_t i = 0; i < 248 - new_name_length; i++) write_name.push_back(static_cast(0)); hidl_vec cmd = write_name; bluetooth->sendHciCommand(cmd); // Check the loopback of the HCI packet wait_for_event(); if (event_queue.size() == 0) return; hidl_vec event = event_queue.front(); event_queue.pop(); size_t compare_length = (cmd.size() > static_cast(0xff) ? static_cast(0xff) : cmd.size()); EXPECT_GT(event.size(), compare_length + EVENT_FIRST_PAYLOAD_BYTE - 1); EXPECT_EQ(EVENT_LOOPBACK_COMMAND, event[EVENT_CODE_BYTE]); EXPECT_EQ(compare_length, event[EVENT_LENGTH_BYTE]); // Don't compare past the end of the event. if (compare_length + EVENT_FIRST_PAYLOAD_BYTE > event.size()) { compare_length = event.size() - EVENT_FIRST_PAYLOAD_BYTE; ALOGE("Only comparing %d bytes", static_cast(compare_length)); } if (n == num_packets - 1) { command_size = cmd.size(); } for (size_t i = 0; i < compare_length; i++) EXPECT_EQ(cmd[i], event[EVENT_FIRST_PAYLOAD_BYTE + i]); } logger.setTotalBytes(command_size * num_packets * 2); } // Send a SCO data packet (in Loopback mode) and check the response. void BluetoothHidlTest::sendAndCheckSCO(int num_packets, size_t size, uint16_t handle) { ThroughputLogger logger = {__func__}; for (int n = 0; n < num_packets; n++) { // Send a SCO packet hidl_vec sco_packet; std::vector sco_vector; sco_vector.push_back(static_cast(handle & 0xff)); sco_vector.push_back(static_cast((handle & 0x0f00) >> 8)); sco_vector.push_back(static_cast(size & 0xff)); sco_vector.push_back(static_cast((size & 0xff00) >> 8)); for (size_t i = 0; i < size; i++) { sco_vector.push_back(static_cast(i + n)); } sco_packet = sco_vector; bluetooth->sendScoData(sco_vector); // Check the loopback of the SCO packet EXPECT_TRUE(bluetooth_cb->WaitForCallback(kCallbackNameScoEventReceived) .no_timeout); hidl_vec sco_loopback = sco_queue.front(); sco_queue.pop(); EXPECT_EQ(sco_packet.size(), sco_loopback.size()); size_t successful_bytes = 0; for (size_t i = 0; i < sco_packet.size(); i++) { if (sco_packet[i] == sco_loopback[i]) { successful_bytes = i; } else { ALOGE("Miscompare at %d (expected %x, got %x)", static_cast(i), sco_packet[i], sco_loopback[i]); ALOGE("At %d (expected %x, got %x)", static_cast(i + 1), sco_packet[i + 1], sco_loopback[i + 1]); break; } } EXPECT_EQ(sco_packet.size(), successful_bytes + 1); } logger.setTotalBytes(num_packets * size * 2); } // Send an ACL data packet (in Loopback mode) and check the response. void BluetoothHidlTest::sendAndCheckACL(int num_packets, size_t size, uint16_t handle) { ThroughputLogger logger = {__func__}; for (int n = 0; n < num_packets; n++) { // Send an ACL packet hidl_vec acl_packet; std::vector acl_vector; acl_vector.push_back(static_cast(handle & 0xff)); acl_vector.push_back(static_cast((handle & 0x0f00) >> 8) | ACL_BROADCAST_POINT_TO_POINT | ACL_PACKET_BOUNDARY_FIRST_AUTO_FLUSHABLE); acl_vector.push_back(static_cast(size & 0xff)); acl_vector.push_back(static_cast((size & 0xff00) >> 8)); for (size_t i = 0; i < size; i++) { acl_vector.push_back(static_cast(i + n)); } acl_packet = acl_vector; bluetooth->sendAclData(acl_vector); // Check the loopback of the ACL packet EXPECT_TRUE(bluetooth_cb->WaitForCallback(kCallbackNameAclEventReceived) .no_timeout); hidl_vec acl_loopback = acl_queue.front(); acl_queue.pop(); EXPECT_EQ(acl_packet.size(), acl_loopback.size()); size_t successful_bytes = 0; for (size_t i = 0; i < acl_packet.size(); i++) { if (acl_packet[i] == acl_loopback[i]) { successful_bytes = i; } else { ALOGE("Miscompare at %d (expected %x, got %x)", static_cast(i), acl_packet[i], acl_loopback[i]); ALOGE("At %d (expected %x, got %x)", static_cast(i + 1), acl_packet[i + 1], acl_loopback[i + 1]); break; } } EXPECT_EQ(acl_packet.size(), successful_bytes + 1); } logger.setTotalBytes(num_packets * size * 2); } // Return the number of completed packets reported by the controller. int BluetoothHidlTest::wait_for_completed_packets_event(uint16_t handle) { int packets_processed = 0; wait_for_event(false); if (event_queue.size() == 0) { ALOGW("%s: WaitForCallback timed out.", __func__); return packets_processed; } while (event_queue.size() > 0) { hidl_vec event = event_queue.front(); event_queue.pop(); EXPECT_EQ(EVENT_NUMBER_OF_COMPLETED_PACKETS, event[EVENT_CODE_BYTE]); EXPECT_EQ(1, event[EVENT_NUMBER_OF_COMPLETED_PACKETS_NUM_HANDLES]); uint16_t event_handle = event[3] + (event[4] << 8); EXPECT_EQ(handle, event_handle); packets_processed += event[5] + (event[6] << 8); } return packets_processed; } // Send local loopback command and initialize SCO and ACL handles. void BluetoothHidlTest::enterLoopbackMode(std::vector& sco_handles, std::vector& acl_handles) { hidl_vec cmd = COMMAND_HCI_WRITE_LOOPBACK_MODE_LOCAL; bluetooth->sendHciCommand(cmd); // Receive connection complete events with data channels int connection_event_count = 0; bool command_complete_received = false; while (true) { wait_for_event(false); if (event_queue.size() == 0) { // Fail if there was no event received or no connections completed. EXPECT_TRUE(command_complete_received); EXPECT_LT(0, connection_event_count); return; } hidl_vec event = event_queue.front(); event_queue.pop(); EXPECT_GT(event.size(), static_cast(EVENT_COMMAND_COMPLETE_STATUS_BYTE)); if (event[EVENT_CODE_BYTE] == EVENT_CONNECTION_COMPLETE) { EXPECT_GT(event.size(), static_cast(EVENT_CONNECTION_COMPLETE_TYPE)); EXPECT_EQ(event[EVENT_LENGTH_BYTE], EVENT_CONNECTION_COMPLETE_PARAM_LENGTH); uint8_t connection_type = event[EVENT_CONNECTION_COMPLETE_TYPE]; EXPECT_TRUE(connection_type == EVENT_CONNECTION_COMPLETE_TYPE_SCO || connection_type == EVENT_CONNECTION_COMPLETE_TYPE_ACL); // Save handles uint16_t handle = event[EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE] | event[EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE + 1] << 8; if (connection_type == EVENT_CONNECTION_COMPLETE_TYPE_SCO) sco_handles.push_back(handle); else acl_handles.push_back(handle); ALOGD("Connect complete type = %d handle = %d", event[EVENT_CONNECTION_COMPLETE_TYPE], handle); connection_event_count++; } else { EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]); EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]); EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]); EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]); command_complete_received = true; } } } // Empty test: Initialize()/Close() are called in SetUp()/TearDown(). TEST_F(BluetoothHidlTest, InitializeAndClose) {} // Send an HCI Reset with sendHciCommand and wait for a command complete event. TEST_F(BluetoothHidlTest, HciReset) { hidl_vec cmd = COMMAND_HCI_RESET; bluetooth->sendHciCommand(cmd); wait_for_command_complete_event(cmd); } // Read and check the HCI version of the controller. TEST_F(BluetoothHidlTest, HciVersionTest) { hidl_vec cmd = COMMAND_HCI_READ_LOCAL_VERSION_INFORMATION; bluetooth->sendHciCommand(cmd); wait_for_event(); if (event_queue.size() == 0) return; hidl_vec event = event_queue.front(); event_queue.pop(); EXPECT_GT(event.size(), static_cast(EVENT_LOCAL_LMP_VERSION_BYTE)); EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]); EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]); EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]); EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]); EXPECT_LE(HCI_MINIMUM_HCI_VERSION, event[EVENT_LOCAL_HCI_VERSION_BYTE]); EXPECT_LE(HCI_MINIMUM_LMP_VERSION, event[EVENT_LOCAL_LMP_VERSION_BYTE]); } // Send an unknown HCI command and wait for the error message. TEST_F(BluetoothHidlTest, HciUnknownCommand) { hidl_vec cmd = COMMAND_HCI_SHOULD_BE_UNKNOWN; bluetooth->sendHciCommand(cmd); wait_for_event(); if (event_queue.size() == 0) return; hidl_vec event = event_queue.front(); event_queue.pop(); EXPECT_GT(event.size(), static_cast(EVENT_COMMAND_COMPLETE_STATUS_BYTE)); if (event[EVENT_CODE_BYTE] == EVENT_COMMAND_COMPLETE) { EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]); EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]); EXPECT_EQ(HCI_STATUS_UNKNOWN_HCI_COMMAND, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]); } else { EXPECT_EQ(EVENT_COMMAND_STATUS, event[EVENT_CODE_BYTE]); EXPECT_EQ(cmd[0], event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE]); EXPECT_EQ(cmd[1], event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1]); EXPECT_EQ(HCI_STATUS_UNKNOWN_HCI_COMMAND, event[EVENT_COMMAND_STATUS_STATUS_BYTE]); } } // Enter loopback mode, but don't send any packets. TEST_F(BluetoothHidlTest, WriteLoopbackMode) { std::vector sco_connection_handles; std::vector acl_connection_handles; enterLoopbackMode(sco_connection_handles, acl_connection_handles); } // Enter loopback mode and send single packets. TEST_F(BluetoothHidlTest, LoopbackModeSinglePackets) { setBufferSizes(); std::vector sco_connection_handles; std::vector acl_connection_handles; enterLoopbackMode(sco_connection_handles, acl_connection_handles); sendAndCheckHCI(1); // This should work, but breaks on some current platforms. Figure out how to // grandfather older devices but test new ones. if (0 && sco_connection_handles.size() > 0) { EXPECT_LT(0, max_sco_data_packet_length); sendAndCheckSCO(1, max_sco_data_packet_length, sco_connection_handles[0]); int sco_packets_sent = 1; int completed_packets = wait_for_completed_packets_event(sco_connection_handles[0]); if (sco_packets_sent != completed_packets) { ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__, sco_packets_sent, completed_packets); } } if (acl_connection_handles.size() > 0) { EXPECT_LT(0, max_acl_data_packet_length); sendAndCheckACL(1, max_acl_data_packet_length, acl_connection_handles[0]); int acl_packets_sent = 1; int completed_packets = wait_for_completed_packets_event(acl_connection_handles[0]); if (acl_packets_sent != completed_packets) { ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__, acl_packets_sent, completed_packets); } } } // Enter loopback mode and send packets for bandwidth measurements. TEST_F(BluetoothHidlTest, LoopbackModeBandwidth) { setBufferSizes(); std::vector sco_connection_handles; std::vector acl_connection_handles; enterLoopbackMode(sco_connection_handles, acl_connection_handles); sendAndCheckHCI(NUM_HCI_COMMANDS_BANDWIDTH); // This should work, but breaks on some current platforms. Figure out how to // grandfather older devices but test new ones. if (0 && sco_connection_handles.size() > 0) { EXPECT_LT(0, max_sco_data_packet_length); sendAndCheckSCO(NUM_SCO_PACKETS_BANDWIDTH, max_sco_data_packet_length, sco_connection_handles[0]); int sco_packets_sent = NUM_SCO_PACKETS_BANDWIDTH; int completed_packets = wait_for_completed_packets_event(sco_connection_handles[0]); if (sco_packets_sent != completed_packets) { ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__, sco_packets_sent, completed_packets); } } if (acl_connection_handles.size() > 0) { EXPECT_LT(0, max_acl_data_packet_length); sendAndCheckACL(NUM_ACL_PACKETS_BANDWIDTH, max_acl_data_packet_length, acl_connection_handles[0]); int acl_packets_sent = NUM_ACL_PACKETS_BANDWIDTH; int completed_packets = wait_for_completed_packets_event(acl_connection_handles[0]); if (acl_packets_sent != completed_packets) { ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__, acl_packets_sent, completed_packets); } } } int main(int argc, char** argv) { ::testing::AddGlobalTestEnvironment(BluetoothHidlEnvironment::Instance()); ::testing::InitGoogleTest(&argc, argv); BluetoothHidlEnvironment::Instance()->init(&argc, argv); int status = RUN_ALL_TESTS(); ALOGI("Test result = %d", status); return status; }