summaryrefslogtreecommitdiffstats
blob: 0880b2f0d7e681e32d3dff63cce77a224c2213ef (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.hardware.neuralnetworks@1.0;

/**
 * Operand types.
 *
 * The type of an operand in a model.
 *
 * Types prefaced with TENSOR_* must be used for tensor data (i.e., tensors
 * with at least one dimension). Types not prefaced by TENSOR_* represent
 * scalar values and must have no dimensions.
 *
 * Although many types are defined, most operators accept just a few
 * types. Most used are {@link OperandType::TENSOR_FLOAT32},
 * {@link OperandType::TENSOR_QUANT8_ASYMM},
 * and {@link OperandType::INT32}.
 */
enum OperandType : int32_t {
    /** A 32 bit floating point scalar value. */
    FLOAT32             = 0,
    /** A signed 32 bit integer scalar value. */
    INT32               = 1,
    /** An unsigned 32 bit integer scalar value. */
    UINT32              = 2,

    /** A tensor of 32 bit floating point values. */
    TENSOR_FLOAT32      = 3,
    /** A tensor of 32 bit integer values. */
    TENSOR_INT32        = 4,
    /**
     * A tensor of 8 bit integers that represent real numbers.
     *
     * Attached to this tensor are two numbers that can be used to convert the
     * 8 bit integer to the real value and vice versa. These two numbers are:
     * - scale: a 32 bit floating point value greater than zero.
     * - zeroPoint: a 32 bit integer, in range [0, 255].
     *
     * The formula is:
     * real_value = (integer_value - zeroPoint) * scale.
     */
    TENSOR_QUANT8_ASYMM = 5,

    /** OEM specific scalar value. */
    OEM                 = 10000,

    /** A tensor of OEM specific values. */
    TENSOR_OEM_BYTE     = 10001,
};

/**
 * Operation types.
 *
 * The type of an operation in a model.
 */
enum OperationType : int32_t {

    /**
     * Adds two tensors, element-wise.
     *
     * Takes two input tensors of identical {@link OperandType} and compatible
     * dimensions. The output is the sum of both input tensors, optionally
     * modified by an activation function.
     *
     * Two dimensions are compatible when:
     *     1. they are equal, or
     *     2. one of them is 1
     *
     * The size of the output is the maximum size along each dimension of the
     * input operands. It starts with the trailing dimensions, and works its
     * way forward.
     *
     * Example:
     *
     *     input1.dimension = {4, 1, 2}
     *     input2.dimension = {5, 4, 3, 1}
     *     output.dimension = {5, 4, 3, 2}
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4
     *
     * Inputs:
     * * 0: A tensor.
     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
     *      as input0.
     * * 2: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The sum, a tensor of the same {@link OperandType} as input0.
     *
     * Available since API level 27.
     */
    ADD = 0,

    /**
     * Performs a 2-D average pooling operation.
     *
     * The output dimensions are functions of the filter dimensions, stride, and
     * padding.
     *
     * The values in the output tensor are computed as:
     *
     *     output[b, i, j, channel] =
     *         sum_{di, dj}(
     *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
     *         ) / sum(1)
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
     * and Channels) data layout.
     *
     * Both explicit padding and implicit padding are supported.
     *
     * Inputs (explicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the left, in the ‘width’ dimension.
     * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the right, in the ‘width’ dimension.
     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the top, in the ‘height’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the bottom, in the ‘height’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 7: An {@link OperandType::INT32} scalar, specifying the filter
     *      width.
     * * 8: An {@link OperandType::INT32} scalar, specifying the filter
     *      height.
     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Inputs (implicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
     *      padding scheme, has to be one of the
     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
     * * 2: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 3: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the filter
     *      width.
     * * 5: An {@link OperandType::INT32} scalar, specifying the filter
     *      height.
     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape
     *      [batches, out_height, out_width, depth].
     *
     * Available since API level 27.
     */
    AVERAGE_POOL_2D = 1,

    /**
     * Concatenates the input tensors along the given dimension.
     *
     * The input tensors must have identical {@link OperandType} and the same
     * dimensions except the dimension along the concatenation axis.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4
     *
     * Inputs:
     * * 0 ~ n-1: The list of n input tensors, of shape
     *            [D0, D1, ..., Daxis(i), ..., Dm]. For inputs of
     *            {@link OperandType::TENSOR_QUANT8_ASYMM}, all input tensors
     *            must have the same scale and zeroPoint.
     * * n: An {@link OperandType::INT32} scalar, specifying the
     *      concatenation axis.
     *
     * Outputs:
     * * 0: The output, a tensor of the same {@link OperandType} as the input
     *      tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
     *
     * Available since API level 27.
     */
    CONCATENATION = 2,

    /**
     * Performs an 2-D convolution operation.
     *
     * The CONV_2D op sweeps a 2-D filter that can mix channels together over a
     * batch of images, applying the filter to each window of each image of the
     * appropriate size.
     *
     * The output dimensions are functions of the filter dimensions, stride, and
     * padding.
     *
     * The values in the output tensor are computed as:
     *
     *     output[b, i, j, channel] =
     *         sum_{di, dj, k} (
     *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
     *             filter[channel, di, dj, k]
     *         ) + bias[channel]
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Both explicit padding and implicit padding are supported.
     *
     * Inputs (explicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
     *      specifying the input.
     * * 1: A 4-D tensor, of shape
     *      [depth_out, filter_height, filter_width, depth_in], specifying the
     *      filter.
     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
     *      For input tensor of {@link OperandType::TENSOR_FLOAT32}, the bias
     *      should also be of {@link OperandType::TENSOR_FLOAT32}. For input
     *      tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias
     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
     *      0 and bias_scale == input_scale * filter_scale.
     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the left, in the ‘width’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the right, in the ‘width’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the top, in the ‘height’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the bottom, in the ‘height’ dimension.
     * * 7: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 8: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Inputs (implicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
     *      specifying the input.
     * * 1: A 4-D tensor, of shape
     *      [depth_out, filter_height, filter_width, depth_in], specifying the
     *      filter.
     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
     *      tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
     *      also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
     *      bias_scale == input_scale * filter_scale.
     * * 3: An {@link OperandType::INT32} scalar, specifying the implicit
     *      padding scheme, has to be one of the
     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
     * * 4: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape
     *      [batches, out_height, out_width, depth_out]. For output tensor of
     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
     *      must be satisfied: output_scale > input_scale * filter_scale.
     *
     * Available since API level 27.
     */
    CONV_2D = 3,

    /**
     * Performs a depthwise 2-D convolution operation.
     *
     * Given an input tensor of shape [batches, height, width, depth_in] and a
     * filter tensor of shape [1, filter_height, filter_width, depth_out]
     * containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV
     * applies a different filter to each input channel (expanding from 1
     * channel to channel_multiplier channels for each), then concatenates the
     * results together.
     *
     * The output has depth_out = depth_in * depth_multiplier channels.
     * The output dimensions are functions of the filter dimensions, stride, and
     * padding.
     *
     * The values in the output tensor are computed as:
     *
     *     output[b, i, j, k * channel_multiplier + q] =
     *         sum_{di, dj} (
     *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
     *             filter[1, di, dj, k * channel_multiplier + q]
     *         ) + bias[k * channel_multiplier + q]
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Both explicit padding and implicit padding are supported.
     *
     * Inputs (explicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
     *      specifying the input.
     * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
     *      specifying the filter.
     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
     *      tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
     *      also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
     *      bias_scale == input_scale * filter_scale.
     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the left, in the ‘width’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the right, in the ‘width’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the top, in the ‘height’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the bottom, in the ‘height’ dimension.
     * * 7: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 8: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 9: An {@link OperandType::INT32} scalar, specifying the depthwise
     *      multiplier.
     * * 10: An {@link OperandType::INT32} scalar, and has to be one of the
     *       {@link FusedActivationFunc} values. Specifies the activation to
     *       invoke on the result.
     *
     * Inputs (implicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
     *      specifying the input.
     * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
     *      specifying the filter.
     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
     *      tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
     *      also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
     *      bias_scale == input_scale * filter_scale.
     * * 3: An {@link OperandType::INT32} scalar, specifying the implicit
     *      padding scheme, has to be one of the
     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
     * * 4: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, specifying the depthwise
     *      multiplier.
     * * 7: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape
     *      [batches, out_height, out_width, depth_out]. For output tensor of
     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
     *      must be satisfied: output_scale > input_scale * filter_scale.
     *
     * Available since API level 27.
     */
    DEPTHWISE_CONV_2D = 4,

    /**
     * Rearranges data from depth into blocks of spatial data.
     *
     * More specifically, this op outputs a copy of the input tensor where
     * values from the depth dimension are moved in spatial blocks to the height
     * and width dimensions. The value block_size indicates the input block size
     * and how the data is moved.
     *
     * Chunks of data of size block_size * block_size from depth are rearranged
     * into non-overlapping blocks of size block_size x block_size.
     *
     * The width of the output tensor is input_depth * block_size, whereas the
     * height is input_height * block_size. The depth of the input tensor must
     * be divisible by block_size * block_size
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Inputs:
     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
     *      specifying the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
     *      block_size must be >=1 and block_size * block_size must be a divisor
     *      of the input depth.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape [batch, height*block_size,
     *      width*block_size, depth/(block_size*block_size)].
     *
     * Available since API level 27.
     */
    DEPTH_TO_SPACE = 5,

    /**
     * Dequantizes the input tensor.
     *
     * The formula is:
     *
     *     output = (input - zeroPoint) * scale.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4
     *
     * Inputs:
     * * 0: A tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0, but with
     *      {@link OperandType::TENSOR_FLOAT32}.
     *
     * Available since API level 27.
     */
    DEQUANTIZE = 6,

    /**
     * Looks up sub-tensors in the input tensor.
     *
     * This operator takes for input a tensor of values (Values) and
     * a one-dimensional tensor of selection indices (Lookups).
     * The output tensor is the concatenation of sub-tensors of Values as
     * selected by Lookups.
     *
     * Think of Values as being sliced along its first dimension:
     * The entries in Lookups select which slices are concatenated together
     * to create the output tensor.
     *
     * For example, if Values has shape of [40, 200, 300] and
     * Lookups has shape of [3], all three values found in Lookups are
     * expected to be between 0 and 39. The resulting tensor must
     * have shape of [3, 200, 300].
     *
     * If a value in Lookups is out of bounds, the operation must fail
     * and an error must be reported.
     *
     * Inputs:
     * * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32}.
     *      The values are indices into the first dimension of Values.
     * * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
     *      extracted.
     *
     * Output:
     * * 0: A n-D tensor with the same rank and shape as the Values
     *      tensor, except for the first dimension which has the same size
     *      as Lookups' only dimension.
     *
     * Available since API level 27.
     */
    EMBEDDING_LOOKUP = 7,

    /**
     * Computes element-wise floor() on the input tensor.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Supported tensor rank: up to 4
     *
     * Inputs:
     * * 0: A tensor.
     *
     * Outputs:
     * * 0: The output tensor, of the same {@link OperandType} and dimensions as
     *      the input tensor.
     *
     * Available since API level 27.
     */
    FLOOR = 8,

    /**
     * Denotes a fully (densely) connected layer, which connects all elements
     * in the input tensor with each element in the output tensor.
     *
     * This layer implements the operation:
     *
     *     outputs = activation(inputs * weights’ + bias)
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor of at least rank 2, specifying the input. If rank is
     *      greater than 2, then it gets flattened to a 2-D Tensor. The
     *      (flattened) 2-D Tensor is reshaped (if necessary) to
     *      [batch_size, input_size], where "input_size" corresponds to the
     *      number of inputs to the layer, matching the second dimension of
     *      weights, and "batch_size" is calculated by dividing the number of
     *      elements by "input_size".
     * * 1: A 2-D tensor, specifying the weights, of shape
     *      [num_units, input_size], where "num_units" corresponds to the number
     *      of output nodes.
     * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input
     *      tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
     *      also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
     *      bias_scale == input_scale * filter_scale.
     * * 3: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The output tensor, of shape [batch_size, num_units]. For output
     *      tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
     *      condition must be satisfied:
     *      output_scale > input_scale * filter_scale.
     *
     * Available since API level 27.
     */
    FULLY_CONNECTED = 9,

    /**
     * Looks up sub-tensors in the input tensor using a key-value map.
     *
     * This operator takes for input a tensor of values (Values),
     * a one-dimensional tensor of selection values (Lookups) and
     * a one-dimensional tensor that maps these values to Values
     * indexes. The output tensor is the concatenation of sub-tensors of
     * Values as selected by Lookups via Keys.
     *
     * Think of Values as being sliced along its outer-most dimension.
     * The output is a concatenation of selected slices, with one slice
     * for each entry of Lookups. The slice selected is the one at the
     * same index as the Maps entry that matches the value in Lookups.
     *
     * For a hit, the corresponding sub-tensor of Values is included
     * in the Output tensor. For a miss, the corresponding sub-tensor in
     * Output must have zero values.
     *
     * For example, if Values has shape of [40, 200, 300],
     * Keys should have a shape of [40]. If Lookups tensor has shape
     * of [3], three slices are being concatenated, so the resulting tensor
     * must have the shape of [3, 200, 300]. If the first entry in Lookups
     * has the value 123456, that value must be located in Keys tensor.
     * If the sixth entry of Keys contains 123456, the sixth slice of Values
     * must be selected. If no entry in Keys has 123456, a slice of zeroes
     * must be concatenated.
     *
     * Inputs:
     * * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with
     *      shape [ k ].
     * * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape
     *      [ n ]; Keys and Values pair represent a map, i.e., the ith element
     *      in Keys (Keys[i]) is the key to select the ith sub-tensor in Values
     *      (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in
     *      ascending order.
     * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension
     *      must be n.
     *
     * Outputs:
     * * 0: Output. A tensor with shape [ k …].
     * * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
     *      hits (True) or not (False).
     *      Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0
     *      and scale 1.0f.
     *      A non-zero byte represents True, a hit. A zero indicates otherwise.
     *
     * Available since API level 27.
     */
    HASHTABLE_LOOKUP = 10,

    /**
     * Applies L2 normalization along the depth dimension.
     *
     * The values in the output tensor are computed as:
     *
     *     output[batch, row, col, channel] =
     *         input[batch, row, col, channel] /
     *         sqrt(sum_{c} pow(input[batch, row, col, c], 2))
     *
     * For input tensor with more dimensions, independently normalizes each 1-D
     * slice along dimension dim.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Supported tensor rank: 4, with "NHWC" data layout (i.e., Num_samples,
     * Height, Width, and Channels).
     *
     * Inputs:
     * * 0: A 4-D tensor, of shape [batches, height, width, depth].
     *
     * Outputs:
     * * 0: The output 4-D tensor, of the same shape as input
     *      [batches, height, width, depth].
     *
     * Available since API level 27.
     */
    L2_NORMALIZATION = 11,

    /**
     * Performs an 2-D L2 pooling operation.
     *
     * The output dimensions are functions of the filter dimensions, stride, and
     * padding.
     *
     * The values in the output tensor are computed as:
     *
     *     output[b, i, j, c] =
     *         sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
     *              sum(1))
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Both explicit padding and implicit padding are supported.
     *
     * Inputs (explicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the left, in the ‘width’ dimension.
     * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the right, in the ‘width’ dimension.
     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the top, in the ‘height’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the bottom, in the ‘height’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 7: An {@link OperandType::INT32} scalar, specifying the filter
     *      width.
     * * 8: An {@link OperandType::INT32} scalar, specifying the filter
     *      height.
     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Inputs (implicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
     *      padding scheme, has to be one of the
     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
     * * 2: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 3: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the filter
     *      width.
     * * 5: An {@link OperandType::INT32} scalar, specifying the filter
     *      height.
     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape
     *      [batches, out_height, out_width, depth].
     *
     * Available since API level 27.
     */
    L2_POOL_2D = 12,

    /**
     * Applies Local Response Normalization along the depth dimension.
     *
     * The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the
     * last dimension), and each vector is normalized independently. Within a
     * given vector, each component is divided by the weighted, squared sum of
     * inputs within depth_radius.
     *
     * The output is calculated using this formula:
     *
     *     sqr_sum[a, b, c, d] = sum(
     *         pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
     *     output = input / pow((bias + alpha * sqr_sum), beta)
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Inputs:
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the radius of
     *      the normalization window.
     * * 2: An {@link OperandType::FLOAT32} scalar, specifying the bias, must
     *      not be zero.
     * * 3: An {@link OperandType::FLOAT32} scalar, specifying the scale
     *      factor, alpha.
     * * 4: An {@link OperandType::FLOAT32} scalar, specifying the exponent,
     *      beta.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *
     * Available since API level 27.
     */
    LOCAL_RESPONSE_NORMALIZATION = 13,

    /**
     * Computes sigmoid activation on the input tensor element-wise.
     *
     * The output is calculated using this formula:
     *
     *     output = 1 / (1 + exp(-input))
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor, specifying the input.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
     *      the scale must be 1.f / 256 and the zeroPoint must be 0.
     *
     * Available since API level 27.
     */
    LOGISTIC = 14,

    /**
     * Projects an input to a bit vector via locality senstive hashing.
     *
     * Inputs:
     * * 0: Hash functions. Dim.size == 2, DataType: Float.
     *            Tensor[0].Dim[0]: Number of hash functions.
     *            Tensor[0].Dim[1]: Number of seeds per hash functions.
     *            Tensor[0].Dim[1] <= 32 in sparse case.
     *
     * * 1: Input. Dim.size >= 1, no restriction on DataType.
     * * 2: Weight. Optional. Dim.size == 1, DataType: Float.
     *     If not set, each input element is considered to have the same weight
     *     of 1.0.
     *     Tensor[1].Dim[0] == Tensor[2].Dim[0]
     * * 3: Type:
     *        Sparse: Value LSHProjectionType_SPARSE(=1).
     *          Computed bit vector is considered to be sparse.
     *          Each output element is an int32 made up of multiple bits
     *          computed from hash functions.
     *
     *        Dense: Value LSHProjectionType_DENSE(=2).
     *          Computed bit vector is considered to be dense. Each output
     *          element represents a bit and can take the value of either
     *          0 or 1.
     *
     * Outputs:
     * * 0: If the projection type is sparse:
     *        Output.Dim == { Tensor[0].Dim[0] }
     *        A tensor of int32 that represents hash signatures.
     *      If the projection type is Dense:
     *        Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
     *        A flattened tensor that represents projected bit vectors.
     *
     * Available since API level 27.
     */
    LSH_PROJECTION = 15,

    /**
     * Performs a single time step in a Long Short-Term Memory (LSTM) layer
     *
     * The LSTM operation is described by the following equations.
     *
     * \f{eqnarray*}{
     * i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
     * f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
     * C_t =& clip(f_t \odot C_{t-1} + i_t \odot
     *        g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\
     * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\
     *      & & \\
     *      & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj})
     *      & if\ there\ is\ a\ projection; \\
     * h_t =& & \\
     *      & o_t \odot g(C_t) & otherwise. \\
     * \f}
     * Where:
     * * \f$x_t\f$ is the input,
     * * \f$i_t\f$ is the input gate,
     * * \f$f_t\f$ is the forget gate,
     * * \f$C_t\f$ is the cell state,
     * * \f$o_t\f$ is the output,
     * * \f$h_t\f$ is the output state,
     * * \f$\sigma\f$ is the logistic sigmoid function,
     * * \f$g\f$ is the cell input and cell output activation function, usually
     *   \f$tahn\f$,
     * * \f$W_{xi}\f$ is the input-to-input weight matrix,
     * * \f$W_{hi}\f$ is the recurrent to input weight matrix,
     * * \f$W_{ci}\f$ is the cell-to-input weight matrix,
     * * \f$b_i\f$ is the input gate bias,
     * * \f$W_{xf}\f$ is the input-to-forget weight matrix,
     * * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
     * * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
     * * \f$b_f\f$ is the forget gate bias,
     * * \f$W_{xc}\f$ is the input-to-cell weight matrix,
     * * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
     * * \f$b_c\f$ is the cell bias,
     * * \f$W_{xo}\f$ is the input-to-output weight matrix,
     * * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
     * * \f$W_{co}\f$ is the cell-to-output weight matrix,
     * * \f$b_o\f$ is the output gate bias,
     * * \f$W_{proj}\f$ is the projection weight matrix,
     * * \f$b_{proj}\f$ is the projection bias,
     * * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
     * * \f$t_{proj}\f$ is the threshold for clipping the projected output.
     * * \f$\odot\f$ is the
     *   <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
     *   Hadamard product</a> that takes two matrices and produces another
     *   matrix, each element of which is the product of the corresponding
     *   elements of the input matrices.
     *
     * The operation has the following independently optional inputs:
     * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
     *   (\f$W_{hi}\f$), cell-to-input (\f$W_{ci}\f$) weights, and input gate
     *   bias (\f$b_i\f$) either all have values, or none of them have values
     *   (i.e., all set to null). If they have no values, coupling of input and
     *   forget gates (CIFG) is used, in which case the input gate (\f$i_t\f$)
     *   is calculated using the following equation instead.
     *   \f{eqnarray*}{
     *   i_t = 1 - f_t
     *   \f}
     * * The cell-to-forget weights (\f$W_{cf}\f$) and cell-to-output weights
     *   (\f$W_{co}\f$) either both have values or neither of them have values.
     *   If they have values, the peephole optimization is used. Additionally,
     *   if CIFG is not used, cell-to-input weights (\f$W_{ci}\f$) is also
     *   required to have values for peephole optimization.
     * * The projection weights (\f$W_{proj}\f$) is required only for the
     *   recurrent projection layer, and should otherwise have no value.
     * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
     *   value if the recurrent projection layer exists, and should otherwise
     *   have no value.
     *
     * References:
     *
     * The default non-peephole non-CIFG implementation is based on:
     * http://www.bioinf.jku.at/publications/older/2604.pdf
     * S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
     * Computation, 9(8):1735-1780, 1997.
     *
     * The peephole implementation and projection layer is based on:
     * https://research.google.com/pubs/archive/43905.pdf
     * Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
     * recurrent neural network architectures for large scale acoustic
     * modeling." INTERSPEECH, 2014.
     * (However, the concept of peephole optimization was introduced in work
     * prior to this paper.)
     *
     * The coupling of input and forget gate (CIFG) is based on:
     * http://arxiv.org/pdf/1503.04069.pdf
     * Greff et al. "LSTM: A Search Space Odyssey"
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Inputs:
     * * 0: The input (\f$x_t\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, input_size], where “batch_size” corresponds to the
     *      batching dimension, and “input_size” is the size of the input.
     * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, input_size], where “num_units” corresponds to the
     *      number of cell units.
     * * 2: The input-to-forget weights (\f$W_{xf}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, input_size].
     * * 3: The input-to-cell weights (\f$W_{xc}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, input_size].
     * * 4: The input-to-output weights (\f$W_{xo}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, input_size].
     * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, output_size], where “output_size” corresponds to either
     *      the number of cell units (i.e., “num_units”), or the second
     *      dimension of the “projection_weights”, if defined.
     * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, output_size].
     * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, output_size].
     * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, output_size].
     * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 12:The input gate bias (\f$b_i\f$). Optional.
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 13:The forget gate bias (\f$b_f\f$).
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 14:The cell bias (\f$b_c\f$).
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 15:The output gate bias (\f$b_o\f$).
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 16:The projection weights (\f$W_{proj}\f$). Optional.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [output_size, num_units].
     * * 17:The projection bias (\f$b_{proj}\f$). Optional.
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [output_size].
     * * 18:The output state (in) (\f$h_{t-1}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, output_size].
     * * 19:The cell state (in) (\f$C_{t-1}\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units].
     * * 20:The activation function (\f$g\f$).
     *      A value indicating the activation function:
     *      <ul>
     *      <li>0: None;
     *      <li>1: Relu;
     *      <li>3: Relu6;
     *      <li>4: Tanh;
     *      <li>6: Sigmoid.
     *      </ul>
     * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
     *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
     *      then clipping is disabled.
     * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
     *      projection layer, such that values are bound within
     *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
     *
     * Outputs:
     * * 0: The scratch buffer.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units * 4] with CIFG, or
     *      [batch_size, num_units * 3] without CIFG.
     * * 1: The output state (out) (\f$h_t\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, output_size].
     * * 2: The cell state (out) (\f$C_t\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units].
     * * 3: The output (\f$o_t\f$).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, output_size]. This is effectively the same as the
     *      current “output state (out)” value.
     *
     * Available since API level 27.
     */
    LSTM = 16,

    /**
     * Performs an 2-D max pooling operation.
     *
     * The output dimensions are functions of the filter dimensions, stride, and
     * padding.
     *
     * The values in the output tensor are computed as:
     *
     *     output[b, i, j, channel] =
     *         max_{di, dj} (
     *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
     *         )
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Both explicit padding and implicit padding are supported.
     *
     * Inputs (explicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the left, in the ‘width’ dimension.
     * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the right, in the ‘width’ dimension.
     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the top, in the ‘height’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
     *      the bottom, in the ‘height’ dimension.
     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 7: An {@link OperandType::INT32} scalar, specifying the filter
     *      width.
     * * 8: An {@link OperandType::INT32} scalar, specifying the filter
     *      height.
     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Inputs (implicit padding):
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
     *      padding scheme, has to be one of the
     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
     * * 2: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘width’ dimension.
     * * 3: An {@link OperandType::INT32} scalar, specifying the stride when
     *      walking through input in the ‘height’ dimension.
     * * 4: An {@link OperandType::INT32} scalar, specifying the filter
     *      width.
     * * 5: An {@link OperandType::INT32} scalar, specifying the filter
     *      height.
     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape
     *      [batches, out_height, out_width, depth].
     *
     * Available since API level 27.
     */
    MAX_POOL_2D = 17,

    /**
     * Multiplies two tensors, element-wise.
     *
     * Takes two input tensors of identical {@link OperandType} and compatible
     * dimensions. The output is the product of both input tensors, optionally
     * modified by an activation function.
     *
     * Two dimensions are compatible when:
     *     1. they are equal, or
     *     2. one of them is 1
     *
     * The size of the resulting output is the maximum size along each dimension
     * of the input operands. It starts with the trailing dimensions, and works
     * its way forward.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4
     *
     * Inputs:
     * * 0: A tensor.
     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
     *      as input0.
     * * 2: An {@link OperandType::INT32} scalar, and has to be one of the
     *      {@link FusedActivationFunc} values. Specifies the activation to
     *      invoke on the result.
     *
     * Outputs:
     * * 0: The product, a tensor of the same {@link OperandType} as input0.
     *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
     *      the following condition must be satisfied:
     *      output_scale > input1_scale * input2_scale.
     *
     * Available since API level 27.
     */
    MUL = 18,

    /**
     * Computes rectified linear activation on the input tensor element-wise.
     *
     * The output is calculated using this formula:
     *
     *     output = max(0, input)
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor, specifying the input.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *
     * Available since API level 27.
     */
    RELU = 19,

    /**
     * Computes rectified linear 1 activation on the input tensor element-wise.
     *
     * The output is calculated using this formula:
     *
     *     output = min(1.f, max(-1.f, input))
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor, specifying the input.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *
     * Available since API level 27.
     */
    RELU1 = 20,

    /**
     * Computes rectified linear 6 activation on the input tensor element-wise.
     *
     * The output is calculated using this formula:
     *
     *     output = min(6, max(0, input))
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor, specifying the input.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *
     * Available since API level 27.
     */
    RELU6 = 21,

    /**
     * Reshapes a tensor.
     *
     * Given tensor, this operation returns a tensor that has the same values as
     * tensor, but with a newly specified shape.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor, specifying the tensor to be reshaped.
     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}, defining the
     *      shape of the output tensor. The number of elements implied by shape
     *      must be the same as the number of elements in the input tensor.
     *
     * Outputs:
     * * 0: The output tensor, of shape specified by the input shape.
     *
     * Available since API level 27.
     */
    RESHAPE = 22,

    /**
     * Resizes images to given size using the bilinear interpretation.
     *
     * Resized images must be distorted if their output aspect ratio is not the
     * same as input aspect ratio. The corner pixels of output may not be the
     * same as corner pixels of input.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Inputs:
     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
     *      the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the output
     *      height of the output tensor.
     * * 2: An {@link OperandType::INT32} scalar, specifying the output
     *      width of the output tensor.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape
     *      [batches, new_height, new_width, depth].
     *
     * Available since API level 27.
     */
    RESIZE_BILINEAR = 23,

    /**
     * A basic recurrent neural network layer.
     *
     * This layer implements the operation:
     * outputs = state = activation(inputs * input_weights +
     *                              state * recurrent_weights + bias)
     *
     * Where:
     * * “input_weights” is a weight matrix that multiplies the inputs;
     * * “recurrent_weights” is a weight matrix that multiplies the current
     *    “state” which itself is the output from the previous time step
     *    computation;
     * * “bias” is a bias vector (added to each output vector in the batch);
     * * “activation” is the function passed as the “fused_activation_function”
     *   argument (if not “NONE”).
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Inputs:
     * * 0: input.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32} of shape
     *      [batch_size, input_size], where “batch_size” corresponds to the
     *      batching dimension, and “input_size” is the size of the input.
     * * 1: weights.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, input_size], where “num_units” corresponds to the
     *      number of units.
     * * 2: recurrent_weights.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, num_units], with columns corresponding to the weights
     *      from each unit.
     * * 3: bias.
     *      A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units].
     * * 4: hidden state (in).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units].
     * * 5: fused_activation_function.
     *      An optional {@link FusedActivationFunc} value indicating the
     *      activation function. If “NONE” is specified then it results in a
     *      linear activation.
     *
     * Outputs:
     * * 0: hidden state (out).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units].
     *
     * * 1: output.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units]. This is effectively the same as the
     *      current state value.
     *
     * Available since API level 27.
     */
    RNN = 24,

    /**
     * Computes the softmax activation on the input tensor element-wise, per
     * batch, by normalizing the input vector so the maximum coefficient is
     * zero.
     *
     * The output is calculated using this formula:
     *
     *     output[batch, i] =
     *         exp((input[batch, i] - max(input[batch, :])) * beta) /
     *         sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 2 or 4.
     *
     * Inputs:
     * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
     * * 1: An {@link OperandType::FLOAT32} scalar, specifying the positive
     *      scaling factor for the exponent, beta.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
     *      the scale must be 1.f / 256 and the zeroPoint must be 0.
     *
     * Available since API level 27.
     */
    SOFTMAX = 25,

    /**
     * Rearranges blocks of spatial data, into depth.
     *
     * More specifically, this op outputs a copy of the input tensor where
     * values from the height and width dimensions are moved to the depth
     * dimension. The value block_size indicates the input block size and how
     * the data is moved.
     *
     * Chunks of data of size block_size * block_size from depth are rearranged
     * into non-overlapping blocks of size block_size x block_size.
     *
     * The depth of the output tensor is input_depth * block_size * block_size.
     * The input tensor's height and width must be divisible by block_size.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
     *
     * Supported tensor rank: 4, with "NHWC" data layout.
     *
     * Inputs:
     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
     *      specifying the input.
     * * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
     *      block_size must be >=1 and block_size must be a divisor of both the
     *      input height and width.
     *
     * Outputs:
     * * 0: The output 4-D tensor, of shape [batches, height/block_size,
     *      width/block_size, depth_in*block_size*block_size].
     *
     * Available since API level 27.
     */
    SPACE_TO_DEPTH = 26,

    /**
     * SVDF op is a kind of stateful layer derived from the notion that a
     * densely connected layer that's processing a sequence of input frames can
     * be approximated by using a singular value decomposition of each of its
     * nodes. The implementation is based on:
     *
     * https://research.google.com/pubs/archive/43813.pdf
     *
     * P. Nakkiran, R. Alvarez, R. Prabhavalkar, C. Parada.
     * “Compressing Deep Neural Networks using a Rank-Constrained Topology”.
     * INTERSPEECH, 2015.
     *
     * It processes the incoming input using a 2-stage filtering mechanism:
     * * stage 1 performs filtering on the "features" dimension, whose outputs
     *   get pushed into a memory of fixed-size memory_size.
     * * stage 2 performs filtering on the "time" dimension of the memory_size
     *   memoized outputs of stage 1.
     *
     * Specifically, for rank 1, this layer implements the operation:
     *
     *     memory = push(conv1d(inputs, weights_feature, feature_dim,
     *                          "PADDING_VALID"));
     *     outputs = activation(memory * weights_time + bias);
     *
     * Where:
     * * “weights_feature” is a weights matrix that processes the inputs (by
     *   convolving the input with every “feature filter”), and whose outputs
     *   get pushed, stacked in order, into the fixed-size “memory” (the oldest
     *   entry gets dropped);
     * * “weights_time” is a weights matrix that processes the “memory” (by a
     *   batched matrix multiplication on the num_units);
     * * “bias” is an optional bias vector (added to each output vector in the
     *   batch); and
     * * “activation” is the function passed as the “fused_activation_function”
     *   argument (if not “NONE”).
     *
     * Each rank adds a dimension to the weights matrices by means of stacking
     * the filters.
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Inputs:
     * * 0: input.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, input_size], where “batch_size” corresponds to the
     *      batching dimension, and “input_size” is the size of the input.
     * * 1: weights_feature.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, input_size], where “num_units” corresponds to the
     *      number of units.
     * * 2: weights_time.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [num_units, memory_size], where “memory_size” corresponds to the
     *      fixed-size of the memory.
     * * 3: bias.
     *      An optional 1-D tensor of {@link OperandType::TENSOR_FLOAT32},
     *      of shape [num_units].
     * * 4: state (in).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, (memory_size - 1) * num_units * rank].
     * * 5: rank.
     *      The rank of the SVD approximation.
     * * 6: fused_activation_function.
     *      An optional {@link FusedActivationFunc} value indicating the
     *      activation function. If “NONE” is specified then it results in a
     *      linear activation.
     *
     * Outputs:
     * * 0: state (out).
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, (memory_size - 1) * num_units * rank].
     * * 1: output.
     *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
     *      [batch_size, num_units].
     *
     * Available since API level 27.
     */
    SVDF = 27,

    /**
     * Computes hyperbolic tangent of input tensor element-wise.
     *
     * The output is calculated using this formula:
     *
     *     output = tanh(input)
     *
     * Supported tensor {@link OperandType}:
     * * {@link OperandType::TENSOR_FLOAT32}
     *
     * Supported tensor rank: up to 4.
     *
     * Inputs:
     * * 0: A tensor, specifying the input.
     *
     * Outputs:
     * * 0: The output tensor of same shape as input0.
     *
     * Available since API level 27.
     */
    TANH = 28,

    /**
     * OEM specific operation.
     *
     * This operation is OEM specific. It should only be used for OEM
     * applications.
     */
    OEM_OPERATION = 10000,
};

/**
 * Fused activation function types.
 */
enum FusedActivationFunc : int32_t {
    NONE  = 0,
    RELU  = 1,
    RELU1 = 2,
    RELU6 = 3,
};

/**
 * How an operand is used.
 */
enum OperandLifeTime : int32_t {
    /**
     * The operand is internal to the model. It's created by an operation and
     * consumed by other operations. It must be an output operand of
     * exactly one operation.
     */
    TEMPORARY_VARIABLE,

    /**
     * The operand is an input of the model. It must not be an output
     * operand of any operation.
     *
     * An operand can't be both input and output of a model.
     */
    MODEL_INPUT,

    /**
     * The operand is an output of the model. It must be an output
     * operand of exactly one operation.
     *
     * An operand can't be both input and output of a model.
     */
    MODEL_OUTPUT,

    /**
     * The operand is a constant found in Model.operandValues. It must
     * not be an output operand of any operation.
     */
    CONSTANT_COPY,

    /**
     * The operand is a constant that was specified via a Memory
     * object. It must not be an output operand of any operation.
     */
    CONSTANT_REFERENCE,

    /**
     * The operand does not have a value. This is valid only for optional
     * arguments of operations.
     */
    NO_VALUE,
};

/**
 * Status of a device.
 */
enum DeviceStatus : int32_t {
    AVAILABLE,
    BUSY,
    OFFLINE,
    UNKNOWN,
};

/**
 * Performance information for the reference workload.
 *
 * Used by a driver to report its performance characteristics.
 */
struct PerformanceInfo {
    /**
     * Ratio of the time taken by the driver to execute the
     * workload compared to the time the CPU would take for the
     * same workload. A lower number is better.
     */
    float execTime;

    /**
     * Ratio of the energy used by the driver compared to what
     * the CPU would use for doing the same workload. A lower number
     * is better.
     */
    float powerUsage;
};

/**
 * The capabilities of a driver.
 */
struct Capabilities {
    /**
     * Driver performance when operating on float32 data.
     */
    PerformanceInfo float32Performance;

    /**
     * Driver performance when operating on asymmetric 8-bit quantized data.
     */
    PerformanceInfo quantized8Performance;
};

/**
 * Describes the location of a data object.
 */
struct DataLocation {
    /**
     * The index of the memory pool where this location is found.
     */
    uint32_t poolIndex;

    /**
     * Offset in bytes from the start of the pool.
     */
    uint32_t offset;

    /**
     * The length of the data in bytes.
     */
    uint32_t length;
};

/**
 * Describes one operand of the model's graph.
 */
struct Operand {
    /**
     * Data type of the operand.
     */
    OperandType type;

    /**
     * Dimensions of the operand.
     *
     * For a scalar operand, dimensions.size() must be 0.
     *
     * For a tensor operand, dimensions.size() must be at least 1;
     * however, any of the dimensions may be unspecified.
     *
     * A tensor operand with all dimensions specified has "fully
     * specified" dimensions. Whenever possible (i.e., whenever the
     * dimensions are known at model construction time), a tensor
     * operand should have (but is not required to have) fully
     * specified dimensions, in order to enable the best possible
     * performance.
     *
     * If a tensor operand's dimensions are not fully specified, the
     * dimensions of the operand are deduced from the operand
     * dimensions and values of the operation for which that operand
     * is an output.
     *
     * In the following situations, a tensor operand's dimensions must
     * be fully specified:
     *
     *     . The operand has lifetime CONSTANT_COPY or
     *       CONSTANT_REFERENCE.
     *
     *     . The operand has lifetime MODEL_INPUT or MODEL_OUTPUT. Fully
     *       specified dimensions must either be present in the
     *       Operand or they must be provided in the corresponding
     *       RequestArgument.
     *       EXCEPTION: If the input or output is optional and omitted
     *       (by setting the hasNoValue field of the corresponding
     *       RequestArgument to true) then it need not have fully
     *       specified dimensions.
     *
     * A tensor operand with some number of unspecified dimensions is
     * represented by setting each unspecified dimension to 0.
     */
    vec<uint32_t> dimensions;

    /**
     * The number of times this operand appears as an operation input.
     *
     * (For example, if this operand appears once in one operation's
     * input list, and three times in another operation's input list,
     * then numberOfConsumers = 4.)
     */
    uint32_t numberOfConsumers;

    /**
     * Quantized scale of the operand.
     *
     * Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
     * TENSOR_INT32.
     */
    float scale;

    /**
     * Quantized zero-point offset of the operand.
     *
     * Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
     */
    int32_t zeroPoint;

    /**
     * How the operand is used.
     */
    OperandLifeTime lifetime;

    /**
     * Where to find the data for this operand.
     * If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
     * NO_VALUE:
     * - All the fields must be 0.
     * If the lifetime is CONSTANT_COPY:
     * - location.poolIndex is 0.
     * - location.offset is the offset in bytes into Model.operandValues.
     * - location.length is set.
     * If the lifetime is CONSTANT_REFERENCE:
     * - location.poolIndex is set.
     * - location.offset is the offset in bytes into the specified pool.
     * - location.length is set.
     */
    DataLocation location;
};

/**
 * Describes one operation of the model's graph.
 */
struct Operation {
    /**
     * The operation type.
     */
    OperationType type;

    /**
     * Describes the table that contains the indexes of the inputs of the
     * operation. The offset is the index in the operandIndexes table.
     */
    vec<uint32_t> inputs;

    /**
     * Describes the table that contains the indexes of the outputs of the
     * operation. The offset is the index in the operandIndexes table.
     */
    vec<uint32_t> outputs;
};

/**
 * A Neural Network Model.
 *
 * This includes not only the execution graph, but also constant data such as
 * weights or scalars added at construction time. The only information that
 * might not be known is the shape of the input tensors.
 */
struct Model {
    /**
     * All operands included in the model.
     */
    vec<Operand> operands;

    /**
     * All operations included in the model.
     *
     * The operations are sorted into execution order. Every operand
     * with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
     * written before it is read.
     */
    vec<Operation> operations;

    /**
     * Input indexes of the model. There must be at least one.
     *
     * Each value corresponds to the index of the operand in "operands".
     */
    vec<uint32_t> inputIndexes;

    /**
     * Output indexes of the model. There must be at least one.
     *
     * Each value corresponds to the index of the operand in "operands".
     */
    vec<uint32_t> outputIndexes;

    /**
     * A byte buffer containing operand data that were copied into the model.
     *
     * An operand's value must be located here if and only if Operand::lifetime
     * equals OperandLifeTime::CONSTANT_COPY.
     */
    vec<uint8_t> operandValues;

    /**
     * A collection of shared memory pools containing operand values.
     *
     * An operand's value must be located here if and only if Operand::lifetime
     * equals OperandLifeTime::CONSTANT_REFERENCE.
     */
    vec<memory> pools;
};

/**
 * Metadata information specifying the location of the input or output data and
 * any updates to the input or output operand.
 */
struct RequestArgument {
    /**
     * If true, the argument does not have a value. This can be used for
     * operations that take optional arguments. If true, the fields of location
     * are set to 0 and the dimensions vector is left empty.
     */
    bool hasNoValue;

    /**
     * The location within one of the memory pools passed in the Request.
     */
    DataLocation location;

    /**
     * Updated dimension information.
     *
     * If dimensions.size() > 0, dimension information was provided
     * along with the argument. This can be the case for models that
     * accept inputs of varying size. This can't change the rank, just
     * the value of the dimensions that were unspecified in the
     * model. If dimensions.size() > 0, then all dimensions must be
     * specified here; and any dimension that was specified in the
     * model must have the same value here.
     *
     * If the dimensions in the model are not fully specified, then
     * they must be fully specified here, unless hasNoValue is set to
     * true. If the dimensions in the model are fully specified, then
     * either dimensions.size() may be 0, or the dimensions in the
     * model must be identical to the dimensions here.
     */
    vec<uint32_t> dimensions;
};

/**
 * Inputs to be sent to and outputs to be retrieved from a prepared model.
 *
 * A Request serves two primary tasks:
 * 1) Provides the input and output data to be used when executing the model.
 * 2) Specifies any updates to the input operand metadata that were left
 *    unspecified at model preparation time.
 *
 * An output must not overlap with any other output, with an input, or
 * with an operand of lifetime CONSTANT_REFERENCE.
 */
struct Request {
    /**
     * Input data and information to be used in the execution of a prepared
     * model.
     *
     * The index of the input corresponds to the index in Model.inputIndexes.
     *   E.g., input[i] corresponds to Model.inputIndexes[i].
     */
    vec<RequestArgument> inputs;

    /**
     * Output data and information to be used in the execution of a prepared
     * model.
     *
     * The index of the output corresponds to the index in Model.outputIndexes.
     *   E.g., output[i] corresponds to Model.outputIndexes[i].
     */
    vec<RequestArgument> outputs;

    /**
     * A collection of shared memory pools containing operand data for both the
     * inputs and the outputs to a model.
     */
    vec<memory> pools;
};

/**
 * Return status of a function.
 */
enum ErrorStatus : int32_t {
    NONE,
    DEVICE_UNAVAILABLE,
    GENERAL_FAILURE,
    OUTPUT_INSUFFICIENT_SIZE,
    INVALID_ARGUMENT,
};