/* * Copyright 2008, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "DEBUG" #include "libdebuggerd/utility.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::unique_fd; // Whitelist output desired in the logcat output. bool is_allowed_in_logcat(enum logtype ltype) { if ((ltype == HEADER) || (ltype == REGISTERS) || (ltype == BACKTRACE)) { return true; } return false; } static bool should_write_to_kmsg() { // Write to kmsg if tombstoned isn't up, and we're able to do so. if (!android::base::GetBoolProperty("ro.debuggable", false)) { return false; } if (android::base::GetProperty("init.svc.tombstoned", "") == "running") { return false; } return true; } __attribute__((__weak__, visibility("default"))) void _LOG(log_t* log, enum logtype ltype, const char* fmt, ...) { bool write_to_tombstone = (log->tfd != -1); bool write_to_logcat = is_allowed_in_logcat(ltype) && log->crashed_tid != -1 && log->current_tid != -1 && (log->crashed_tid == log->current_tid); static bool write_to_kmsg = should_write_to_kmsg(); std::string msg; va_list ap; va_start(ap, fmt); android::base::StringAppendV(&msg, fmt, ap); va_end(ap); if (msg.empty()) return; if (write_to_tombstone) { TEMP_FAILURE_RETRY(write(log->tfd, msg.c_str(), msg.size())); } if (write_to_logcat) { __android_log_buf_write(LOG_ID_CRASH, ANDROID_LOG_FATAL, LOG_TAG, msg.c_str()); if (log->amfd_data != nullptr) { *log->amfd_data += msg; } if (write_to_kmsg) { unique_fd kmsg_fd(open("/dev/kmsg_debug", O_WRONLY | O_APPEND | O_CLOEXEC)); if (kmsg_fd.get() >= 0) { // Our output might contain newlines which would otherwise be handled by the android logger. // Split the lines up ourselves before sending to the kernel logger. if (msg.back() == '\n') { msg.back() = '\0'; } std::vector fragments = android::base::Split(msg, "\n"); for (const std::string& fragment : fragments) { static constexpr char prefix[] = "<3>DEBUG: "; struct iovec iov[3]; iov[0].iov_base = const_cast(prefix); iov[0].iov_len = strlen(prefix); iov[1].iov_base = const_cast(fragment.c_str()); iov[1].iov_len = fragment.length(); iov[2].iov_base = const_cast("\n"); iov[2].iov_len = 1; TEMP_FAILURE_RETRY(writev(kmsg_fd.get(), iov, 3)); } } } } } #define MEMORY_BYTES_TO_DUMP 256 #define MEMORY_BYTES_PER_LINE 16 void dump_memory(log_t* log, unwindstack::Memory* memory, uint64_t addr, const std::string& label) { // Align the address to sizeof(long) and start 32 bytes before the address. addr &= ~(sizeof(long) - 1); if (addr >= 4128) { addr -= 32; } // Don't bother if the address looks too low, or looks too high. if (addr < 4096 || #if defined(__LP64__) addr > 0x4000000000000000UL - MEMORY_BYTES_TO_DUMP) { #else addr > 0xffff0000 - MEMORY_BYTES_TO_DUMP) { #endif return; } _LOG(log, logtype::MEMORY, "\n%s:\n", label.c_str()); // Dump 256 bytes uintptr_t data[MEMORY_BYTES_TO_DUMP/sizeof(uintptr_t)]; memset(data, 0, MEMORY_BYTES_TO_DUMP); size_t bytes = memory->Read(addr, reinterpret_cast(data), sizeof(data)); if (bytes % sizeof(uintptr_t) != 0) { // This should never happen, but just in case. ALOGE("Bytes read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t)); bytes &= ~(sizeof(uintptr_t) - 1); } uint64_t start = 0; bool skip_2nd_read = false; if (bytes == 0) { // In this case, we might want to try another read at the beginning of // the next page only if it's within the amount of memory we would have // read. size_t page_size = sysconf(_SC_PAGE_SIZE); start = ((addr + (page_size - 1)) & ~(page_size - 1)) - addr; if (start == 0 || start >= MEMORY_BYTES_TO_DUMP) { skip_2nd_read = true; } } if (bytes < MEMORY_BYTES_TO_DUMP && !skip_2nd_read) { // Try to do one more read. This could happen if a read crosses a map, // but the maps do not have any break between them. Or it could happen // if reading from an unreadable map, but the read would cross back // into a readable map. Only requires one extra read because a map has // to contain at least one page, and the total number of bytes to dump // is smaller than a page. size_t bytes2 = memory->Read(addr + start + bytes, reinterpret_cast(data) + bytes, sizeof(data) - bytes - start); bytes += bytes2; if (bytes2 > 0 && bytes % sizeof(uintptr_t) != 0) { // This should never happen, but we'll try and continue any way. ALOGE("Bytes after second read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t)); bytes &= ~(sizeof(uintptr_t) - 1); } } // Dump the code around memory as: // addr contents ascii // 0000000000008d34 ef000000e8bd0090 e1b00000512fff1e ............../Q // 0000000000008d44 ea00b1f9e92d0090 e3a070fcef000000 ......-..p...... // On 32-bit machines, there are still 16 bytes per line but addresses and // words are of course presented differently. uintptr_t* data_ptr = data; size_t current = 0; size_t total_bytes = start + bytes; for (size_t line = 0; line < MEMORY_BYTES_TO_DUMP / MEMORY_BYTES_PER_LINE; line++) { std::string logline; android::base::StringAppendF(&logline, " %" PRIPTR, addr); addr += MEMORY_BYTES_PER_LINE; std::string ascii; for (size_t i = 0; i < MEMORY_BYTES_PER_LINE / sizeof(uintptr_t); i++) { if (current >= start && current + sizeof(uintptr_t) <= total_bytes) { android::base::StringAppendF(&logline, " %" PRIPTR, static_cast(*data_ptr)); // Fill out the ascii string from the data. uint8_t* ptr = reinterpret_cast(data_ptr); for (size_t val = 0; val < sizeof(uintptr_t); val++, ptr++) { if (*ptr >= 0x20 && *ptr < 0x7f) { ascii += *ptr; } else { ascii += '.'; } } data_ptr++; } else { logline += ' ' + std::string(sizeof(uintptr_t) * 2, '-'); ascii += std::string(sizeof(uintptr_t), '.'); } current += sizeof(uintptr_t); } _LOG(log, logtype::MEMORY, "%s %s\n", logline.c_str(), ascii.c_str()); } } void read_with_default(const char* path, char* buf, size_t len, const char* default_value) { unique_fd fd(open(path, O_RDONLY | O_CLOEXEC)); if (fd != -1) { int rc = TEMP_FAILURE_RETRY(read(fd.get(), buf, len - 1)); if (rc != -1) { buf[rc] = '\0'; // Trim trailing newlines. if (rc > 0 && buf[rc - 1] == '\n') { buf[rc - 1] = '\0'; } return; } } strcpy(buf, default_value); } void drop_capabilities() { __user_cap_header_struct capheader; memset(&capheader, 0, sizeof(capheader)); capheader.version = _LINUX_CAPABILITY_VERSION_3; capheader.pid = 0; __user_cap_data_struct capdata[2]; memset(&capdata, 0, sizeof(capdata)); if (capset(&capheader, &capdata[0]) == -1) { PLOG(FATAL) << "failed to drop capabilities"; } if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) != 0) { PLOG(FATAL) << "failed to set PR_SET_NO_NEW_PRIVS"; } } bool signal_has_si_addr(const siginfo_t* si) { // Manually sent signals won't have si_addr. if (si->si_code == SI_USER || si->si_code == SI_QUEUE || si->si_code == SI_TKILL) { return false; } switch (si->si_signo) { case SIGBUS: case SIGFPE: case SIGILL: case SIGSEGV: case SIGTRAP: return true; default: return false; } } bool signal_has_sender(const siginfo_t* si, pid_t caller_pid) { return SI_FROMUSER(si) && (si->si_pid != 0) && (si->si_pid != caller_pid); } void get_signal_sender(char* buf, size_t n, const siginfo_t* si) { snprintf(buf, n, " from pid %d, uid %d", si->si_pid, si->si_uid); } const char* get_signame(const siginfo_t* si) { switch (si->si_signo) { case SIGABRT: return "SIGABRT"; case SIGBUS: return "SIGBUS"; case SIGFPE: return "SIGFPE"; case SIGILL: return "SIGILL"; case SIGSEGV: return "SIGSEGV"; case SIGSTKFLT: return "SIGSTKFLT"; case SIGSTOP: return "SIGSTOP"; case SIGSYS: return "SIGSYS"; case SIGTRAP: return "SIGTRAP"; case DEBUGGER_SIGNAL: return ""; default: return "?"; } } const char* get_sigcode(const siginfo_t* si) { // Try the signal-specific codes... switch (si->si_signo) { case SIGILL: switch (si->si_code) { case ILL_ILLOPC: return "ILL_ILLOPC"; case ILL_ILLOPN: return "ILL_ILLOPN"; case ILL_ILLADR: return "ILL_ILLADR"; case ILL_ILLTRP: return "ILL_ILLTRP"; case ILL_PRVOPC: return "ILL_PRVOPC"; case ILL_PRVREG: return "ILL_PRVREG"; case ILL_COPROC: return "ILL_COPROC"; case ILL_BADSTK: return "ILL_BADSTK"; case ILL_BADIADDR: return "ILL_BADIADDR"; case __ILL_BREAK: return "ILL_BREAK"; case __ILL_BNDMOD: return "ILL_BNDMOD"; } static_assert(NSIGILL == __ILL_BNDMOD, "missing ILL_* si_code"); break; case SIGBUS: switch (si->si_code) { case BUS_ADRALN: return "BUS_ADRALN"; case BUS_ADRERR: return "BUS_ADRERR"; case BUS_OBJERR: return "BUS_OBJERR"; case BUS_MCEERR_AR: return "BUS_MCEERR_AR"; case BUS_MCEERR_AO: return "BUS_MCEERR_AO"; } static_assert(NSIGBUS == BUS_MCEERR_AO, "missing BUS_* si_code"); break; case SIGFPE: switch (si->si_code) { case FPE_INTDIV: return "FPE_INTDIV"; case FPE_INTOVF: return "FPE_INTOVF"; case FPE_FLTDIV: return "FPE_FLTDIV"; case FPE_FLTOVF: return "FPE_FLTOVF"; case FPE_FLTUND: return "FPE_FLTUND"; case FPE_FLTRES: return "FPE_FLTRES"; case FPE_FLTINV: return "FPE_FLTINV"; case FPE_FLTSUB: return "FPE_FLTSUB"; case __FPE_DECOVF: return "FPE_DECOVF"; case __FPE_DECDIV: return "FPE_DECDIV"; case __FPE_DECERR: return "FPE_DECERR"; case __FPE_INVASC: return "FPE_INVASC"; case __FPE_INVDEC: return "FPE_INVDEC"; case FPE_FLTUNK: return "FPE_FLTUNK"; case FPE_CONDTRAP: return "FPE_CONDTRAP"; } static_assert(NSIGFPE == FPE_CONDTRAP, "missing FPE_* si_code"); break; case SIGSEGV: switch (si->si_code) { case SEGV_MAPERR: return "SEGV_MAPERR"; case SEGV_ACCERR: return "SEGV_ACCERR"; case SEGV_BNDERR: return "SEGV_BNDERR"; case SEGV_PKUERR: return "SEGV_PKUERR"; case SEGV_ACCADI: return "SEGV_ACCADI"; case SEGV_ADIDERR: return "SEGV_ADIDERR"; case SEGV_ADIPERR: return "SEGV_ADIPERR"; } static_assert(NSIGSEGV == SEGV_ADIPERR, "missing SEGV_* si_code"); break; case SIGSYS: switch (si->si_code) { case SYS_SECCOMP: return "SYS_SECCOMP"; } static_assert(NSIGSYS == SYS_SECCOMP, "missing SYS_* si_code"); break; case SIGTRAP: switch (si->si_code) { case TRAP_BRKPT: return "TRAP_BRKPT"; case TRAP_TRACE: return "TRAP_TRACE"; case TRAP_BRANCH: return "TRAP_BRANCH"; case TRAP_HWBKPT: return "TRAP_HWBKPT"; } if ((si->si_code & 0xff) == SIGTRAP) { switch ((si->si_code >> 8) & 0xff) { case PTRACE_EVENT_FORK: return "PTRACE_EVENT_FORK"; case PTRACE_EVENT_VFORK: return "PTRACE_EVENT_VFORK"; case PTRACE_EVENT_CLONE: return "PTRACE_EVENT_CLONE"; case PTRACE_EVENT_EXEC: return "PTRACE_EVENT_EXEC"; case PTRACE_EVENT_VFORK_DONE: return "PTRACE_EVENT_VFORK_DONE"; case PTRACE_EVENT_EXIT: return "PTRACE_EVENT_EXIT"; case PTRACE_EVENT_SECCOMP: return "PTRACE_EVENT_SECCOMP"; case PTRACE_EVENT_STOP: return "PTRACE_EVENT_STOP"; } } static_assert(NSIGTRAP == TRAP_HWBKPT, "missing TRAP_* si_code"); break; } // Then the other codes... switch (si->si_code) { case SI_USER: return "SI_USER"; case SI_KERNEL: return "SI_KERNEL"; case SI_QUEUE: return "SI_QUEUE"; case SI_TIMER: return "SI_TIMER"; case SI_MESGQ: return "SI_MESGQ"; case SI_ASYNCIO: return "SI_ASYNCIO"; case SI_SIGIO: return "SI_SIGIO"; case SI_TKILL: return "SI_TKILL"; case SI_DETHREAD: return "SI_DETHREAD"; } // Then give up... return "?"; }