summaryrefslogtreecommitdiffstats
blob: bbbedc761182be1e9449e819702ff636a8a1f733 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <fcntl.h>
#include <linux/memfd.h>
#include <stdio.h>
#include <sys/syscall.h>

#include <android-base/file.h>
#include <android-base/unique_fd.h>
#include <gtest/gtest.h>
#include <liblp/builder.h>

#include "images.h"
#include "reader.h"
#include "utility.h"
#include "writer.h"

using namespace std;
using namespace android::fs_mgr;
using unique_fd = android::base::unique_fd;

// Our tests assume a 128KiB disk with two 512 byte metadata slots.
static const size_t kDiskSize = 131072;
static const size_t kMetadataSize = 512;
static const size_t kMetadataSlots = 2;
static const char* TEST_GUID_BASE = "A799D1D6-669F-41D8-A3F0-EBB7572D830";
static const char* TEST_GUID = "A799D1D6-669F-41D8-A3F0-EBB7572D8302";

// Helper function for creating an in-memory file descriptor. This lets us
// simulate read/writing logical partition metadata as if we had a block device
// for a physical partition.
static unique_fd CreateFakeDisk(off_t size) {
    unique_fd fd(syscall(__NR_memfd_create, "fake_disk", MFD_ALLOW_SEALING));
    if (fd < 0) {
        perror("memfd_create");
        return {};
    }
    if (ftruncate(fd, size) < 0) {
        perror("ftruncate");
        return {};
    }
    // Prevent anything from accidentally growing/shrinking the file, as it
    // would not be allowed on an actual partition.
    if (fcntl(fd, F_ADD_SEALS, F_SEAL_GROW | F_SEAL_SHRINK) < 0) {
        perror("fcntl");
        return {};
    }
    // Write garbage to the "disk" so we can tell what has been zeroed or not.
    unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(size);
    memset(buffer.get(), 0xcc, size);
    if (!android::base::WriteFully(fd, buffer.get(), size)) {
        return {};
    }
    return fd;
}

// Create a disk of the default size.
static unique_fd CreateFakeDisk() {
    return CreateFakeDisk(kDiskSize);
}

// Create a MetadataBuilder around some default sizes.
static unique_ptr<MetadataBuilder> CreateDefaultBuilder() {
    unique_ptr<MetadataBuilder> builder =
            MetadataBuilder::New(kDiskSize, kMetadataSize, kMetadataSlots);
    return builder;
}

static bool AddDefaultPartitions(MetadataBuilder* builder) {
    Partition* system = builder->AddPartition("system", TEST_GUID, LP_PARTITION_ATTR_NONE);
    if (!system) {
        return false;
    }
    return builder->GrowPartition(system, 24 * 1024);
}

// Create a temporary disk and flash it with the default partition setup.
static unique_fd CreateFlashedDisk() {
    unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
    if (!builder || !AddDefaultPartitions(builder.get())) {
        return {};
    }
    unique_fd fd = CreateFakeDisk();
    if (fd < 0) {
        return {};
    }
    // Export and flash.
    unique_ptr<LpMetadata> exported = builder->Export();
    if (!exported) {
        return {};
    }
    if (!FlashPartitionTable(fd, *exported.get(), 0)) {
        return {};
    }
    return fd;
}

// Test that our CreateFakeDisk() function works.
TEST(liblp, CreateFakeDisk) {
    unique_fd fd = CreateFakeDisk();
    ASSERT_GE(fd, 0);

    uint64_t size;
    ASSERT_TRUE(GetDescriptorSize(fd, &size));
    ASSERT_EQ(size, kDiskSize);
}

// Flashing metadata should not work if the metadata was created for a larger
// disk than the destination disk.
TEST(liblp, ExportDiskTooSmall) {
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(kDiskSize + 1024, 512, 2);
    ASSERT_NE(builder, nullptr);
    unique_ptr<LpMetadata> exported = builder->Export();
    ASSERT_NE(exported, nullptr);

    // A larger geometry should fail to flash, since there won't be enough
    // space to store the logical partition range that was specified.
    unique_fd fd = CreateFakeDisk();
    ASSERT_GE(fd, 0);

    EXPECT_FALSE(FlashPartitionTable(fd, *exported.get(), 0));
}

// Test the basics of flashing a partition and reading it back.
TEST(liblp, FlashAndReadback) {
    unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
    ASSERT_NE(builder, nullptr);
    ASSERT_TRUE(AddDefaultPartitions(builder.get()));

    unique_fd fd = CreateFakeDisk();
    ASSERT_GE(fd, 0);

    // Export and flash.
    unique_ptr<LpMetadata> exported = builder->Export();
    ASSERT_NE(exported, nullptr);
    ASSERT_TRUE(FlashPartitionTable(fd, *exported.get(), 0));

    // Read back. Note that some fields are only filled in during
    // serialization, so exported and imported will not be identical. For
    // example, table sizes and checksums are computed in WritePartitionTable.
    // Therefore we check on a field-by-field basis.
    unique_ptr<LpMetadata> imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);

    // Check geometry and header.
    EXPECT_EQ(exported->geometry.metadata_max_size, imported->geometry.metadata_max_size);
    EXPECT_EQ(exported->geometry.metadata_slot_count, imported->geometry.metadata_slot_count);
    EXPECT_EQ(exported->geometry.first_logical_sector, imported->geometry.first_logical_sector);
    EXPECT_EQ(exported->geometry.last_logical_sector, imported->geometry.last_logical_sector);
    EXPECT_EQ(exported->header.major_version, imported->header.major_version);
    EXPECT_EQ(exported->header.minor_version, imported->header.minor_version);
    EXPECT_EQ(exported->header.header_size, imported->header.header_size);

    // Check partition tables.
    ASSERT_EQ(exported->partitions.size(), imported->partitions.size());
    EXPECT_EQ(GetPartitionName(exported->partitions[0]), GetPartitionName(imported->partitions[0]));
    EXPECT_EQ(GetPartitionGuid(exported->partitions[0]), GetPartitionGuid(imported->partitions[0]));
    EXPECT_EQ(exported->partitions[0].attributes, imported->partitions[0].attributes);
    EXPECT_EQ(exported->partitions[0].first_extent_index,
              imported->partitions[0].first_extent_index);
    EXPECT_EQ(exported->partitions[0].num_extents, imported->partitions[0].num_extents);

    // Check extent tables.
    ASSERT_EQ(exported->extents.size(), imported->extents.size());
    EXPECT_EQ(exported->extents[0].num_sectors, imported->extents[0].num_sectors);
    EXPECT_EQ(exported->extents[0].target_type, imported->extents[0].target_type);
    EXPECT_EQ(exported->extents[0].target_data, imported->extents[0].target_data);
}

// Test that we can update metadata slots without disturbing others.
TEST(liblp, UpdateAnyMetadataSlot) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    unique_ptr<LpMetadata> imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_EQ(imported->partitions.size(), 1);
    EXPECT_EQ(GetPartitionName(imported->partitions[0]), "system");

    // Verify that we can't read unwritten metadata.
    ASSERT_EQ(ReadMetadata(fd, 1), nullptr);

    // Change the name before writing to the next slot.
    strncpy(imported->partitions[0].name, "vendor", sizeof(imported->partitions[0].name));
    ASSERT_TRUE(UpdatePartitionTable(fd, *imported.get(), 1));

    // Read back the original slot, make sure it hasn't changed.
    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_EQ(imported->partitions.size(), 1);
    EXPECT_EQ(GetPartitionName(imported->partitions[0]), "system");

    // Now read back the new slot, and verify that it has a different name.
    imported = ReadMetadata(fd, 1);
    ASSERT_NE(imported, nullptr);
    ASSERT_EQ(imported->partitions.size(), 1);
    EXPECT_EQ(GetPartitionName(imported->partitions[0]), "vendor");

    // Verify that we didn't overwrite anything in the logical paritition area.
    // We expect the disk to be filled with 0xcc on creation so we can read
    // this back and compare it.
    char expected[LP_SECTOR_SIZE];
    memset(expected, 0xcc, sizeof(expected));
    for (uint64_t i = imported->geometry.first_logical_sector;
         i <= imported->geometry.last_logical_sector; i++) {
        char buffer[LP_SECTOR_SIZE];
        ASSERT_GE(lseek(fd, i * LP_SECTOR_SIZE, SEEK_SET), 0);
        ASSERT_TRUE(android::base::ReadFully(fd, buffer, sizeof(buffer)));
        ASSERT_EQ(memcmp(expected, buffer, LP_SECTOR_SIZE), 0);
    }
}

TEST(liblp, InvalidMetadataSlot) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    // Make sure all slots are filled.
    unique_ptr<LpMetadata> metadata = ReadMetadata(fd, 0);
    ASSERT_NE(metadata, nullptr);
    for (uint32_t i = 1; i < kMetadataSlots; i++) {
        ASSERT_TRUE(UpdatePartitionTable(fd, *metadata.get(), i));
    }

    // Verify that we can't read unavailable slots.
    EXPECT_EQ(ReadMetadata(fd, kMetadataSlots), nullptr);
}

// Test that updating a metadata slot does not allow it to be computed based
// on mismatching geometry.
TEST(liblp, NoChangingGeometry) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    unique_ptr<LpMetadata> imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_TRUE(UpdatePartitionTable(fd, *imported.get(), 1));

    imported->geometry.metadata_max_size += LP_SECTOR_SIZE;
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 1));

    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    imported->geometry.metadata_slot_count++;
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 1));

    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    imported->geometry.first_logical_sector++;
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 1));

    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    imported->geometry.last_logical_sector--;
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 1));
}

// Test that changing one bit of metadata is enough to break the checksum.
TEST(liblp, BitFlipGeometry) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    LpMetadataGeometry geometry;
    ASSERT_GE(lseek(fd, 0, SEEK_SET), 0);
    ASSERT_TRUE(android::base::ReadFully(fd, &geometry, sizeof(geometry)));

    LpMetadataGeometry bad_geometry = geometry;
    bad_geometry.metadata_slot_count++;
    ASSERT_TRUE(android::base::WriteFully(fd, &bad_geometry, sizeof(bad_geometry)));

    unique_ptr<LpMetadata> metadata = ReadMetadata(fd, 0);
    ASSERT_NE(metadata, nullptr);
    EXPECT_EQ(metadata->geometry.metadata_slot_count, 2);
}

TEST(liblp, ReadBackupGeometry) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    char corruption[LP_METADATA_GEOMETRY_SIZE];
    memset(corruption, 0xff, sizeof(corruption));

    // Corrupt the first 4096 bytes of the disk.
    ASSERT_GE(lseek(fd, 0, SEEK_SET), 0);
    ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
    EXPECT_NE(ReadMetadata(fd, 0), nullptr);

    // Corrupt the last 4096 bytes too.
    ASSERT_GE(lseek(fd, -LP_METADATA_GEOMETRY_SIZE, SEEK_END), 0);
    ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
    EXPECT_EQ(ReadMetadata(fd, 0), nullptr);
}

TEST(liblp, ReadBackupMetadata) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    unique_ptr<LpMetadata> metadata = ReadMetadata(fd, 0);

    char corruption[kMetadataSize];
    memset(corruption, 0xff, sizeof(corruption));

    ASSERT_GE(lseek(fd, LP_METADATA_GEOMETRY_SIZE, SEEK_SET), 0);
    ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
    EXPECT_NE(ReadMetadata(fd, 0), nullptr);

    off_t offset = LP_METADATA_GEOMETRY_SIZE + kMetadataSize * 2;

    // Corrupt the backup metadata.
    ASSERT_GE(lseek(fd, -offset, SEEK_END), 0);
    ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
    EXPECT_EQ(ReadMetadata(fd, 0), nullptr);
}

// Test that we don't attempt to write metadata if it would overflow its
// reserved space.
TEST(liblp, TooManyPartitions) {
    unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
    ASSERT_NE(builder, nullptr);

    // Compute the maximum number of partitions we can fit in 1024 bytes of metadata.
    size_t max_partitions = (kMetadataSize - sizeof(LpMetadataHeader)) / sizeof(LpMetadataPartition);
    EXPECT_LT(max_partitions, 10);

    // Add this number of partitions.
    Partition* partition = nullptr;
    for (size_t i = 0; i < max_partitions; i++) {
        std::string guid = std::string(TEST_GUID) + to_string(i);
        partition = builder->AddPartition(to_string(i), TEST_GUID, LP_PARTITION_ATTR_NONE);
        ASSERT_NE(partition, nullptr);
    }
    ASSERT_NE(partition, nullptr);
    // Add one extent to any partition to fill up more space - we're at 508
    // bytes after this, out of 512.
    ASSERT_TRUE(builder->GrowPartition(partition, 1024));

    unique_ptr<LpMetadata> exported = builder->Export();
    ASSERT_NE(exported, nullptr);

    unique_fd fd = CreateFakeDisk();
    ASSERT_GE(fd, 0);

    // Check that we are able to write our table.
    ASSERT_TRUE(FlashPartitionTable(fd, *exported.get(), 0));
    ASSERT_TRUE(UpdatePartitionTable(fd, *exported.get(), 1));

    // Check that adding one more partition overflows the metadata allotment.
    partition = builder->AddPartition("final", TEST_GUID, LP_PARTITION_ATTR_NONE);
    EXPECT_NE(partition, nullptr);

    exported = builder->Export();
    ASSERT_NE(exported, nullptr);

    // The new table should be too large to be written.
    ASSERT_FALSE(UpdatePartitionTable(fd, *exported.get(), 1));

    // Check that the first and last logical sectors weren't touched when we
    // wrote this almost-full metadata.
    char expected[LP_SECTOR_SIZE];
    memset(expected, 0xcc, sizeof(expected));
    char buffer[LP_SECTOR_SIZE];
    ASSERT_GE(lseek(fd, exported->geometry.first_logical_sector * LP_SECTOR_SIZE, SEEK_SET), 0);
    ASSERT_TRUE(android::base::ReadFully(fd, buffer, sizeof(buffer)));
    EXPECT_EQ(memcmp(expected, buffer, LP_SECTOR_SIZE), 0);
    ASSERT_GE(lseek(fd, exported->geometry.last_logical_sector * LP_SECTOR_SIZE, SEEK_SET), 0);
    ASSERT_TRUE(android::base::ReadFully(fd, buffer, sizeof(buffer)));
    EXPECT_EQ(memcmp(expected, buffer, LP_SECTOR_SIZE), 0);
}

// Test that we can read and write image files.
TEST(liblp, ImageFiles) {
    unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
    ASSERT_NE(builder, nullptr);
    ASSERT_TRUE(AddDefaultPartitions(builder.get()));
    unique_ptr<LpMetadata> exported = builder->Export();

    unique_fd fd(syscall(__NR_memfd_create, "image_file", 0));
    ASSERT_GE(fd, 0);
    ASSERT_TRUE(WriteToImageFile(fd, *exported.get()));

    unique_ptr<LpMetadata> imported = ReadFromImageFile(fd);
    ASSERT_NE(imported, nullptr);
}

class BadWriter {
  public:
    // When requested, write garbage instead of the requested bytes, then
    // return false.
    bool operator()(int fd, const std::string& blob) {
        write_count_++;
        if (write_count_ == fail_on_write_) {
            std::unique_ptr<char[]> new_data = std::make_unique<char[]>(blob.size());
            memset(new_data.get(), 0xe5, blob.size());
            EXPECT_TRUE(android::base::WriteFully(fd, new_data.get(), blob.size()));
            return false;
        } else {
            if (!android::base::WriteFully(fd, blob.data(), blob.size())) {
                return false;
            }
            return fail_after_write_ != write_count_;
        }
    }
    void Reset() {
        fail_on_write_ = 0;
        fail_after_write_ = 0;
        write_count_ = 0;
    }
    void FailOnWrite(int number) {
        Reset();
        fail_on_write_ = number;
    }
    void FailAfterWrite(int number) {
        Reset();
        fail_after_write_ = number;
    }

  private:
    int fail_on_write_ = 0;
    int fail_after_write_ = 0;
    int write_count_ = 0;
};

// Test that an interrupted flash operation on the "primary" copy of metadata
// is not fatal.
TEST(liblp, UpdatePrimaryMetadataFailure) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    BadWriter writer;

    // Read and write it back.
    writer.FailOnWrite(1);
    unique_ptr<LpMetadata> imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 0, writer));

    // We should still be able to read the backup copy.
    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);

    // Flash again, this time fail the backup copy. We should still be able
    // to read the primary.
    writer.FailOnWrite(3);
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 0, writer));
    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
}

// Test that an interrupted flash operation on the "backup" copy of metadata
// is not fatal.
TEST(liblp, UpdateBackupMetadataFailure) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    BadWriter writer;

    // Read and write it back.
    writer.FailOnWrite(2);
    unique_ptr<LpMetadata> imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 0, writer));

    // We should still be able to read the primary copy.
    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);

    // Flash again, this time fail the primary copy. We should still be able
    // to read the primary.
    writer.FailOnWrite(2);
    ASSERT_FALSE(UpdatePartitionTable(fd, *imported.get(), 0, writer));
    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
}

// Test that an interrupted write *in between* writing metadata will read
// the correct metadata copy. The primary is always considered newer than
// the backup.
TEST(liblp, UpdateMetadataCleanFailure) {
    unique_fd fd = CreateFlashedDisk();
    ASSERT_GE(fd, 0);

    BadWriter writer;

    // Change the name of the existing partition.
    unique_ptr<LpMetadata> new_table = ReadMetadata(fd, 0);
    ASSERT_NE(new_table, nullptr);
    ASSERT_GE(new_table->partitions.size(), 1);
    new_table->partitions[0].name[0]++;

    // Flash it, but fail to write the backup copy.
    writer.FailAfterWrite(2);
    ASSERT_FALSE(UpdatePartitionTable(fd, *new_table.get(), 0, writer));

    // When we read back, we should get the updated primary copy.
    unique_ptr<LpMetadata> imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_GE(new_table->partitions.size(), 1);
    ASSERT_EQ(GetPartitionName(new_table->partitions[0]), GetPartitionName(imported->partitions[0]));

    // Flash again. After, the backup and primary copy should be coherent.
    // Note that the sync step should have used the primary to sync, not
    // the backup.
    writer.Reset();
    ASSERT_TRUE(UpdatePartitionTable(fd, *new_table.get(), 0, writer));

    imported = ReadMetadata(fd, 0);
    ASSERT_NE(imported, nullptr);
    ASSERT_GE(new_table->partitions.size(), 1);
    ASSERT_EQ(GetPartitionName(new_table->partitions[0]), GetPartitionName(imported->partitions[0]));
}