summaryrefslogtreecommitdiffstats
blob: 2403ad085936cf32e08ddb19158b21e3487a6727 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <errno.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <unistd.h>

#include <map>
#include <utility>

#include "Allocator.h"
#include "HeapWalker.h"
#include "LeakFolding.h"
#include "ScopedSignalHandler.h"
#include "log.h"

namespace android {

bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) {
  if (end == begin) {
    end = begin + 1;
  }
  Range range{begin, end};
  auto inserted = allocations_.insert(std::pair<Range, AllocationInfo>(range, AllocationInfo{}));
  if (inserted.second) {
    valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin);
    valid_allocations_range_.end = std::max(valid_allocations_range_.end, end);
    allocation_bytes_ += range.size();
    return true;
  } else {
    Range overlap = inserted.first->first;
    if (overlap != range) {
      MEM_ALOGE("range %p-%p overlaps with existing range %p-%p", reinterpret_cast<void*>(begin),
                reinterpret_cast<void*>(end), reinterpret_cast<void*>(overlap.begin),
                reinterpret_cast<void*>(overlap.end));
    }
    return false;
  }
}

bool HeapWalker::WordContainsAllocationPtr(uintptr_t word_ptr, Range* range, AllocationInfo** info) {
  walking_ptr_ = word_ptr;
  // This access may segfault if the process under test has done something strange,
  // for example mprotect(PROT_NONE) on a native heap page.  If so, it will be
  // caught and handled by mmaping a zero page over the faulting page.
  uintptr_t value = *reinterpret_cast<uintptr_t*>(word_ptr);
  walking_ptr_ = 0;
  if (value >= valid_allocations_range_.begin && value < valid_allocations_range_.end) {
    AllocationMap::iterator it = allocations_.find(Range{value, value + 1});
    if (it != allocations_.end()) {
      *range = it->first;
      *info = &it->second;
      return true;
    }
  }
  return false;
}

void HeapWalker::RecurseRoot(const Range& root) {
  allocator::vector<Range> to_do(1, root, allocator_);
  while (!to_do.empty()) {
    Range range = to_do.back();
    to_do.pop_back();

    ForEachPtrInRange(range, [&](Range& ref_range, AllocationInfo* ref_info) {
      if (!ref_info->referenced_from_root) {
        ref_info->referenced_from_root = true;
        to_do.push_back(ref_range);
      }
    });
  }
}

void HeapWalker::Root(uintptr_t begin, uintptr_t end) {
  roots_.push_back(Range{begin, end});
}

void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) {
  root_vals_.insert(root_vals_.end(), vals.begin(), vals.end());
}

size_t HeapWalker::Allocations() {
  return allocations_.size();
}

size_t HeapWalker::AllocationBytes() {
  return allocation_bytes_;
}

bool HeapWalker::DetectLeaks() {
  // Recursively walk pointers from roots to mark referenced allocations
  for (auto it = roots_.begin(); it != roots_.end(); it++) {
    RecurseRoot(*it);
  }

  Range vals;
  vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data());
  vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t);

  RecurseRoot(vals);

  return true;
}

bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit, size_t* num_leaks_out,
                        size_t* leak_bytes_out) {
  leaked.clear();

  size_t num_leaks = 0;
  size_t leak_bytes = 0;
  for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
    if (!it->second.referenced_from_root) {
      num_leaks++;
      leak_bytes += it->first.end - it->first.begin;
    }
  }

  size_t n = 0;
  for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
    if (!it->second.referenced_from_root) {
      if (n++ < limit) {
        leaked.push_back(it->first);
      }
    }
  }

  if (num_leaks_out) {
    *num_leaks_out = num_leaks;
  }
  if (leak_bytes_out) {
    *leak_bytes_out = leak_bytes;
  }

  return true;
}

static bool MapOverPage(void* addr) {
  const size_t page_size = sysconf(_SC_PAGE_SIZE);
  void* page = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) & ~(page_size - 1));

  void* ret = mmap(page, page_size, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
  if (ret == MAP_FAILED) {
    MEM_ALOGE("failed to map page at %p: %s", page, strerror(errno));
    return false;
  }

  return true;
}

void HeapWalker::HandleSegFault(ScopedSignalHandler& handler, int signal, siginfo_t* si,
                                void* /*uctx*/) {
  uintptr_t addr = reinterpret_cast<uintptr_t>(si->si_addr);
  if (addr != walking_ptr_) {
    handler.reset();
    return;
  }
  MEM_ALOGW("failed to read page at %p, signal %d", si->si_addr, signal);
  if (!MapOverPage(si->si_addr)) {
    handler.reset();
  }
}

ScopedSignalHandler::SignalFn ScopedSignalHandler::handler_;

}  // namespace android