aboutsummaryrefslogtreecommitdiffstats
blob: 0b0947683093aa55c917bab018b720fe361d85bf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 * Copyright 2011 Linaro Limited
 * Aneesh V <aneesh@ti.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */
#include <common.h>
#include <asm/arch/sys_proto.h>

static void do_cancel_out(u32 *num, u32 *den, u32 factor)
{
	while (1) {
		if (((*num)/factor*factor == (*num)) &&
		   ((*den)/factor*factor == (*den))) {
			(*num) /= factor;
			(*den) /= factor;
		} else
			break;
	}
}

/*
 * Cancel out the denominator and numerator of a fraction
 * to get smaller numerator and denominator.
 */
void cancel_out(u32 *num, u32 *den, u32 den_limit)
{
	do_cancel_out(num, den, 2);
	do_cancel_out(num, den, 3);
	do_cancel_out(num, den, 5);
	do_cancel_out(num, den, 7);
	do_cancel_out(num, den, 11);
	do_cancel_out(num, den, 13);
	do_cancel_out(num, den, 17);
	while ((*den) > den_limit) {
		*num /= 2;
		/*
		 * Round up the denominator so that the final fraction
		 * (num/den) is always <= the desired value
		 */
		*den = (*den + 1) / 2;
	}
}

__weak void omap_die_id(unsigned int *die_id)
{
	die_id[0] = die_id[1] = die_id[2] = die_id[3] = 0;
}

void omap_die_id_serial(void)
{
	unsigned int die_id[4] = { 0 };
	char serial_string[17] = { 0 };

	omap_die_id((unsigned int *)&die_id);

	if (!getenv("serial#")) {
		snprintf(serial_string, sizeof(serial_string),
			"%08x%08x", die_id[0], die_id[3]);

		setenv("serial#", serial_string);
	}
}

void omap_die_id_get_board_serial(struct tag_serialnr *serialnr)
{
	char *serial_string;
	unsigned long long serial;

	serial_string = getenv("serial#");

	if (serial_string) {
		serial = simple_strtoull(serial_string, NULL, 16);

		serialnr->high = (unsigned int) (serial >> 32);
		serialnr->low = (unsigned int) (serial & 0xffffffff);
	} else {
		serialnr->high = 0;
		serialnr->low = 0;
	}
}

void omap_die_id_usbethaddr(void)
{
	unsigned int die_id[4] = { 0 };
	unsigned char mac[6] = { 0 };

	omap_die_id((unsigned int *)&die_id);

	if (!getenv("usbethaddr")) {
		/*
		 * Create a fake MAC address from the processor ID code.
		 * First byte is 0x02 to signify locally administered.
		 */
		mac[0] = 0x02;
		mac[1] = die_id[3] & 0xff;
		mac[2] = die_id[2] & 0xff;
		mac[3] = die_id[1] & 0xff;
		mac[4] = die_id[0] & 0xff;
		mac[5] = (die_id[0] >> 8) & 0xff;

		eth_setenv_enetaddr("usbethaddr", mac);
	}
}

void omap_die_id_display(void)
{
	unsigned int die_id[4] = { 0 };

	omap_die_id(die_id);

	printf("OMAP die ID: %08x%08x%08x%08x\n", die_id[0], die_id[1],
		die_id[2], die_id[3]);
}

static const char *get_cpu_type(void)
{
	switch (get_device_type()) {
	case EMU_DEVICE:
		return "EMU";
	case HS_DEVICE:
		return "HS";
	case GP_DEVICE:
		return "GP";
	default:
		return NULL;
	}
}

static void omap_set_fastboot_cpu(void)
{
	char *cpu;

	switch (omap_revision()) {
	case DRA762_ES1_0:
		cpu = "DRA762";
		break;
	case DRA752_ES1_0:
	case DRA752_ES1_1:
	case DRA752_ES2_0:
		cpu = "DRA752";
		break;
	case DRA722_ES1_0:
	case DRA722_ES2_0:
	case DRA722_ES2_1:
		cpu = "DRA722";
		break;
	default:
		cpu = "unknown";
		printf("Warning: fastboot.cpu: unknown cpu type\n");
	}

	setenv("fastboot.cpu", cpu);
}

static void omap_set_fastboot_secure(void)
{
	const char *secure;

	secure = get_cpu_type();
	if (secure == NULL) {
		secure = "unknown";
		printf("Warning: fastboot.secure: unknown CPU type\n");
	}

	setenv("fastboot.secure", secure);
}

static void omap_set_fastboot_board_rev(void)
{
	const char *board_rev;

	board_rev = getenv("board_rev");
	if (board_rev == NULL) {
		board_rev = "unknown";
		printf("Warning: fastboot.board_rev: unknown board revision\n");
	}

	setenv("fastboot.board_rev", board_rev);

}

#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
u64 mmc_get_part_size(const char *part)
{
	int res;
	struct blk_desc *dev_desc;
	disk_partition_t info;
	u64 sz = 0;

	dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
	if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
		error("invalid mmc device\n");
		return sz;
	}

	res = part_get_info_efi_by_name(dev_desc, part, &info);
	if (res) {
		error("cannot find partition: '%s'\n", part);
		return sz;
	}

	/* Calculate size in bytes */
	sz = (info.size * (u64)info.blksz);
	/* to KiB */
	sz >>= 10;

	return sz;
}

static void omap_set_fastboot_userdata_size(void)
{
	char buf[64 + 1];
	u64 sz_kb;

	sz_kb = mmc_get_part_size("userdata");
	if (sz_kb == 0) {
		strcpy(buf, "unknown");
		printf("Warning: fastboot.userdata_size: unable to calc\n");
	} else if (sz_kb >= 0xffffffff) {
		u32 sz_mb;

		sz_mb = (u32)(sz_kb >> 10);
		sprintf(buf, "0x%d MB", sz_mb);
	} else {
		sprintf(buf, "%d KB", (u32)sz_kb);
	}

	setenv("fastboot.userdata_size", buf);
}
#else
static inline void omap_set_fastboot_userdata_size(void)
{
}
#endif

void omap_set_fastboot_vars(void)
{
	omap_set_fastboot_cpu();
	omap_set_fastboot_secure();
	omap_set_fastboot_board_rev();
	omap_set_fastboot_userdata_size();
}