

MPEG4/H.263 Encoder on HDVICP2 and
Media Controller Based Platform

User’s Guide

Literature Number: SPRUGQ2
May 2013

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and

services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and

should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale

supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor

products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all

parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the

risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to

any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a

license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual

property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated

warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties

for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI

components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary

expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that

might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in

safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and

create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement

specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or

environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is

solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be

responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
 Copyright© 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/
http://www.ti.com/wirelessconnectivity

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instrument‟s
(TI) MPEG4/H.263 Encoder implementation on the HDVICP2 and Media
Controller Based Platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample
application that accompanies this component.

TI‟s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate TI‟s
codecs with other software to build a multimedia system based on the
HDVICP2 and Media Controller Based Platform.

This document assumes that you are fluent in the C language, have a good
working knowledge of Digital Signal Processing (DSP), digital signal
processors, and DSP applications. Good knowledge of eXpressDSP
Algorithm Interface Standard (XDAIS) and eXpressDSP Digital Media
(XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and lists
its supported features.

 Chapter 2 - Installation Overview, describes how to install, build, and
run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

 Chapter 5 –Frequently Asked Questions, provides answers to
frequently asked questions related to using MPEG4 SP Encoder.

 Appendix A - H.241 Packetization in case of H.263, describes the
mechanism that needs to be taken care by the application to handle
the H.263 bitstream with H.241 packetization

Read This First

iv

 Appendix B – Debug trace usage, describes the debug trace tool
supported by the codec and its usage.

 Appendix C - DataSynch API Usage guide, describes the data synch
API usage from application point of view with codec.

 Appendix D - Motion Vector and SAD Access API, describes the
method to access MV and SAD (Analytic Information) data provided by
the encoder.

 Appendix E – Picture Format, describes the different format of
uncompressed video, which are supported by encoder and the
constraints

Related Documentation From Texas Instruments

The following documents describe TI‟s DSP algorithm standards such as,
XDAIS and XDM. To obtain a copy of any of these TI documents, visit the
Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320 DSP
Algorithm Interface Standard (also known as XDAIS) specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm Standard
which is part of TI‟s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 Using IRES and RMAN Framework Components for C64x+ (literature
number SPRAAI5), describes the IRES interface definition and function
calling sequence.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

Related Documentation

You can use the following documents to supplement this user guide:

 ISO/IEC 14496-2:2003 Third Edition, Information Technology – Coding
of Audio Visual Objects – Part 2 : Visual

http://www.ti.com/

Read This First

 v

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations

Abbreviation Description

API Application Programming Interface

SP Simple Profile

CIF Common Intermediate Format

COFF Common Object File Format

DMA Direct Memory Access

DMAN3 DMA Manager

DP Data Partitioning

DSP Digital Signal Processing

EVM Evaluation Module

GOP Group Of Pictures

GOB Group of Blocks

HEC Header Extension Code

HPI Half Pixel Interpolation

IRES Interface for Resources

PPS Picture Parameter Set

QCIF Quarter Common Intermediate Format

QP Quantization Parameter

QVGA Quarter Video Graphics Array

RMAN Resource Manager

RVLC Reversible Variable Length Coding

RM Resync Marker

SQCIF Sub Quarter Common Intermediate Format

VGA Video Graphics Array

XDAIS eXpressDSP Algorithm Interface Standard

Read This First

vi

Abbreviation Description

XDM eXpressDSP Digital Media

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes („„) represents pseudo-code.

 Program source code, function and macro names, parameters, and

command line commands are shown in a mono-spaced font.

.Product Support

When contacting TI for support on this codec, quote the product name
(MPEG4/H.263 Encoder on HDVICP2 and Media Controller Based
Platform) and version number. The version number of the codec is
included in the Title of the Release Notes that accompanies this codec.

Trademarks

Code Composer Studio, OMAP4, DSP/BIOS, eXpressDSP, TMS320,
TMS320C64x, TMS320C6000, TMS320DM644x, and TMS320C64x+ are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Contents

Read This First ... 0-iii

About This Manual.. 0-iii
Intended Audience ... 0-iii
Related Documentation From Texas Instruments ... 0-iv
Related Documentation .. 0-iv
Abbreviations ... 0-v
Text Conventions ... 0-vi
.Product Support .. 0-vi
Trademarks .. 0-vi

Contents .. 0-vii
Figures .. 0-ix
Tables ... 0-xi
Introduction ... 1-1

1.1 Overview of XDAIS, XDM, and IRES ... 1-2
1.1.1 XDAIS Overview .. 1-2
1.1.2 XDM Overview ... 1-3
1.1.3 IRES Overview ... 1-4

1.2 Overview of MPEG4 SP Encoder .. 1-5
1.3 Supported Services and Features .. 1-6

Installation Overview .. 2-10
2.1 System Requirements.. 2-11

2.1.1 Hardware ... 2-11
2.1.2 Software ... 2-11

2.2 Installing the Component ... 2-12
2.3 Before Building the Sample Test Application ... 2-14

2.3.1 Installing Framework Component (FC) .. 2-14
2.3.2 Installing HDVICP2 library ... 2-15

2.4 Building and Running the Sample Test Application on HDVICP2 and Media
Controller based Platform .. 2-15

2.5 Configuration Files ... 2-16
2.5.1 Encoder Configuration File .. 2-16

2.6 Standards Conformance and User-Defined Inputs ... 2-19
2.7 Uninstalling the Component ... 2-20

Sample Usage ... 3-21
3.1 Overview of the Test Application .. 3-22

3.1.1 Parameter Setup .. 3-22
3.1.2 Algorithm Instance Creation and Initialization ... 3-22
3.1.3 Process Call ... 3-23
3.1.4 Algorithm Instance Deletion ... 3-25

3.2 Address Translations ... 3-25
3.3 Handshaking Between Application and Algorithm .. 3-26

API Reference .. 4-1
4.1 Symbolic Constants and Enumerated Data Types ... 4-2
4.2 Data Structures .. 4-19

viii

4.2.1 Common XDM Data Structures ... 4-19
4.2.2 MPEG4 Encoder Data Structures .. 4-38

4.3 Default and Supported Values of Parameters .. 4-55
4.4 Interface Functions .. 4-63

4.4.1 Creation APIs ... 4-64
4.4.2 Initialization API ... 4-65
4.4.3 Control API ... 4-66
4.4.4 Data Processing API .. 4-69
4.4.5 Termination API ... 4-73

Frequenty Asked Questions ... 5-75
5.1 Release Package ... 5-75
5.2 Code Build and Execution .. 5-75
5.3 Issues with Tools/FC Version ... 5-75
5.4 Algorithm Related .. 5-76

 H.241 Packetization in Case of H.263 .. A-1
A.1 Description of the Requirement ... A-1
A.2 Bit-stream Stitching Mechanis ... A-1

Debug Trace Usage .. B-1
B.1 Introduction ... B-1
B.2 Enabling and Using Debug Information ... B-1

B.2.1 debugTraceLevel ... B-2
B.2.2 lastNFramesToLog: ... B-2

B.3 Debug Trace Levels .. B-3
B.4 Requirements on the Application Side .. B-3

DataSynch API Usage Guide ... C-1
C.1 Description .. C-1
C.2 Video Encoder Input with Sub-frame Level Synchronization C-1
C.3 Video Encoder Output with Sub-frame Level Synchronization C-3

C.3.1 For outputDataMode Equal to IVIDEO_SLICEMODE C-5
C.3.2 For outputDataMode equal to IVIDEO_FIXEDLENGTH C-7

C.4 Video Encoder with partial buffer on output side ... C-9
Motion Vector and SAD Access API ... D-1

D.1 Description .. D-1
Picture Format .. E-1

E.1 NV12 Chroma Format ... E-1
E.2 Progressive and Interlaced Format ... E-1
E.3 Contraints on Parameters ... E-1

ix

Figures

Figure 1-1. IRES Interface Definition and Function Calling Sequence. 1-5
Figure 1-2. Working of MPEG4 Video Encoder ... 1-6
Figure 2-1. Component Directory Structure .. 2-12
Figure 3-1. Process Call with Host Release .. 3-24
Figure 3-2. Interaction Between Application and Codec .. 3-26
Figure 4-3. IVIDEO2_BufDesc With Associated Parameters. 4-25

x

This page is intentionally left blank

xi

Tables

Table 1-1. List of Abbreviations .. v
Table 2-1. Component Directories ... 2-3
Table 4-1. List of Enumerated Data Types ... 4-2
Table 4-2. MPEG4 Encoder Specific Enumerated Data Types. 4-12
Table 4-3. MPEG4 Encoder Error Statuses .. 4-15
Table 4-6. Default and Supported Values for IVIDENC2_Params 4-47
Table 4-7. Default and Supported Values for IVIDENC2_DynamicParams 4-48
Table 4-8. Default and Supported Values for IMPEG4ENC_RateControlParams 4-49
Table 4-9. Default and Supported Values for IMPEG4ENC_InterCodingParams 4-50
Table 4-10. Default and Supported Values for IMPEG4ENC_IntraCodingParams .. 4-50
Table 4-11. Default and Supported Values for IMPEG4ENC_SliceCodingParams .. 4-51
Table 4-12. Default and Supported Values for IMPEG4ENC_Params 4-51
Table 4-13. Default and Supported Values for IMPEG4ENC_DynamicParams 4-52
Table C-3. Handshake Parameters Related to Sub-frame Level Data Communication

for Input Data of Video Encoder .. C-2
Table C-4. Creation Time Parameter Related to Sub-frame Level Data

Communication for Output Data of Video Encoder ... C-4
Table C-5. Dynamic parameters related to sub frame level data communication for

output data of video encoder... C-4
Table C-6. Handshake parameters related to sub frame level data communication for

output data of video encoder (outputDataMode = IVIDEO_SLICEMODE) C-6
Table C-7. Handshake parameters related to sub frame level data communication for

output data of video encoder (outputDataMode = IVIDEO_FIXEDLENGTH) C-8
Table C-9. Handshake parameters related to accept partial buffer for output bit-

stream ... C-10

xii

This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM interface. It
also provides an overview of TI‟s implementation of the MPEG4/H.263
Encoder on the HDVICP2 and Media Controller Based Platform and its
supported features.

Topic Page

1.1 Overview of XDAIS, XDM, and IRES 1-2

1.2 Overview of MPEG4 SP Encoder 1-5

1.3 Supported Services and Features 1-6

Introduction

1-2

1.1 Overview of XDAIS, XDM, and IRES

TI‟s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS). IRES is the interface for
management and utilization of special resource types such as hardware
accelerators, certain types of memory and DMA. This interface allows the
client application to query and provide the algorithm its requested
resources.

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the

algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be

freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate() API provides a notification to the

algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algDeactivate() API prior

to reusing any of the instance‟s scratch memory.

The IALG interface also defines three more optional APIs algControl(),

algNumAlloc(), and algMoved(). For more details on these APIs, see

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

Introduction

 1-3

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs
(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm

instance and receive status information from the algorithm in real-time. The
control() API replaces the algControl() API defined as part of the

IALG interface. The process() API does the basic processing

(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI‟s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements, and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an
algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that
are requested. The framework calls the IRES interface functions, in
addition to the IALG functions, to perform IRES resource initialization,
activation, and deactivation.

The IRES interface introduces support for a new standard protocol for co-
operative pre-emption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative pre-emption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages
and grants concrete IRES resources to algorithms and applications.
RMAN uses a new standard interface, the IRESMAN, to support run-
time registration of concrete IRES resource managers.

Client applications call the algorithm‟s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by
the concrete IRES resource interface.

IRES interface definition and function calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Introduction

 1-5

Figure 1-1. IRES Interface Definition and Function Calling Sequence.

For more details, see Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5).

1.2 Overview of MPEG4 SP Encoder

MPEG4(from ISO/IEC) is a popular video coding algorithm enabling high
quality multimedia services on a limited bandwidth network. MPEG4
standard defines several profiles and levels that specify restrictions on the
bit-stream and hence, limits the capabilities needed to encode/decode the
bit-streams. Each profile specifies a subset of algorithmic features and
limits encoders conforming to that profile. Each level specifies a set of
limits on the values that can be taken by the syntax elements in the profile.

Some important features of MPEG4 Encoder are:

 Simple Profile:

1. Only I and P type VOPs/Packets are present

2. Only frame mode (progressive) picture types are present

3. DP, RVLC and HEC support

4. 1MV , 4MV and UMV support

5. AC/DC prediction

6. Motion Estimation and Compensation pixel accuracy up to half-pixel

Figure 1-2 depicts the working of the MPEG4 Encoder algorithm.

Introduction

1-6

Figure 1-2. Working of MPEG4 Video Encoder

MPEG4/H.263 encoder implementation on HDVICP2 and Media Controller
based platform has two parts:

 Core part of the encoding, which includes all frame and slice level
operation and core-encoding algorithm. This part is implemented on
HDVICP2 sub-system and the core part is hidden.

 Interface part of the encoder, which interacts with application and
system software. This part is implemented on Media Controller. All the
interfaces to query algorithm resource belongs to this part. This part of
the video codec is exposed to system software.

Interface part of the video codec communicates with core part of video
codec with private IPC defined in codec software through mailbox.

1.3 Supported Services and Features

This user guide accompanies TI‟s implementation of MPEG4/H.263
Encoder on the HDVICP2 and Media Controller Based Platform.

This version of the codec has the following features supported:

 MPEG4 Simple Profile levels 0, 0b, 1, 2, 3, 4A, 5 and 6 supported

Framework Components (FC) and Codec
Engine (CE)

R
M

A
N

C
a

llb
a
c
k
 t
o

 m
a
k
e

 n
o
n

 b
lo

c
k
in

g
 A

P
I

IRES

XDAIS and XDM 2.0

Video Codec
(ARM Part)

CSL / IVAHD L0 API

Codec Topology and Hardware Mode Settings (L2 API)

ECD3, CALC3, MC3, IPE3 Abstraction for VDMA, SB, SBH, LSE

Slice/Frame
Level Operation

Buffer
Management

Mode
Decisions

Rate Control

Video Codec
(IVAHD Part)

Codec Software Stack

IVAHD L1 API

Frame Start

Frame End

IPC

IPC

Private and
Generic IPC
Inside Codec
Software

Cortex M3 / Media
Controller

ICONT1 ICONT2

Ducati sub-system HDVICP2 sub-system

Hardware Layer

Introduction

 1-7

 H.263 baseline profile levels 10, 20, 30, 40, 45, 50, 60 and 70
supported

 Only Progressive frame type picture encoding supported

 AC prediction supported

 Half-pel interpolation for motion estimation supported

 Unrestricted motion vector search that allows motion vectors to be
outside the frame boundary is supported

 Custom picture format and GOB interval of H.263 is supported

 Resolution upto 2Kx2K supported

 1MV/4MV per macro block is supported

 Supports low latency features - sub frame level synchronization for
input data and bit-stream. Input Data synchronization is based upon
MB row and output data synchronization is based upon slices and fixed
length of bit-stream

 Encodes multiple slices per picture by inserting Resync Marker(RM),
based on H.241 packetization or fixed number of macroblocks

 Rate control for low delay and storage applications

 Image width and height that are multiple of 16 are supported

 Supports Image height being non-multiple of 16 but multiple of 2

 Supports Image width being non-multiple of 16 but multiple of 2

 Supports user configurable Group of Pictures (GOP) length

 IDR frequency control is supported

 Supports different Intra Refresh mechanism

 Force I frame feature

 Scene change detection algorithm supported

The other explicit features that TI‟s MPEG4/H.263 Encoder provides are:

 eXpressDSP Digital Media (XDM IVIDENC2) interface compliant

 Supports booting of HDVICP2

 Implements Power Optimization schemes

 Supports YUV420 semi planar color sub-sampling formats

 Independent of any Operating System

 Ability to plug in any multimedia frameworks (For example, Codec
engine, OpenMax, GStreamer etc.)

Introduction

1-8

 Multi-channel functionality supported

Introduction

 1-9

This page is intentionally left blank

Installation Overview

2-10

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-11

2.2 Installing the Component 2-12

2.3 Before Building the Sample Test Application 2-14

2.4 Building and Running the Sample Test Application 2-15

2.5 Configuration Files 2-16

2.6 Standards Conformance and User-Defined Inputs 2-19

2.7 Uninstalling the Component 2-20

Installation Overview

 2-11

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec is built and tested on HDVICP2 and Media Controller Based
Platform.

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Development Environment: This project is developed using Code
Composer Studio (Code Composer Studio v4) version 4.2.0.09000.
You may download Code Composer Studio v4 from the following
location

http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/s
etup_CCS_4.2.0.09000.zip

 Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 4.5.1 and
5.0.3

Note:

Installing Code composer Studio v4 also installs CG tools version 4.5.1.
However, it is recommended that you reinstall CG tools by downloading
the latest version from the following location
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

And also install CG Tools version 5.0.3, this comes as a part of
CCS installation. CG tools v5.0.3 are used in code compilation for
Media Controller processor

The projects are built using g-make (GNU Make version 3.78.1)

 Platform Simulator: This project is developed using DM816x/OMAP4
Simulator. DM816x CSP version used is 0.7.1. This release of CSP
version can be obtained via. software updates for CCSV4. Ensure that
the following site is listed as part of “Update sites to visit”

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/s
ite.xml

http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml

Installation Overview

2-12

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a top-level directory called
500_V_MPEG4SP_E_IVAHD_01_00, under which directory named
IVAHD_001 is created.

Figure 2-1 shows the sub-directories created in the IVAHD_001directory.

Note:

The source folders under algsrc, icont and utils are not present in case
of a library based (object code) release.

Figure 2-1. Component Directory Structure

Table 2-1 provides a description of the sub-directories created in the
IVAHD_001 directory.

Installation Overview

 2-13

Table 2-1. Component Directories

Sub-Directory Description

\algsrc\build\vM3\make Contains the make file for application

\algsrc\build\vM3\Obj Contains intermediate Object files generated for Media Controller
(host) project

\algsrc\docs Contains documents specific to the Media Controller(host) project

\algsrc\inc Contains header files needed by the Media Controller (host) project
and some interface files which are shared between iCONT and Media
Controller

\algsrc\src\asm Contains assembly files needed by the Media Controller (host) project

\algsrc\src\c Contains source files needed by the Media Controller (host) project

\Client\Build\TestAppDeviceName\
make

Contains the make file for application. The name of this directory will
not be same as exactly mentioned here. Instead of DeviceName string,
actual name of Device will be present

\Client\Build\TestAppDeviceName
\Map

Contains the memory map generated on compilation of the code

\Client\Build\TestAppDeviceName
\Obj

Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\Client\Build\TestAppDeviceName
\Out

Contains the final application executable (.out) file generated by the
sample test application

\Client\Test\Inc Contains header files needed for the application code

\Client\Test\Src Contains application C files

\Client\Test\TestVecs\Config Contains sample configuration file for MPEG4 encoder

\Client\Test\TestVecs\Input Contains input test vectors

\Client\Test\TestVecs\Output Contains output generated by the codec. It is empty directory as part of
release.

\Client\Test\TestVecs\Reference Contains read-only reference output to be used for cross-checking
against codec output

\docs Contains user guide and datasheet

\icont\build\icont1\Map Contains the generated map file related to icont1 project

\icont\build\icont1\make Contains the make related to icont1 project

\icont\build\icont1\Obj Contains the generated object files related to icont1 project

\icont\build\icont1\Out Contains the generated executable file related to icont1 project

Installation Overview

2-14

Sub-Directory Description

\icont\build\icont2\Map Contains the generated map file related to icont2 project

\icont\build\icont2\make Contains the make file related to icont2 project

\icont\build\icont2\Obj Contains the generated object files related to icont2 project

\icont\build\icont2\Out Contains the generated executable file related to icont2 project

\icont\docs Contains the iCONT module specific documents

\icont\inc Contains the iCONT module specific header files

\icont\me\build Contains project file related to Motion Estimation module

\icont\me\inc Contains header file related to Motion Estimation module

\icont\me\out Contains executable file related to Motion Estimation module

\icont\me\src Contains source file related to Motion Estimation module

\icont\me\utils Contains utility file(s) required by Motion Estimation module

\icont\src\asm Contains assembly files needed by the iCONT1 and 2 projects

\icont\src\c Contains source files needed by the iCONT1 and 2 projects

\Inc Contains MPEG4 encoder related header files which allow interface to
the codec library

\Lib Contains the codec library file

\utils Contains utility file(s) required by MPEG4 Encoder

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need TI Framework Components (FC), HDVICP2
library and XDC tools.

This version of the codec has been validated on Framework Component
(FC) version 3.20.00.22.

This version of the codec has been validated HDVICP2 library version
01.00.00.21.

2.3.1 Installing Framework Component (FC)

You can download the FC version 3.20.00.22 from the following location::

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_
FDS.html

Extract the FC zip file to the same location where you have installed Code
Composer Studio. For example, if you have installed Code composer

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html

Installation Overview

 2-15

Studio at <install directory>\CCStudio_v4, extract the contents of zip file to
<install directory>\CCStudio_v4.

Set a system environment variable named FC_INSTALL_DIR pointing to
<install directory>\CCStudio4.0\<fc_directory>

The test application uses the following IRES and XDM files:

 HDVICP related IRES header files, these are available in the
<install directory>\CCStudio_v4\<fc_directory>\packages
\ti\sdo\fc\ires\hdvicp directory.

 Tiled memory related header file, these are available in the
<install directory>\CCStudio_v4\<fc_directory>\fctools\packages
\ti\sdo\fc\ires\tiledmemory directory.

 XDM related header files, these are available in the
<install directory>\CCStudio_v4\<fc_directory>\fctools\packages
\ti\xdais directory.

 Memutils file for memory address translation, these are available in the
<install directory>\CCStudio_v4\<fc_directory>\fctools\packages
\ti\ sdo\fc\memutils directory

2.3.2 Installing HDVICP2 library

Set a system environment variable named HDVICP2_INSTALL_DIR
pointing to <hdvicp2_directory>\hdvicp20

Set a system environment variable named CSP_INSTALL_DIR pointing to
<csp_directory>\csp.

The test application uses the HDVICP20 library file (ivahd_ti_api_vM3.lib)
from <hdvicp2_directory>\hdvicp20\lib directory.

2.4 Building and Running the Sample Test Application on HDVICP2 and
Media Controller based Platform

The sample test application that accompanies this codec component runs
in TI‟s Code Composer Studio development environment. To build and run
the sample test application in Code Composer Studio, follow these steps:

– Verify that you have an installation of TI‟s Code Composer Studio
version 4.2.0.09000 and code generation tools version 4.5.1 and 5.0.3

– Start the code composer studio and set up the target configuration for
platform specific simulator / Emulator.

– Verify that the following codec object library exist in \Lib sub-directory:

– mpeg4venc_ti_host.lib: MPEG4 encoder library

– Open the Code Composer Studio debug window with the appropriate
platform configuration chosen.

– Build the sample test application project by gmake

a) Client\Build\TestAppDeviceName> gmake -s deps

Installation Overview

2-16

b) Client\Build\TestAppDeviceName> gmake -k -s all

– All files required for this project are available at the path
\Client\Build\TestAppDeviceName.

– The above step creates an executable file, TestAppEncoder.out in the
\Client\Build\TestAppDeviceName\Out sub-directory

– Select Target > Load Program on Media Controller, browse to the
\Client\Build\ TestAppDeviceName\Out sub-directory, select the codec
executable created in step 5, and load it into Code Composer Studio in
preparation for execution.

– If you are using sub-system simulator then make sure that iCONT1 and
iCONT2 are in running state, even without loading any program. If you
are using platform simulator then this step is not needed.

– Select Target > Run on Media Controller window to execute the sample
test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec. The
reference files stored in the \Client\Test\TestVecs\Reference sub-
directory can be used to verify that the codec is functioning as
expected.

– On successful completion, the application displays the following
messages for each frame:

“Frame# Frame Type FrameBits Across Process(MHz) Frame
Based Mbps”

Note: MHz on simulator

As the simulator is not cycle accurate, the MHz across process() is
printed to be zero.

– On failure, the application exits after encoding the frame in which
codec failed to generate correct result.

2.5 Configuration Files

This codec is shipped along with:

 Encoder configuration file (encoder.cfg) – specifies the configuration
parameters used by the test application to configure the Encoder.

2.5.1 Encoder Configuration File

The encoder configuration file, encoder.cfg contains the configuration
parameters required for the encoder. The Encoder.cfg file is available in
the \Client\Test\TestVecs\Config sub-directory.

Installation Overview

 2-17

A sample encoder.cfg file is as shown.
New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

Files

InputFile = ..//..//..//Test//TestVecs//Input//airshow_p176x144_nv12.yuv"

EncodedFile = "..//..//..//Test//TestVecs//Output//airshow_p176x144_nv12.m4v"

ReconFile = "..//..//..//Test//TestVecs//Output//test_rec.yuv"

RefEncFile =

"..//..//..//Test//TestVecs//Reference//ref_airshow_p176x144_nv12.m4v"

FramesToBeEncoded = 10 # Number of frame to be encoded

EncodingPreset = 3 # 0 => XDM_DEFAULT 3=> XDM_USER_DEFINED

RateControlPreset = 5 # 1 => Low Delay, 2 => Storage, 3 => 2

 # Pass, 4 => None, 5 => user defined

Level = 3 # Level IDC

MaxWidth = 1920 # Max Frame width should be multiple of 16

MaxHeight = 1088 # Max Frame height should be multiple of 16

DataEndianess = 1 # 1=> 8-bit Big Endian stream.

InputChromaFormat = 9 # XDM_YUV_420SP format = 9

InputContentType = 0 # Progressive Type

OperatingMode = 1 # Encode Mode

InputDataMode = 3 # 2=> Input DataSync (Row Mode)

 # 3=> Process Entire Frame

NumInputUnits = 5 # This Paramaeter will be used only when

 # InputDataMode = 0.

OutputDataMode = 3 # 0=> Output DataSync (FIXEDLENGTH)

 # 1=> Output DataSync (SLICEMODE)

 # 3=> Encode entire frame into a bitstream

 # in single call.

NumOutputUnits = 1 # This Paramaeter will be used only when

 # OutputDataMode = 0 or 1.

AspectRatioInfo = 1 # If #15 need to send the par_width and

 #par_height

VopTimeIncrementResolution = 30

Encoder Control

inputWidth = 176 # Frame width should be multiple of 16

inputHeight = 144 # Frame height

ReferenceFrameRate = 30000

targetFrameRate = 30000 # Target picture Rate per second *

 # 1000 => For 60 fields per second it

 # should be 60000

targetBitRate = 128000 # Target Bit Rate in Bits per second.

intraFrameInterval = 4 # Number of frames between two I frames.

MaxInterFrameInterval = 0

CaptureWidth = 176 # Image width to compute image pitch.

 # If CaptureWidth is > Image Width then use

 #the former for image pitch.

 # If CaptureWidth = 0, then inputWidth is

 #used as pitch

GenerateHeader = 0 # Header is not encoded seperately. The

 #entire frame is encoded as an access

 # unit alongwith the headers.

ForceFrameType = -1 # Frame type is not forced. It is as per

 #the encoding behaviour.

MotionVectorAccuracy = 1 # HalfPel Accuracy.

SampleAspectRatioHeight = 40 # Aspect Ratio Height => Need to have the

 #ImageHeight when aspect_ratio_info == 15

Installation Overview

2-18

SampelAspectRatioWidth = 33 # Aspect Ratio Width => Need to have the

 #ImageWidth when aspect_ratio_info == 15

IgnoreOutBufSizeFlag = 0

MPEG4 parameters

NonMultipleOf16RefPadding = 1

UseHec = 0 # [0,2],

 # 0 => Do not use Header extension code

 # 1 => Use HEC only after first RM

 # 2 => Use HEC after all RMs

UseDataPartitioning = 0

UseRvlc = 0

ShortVideoHeader = 0 # 0 = MPEG-4, 1 = H.263 baseline

PixelRange = 1 # video_range=0 : Y from 16 to 235, Cb and

 #Cr from 16 to 240;

 # video_range=1 : Y from 0 to 255,Cb and Cr

 #from 0 to 255.

EnableSceneChangeAlgo = 1 # 0 -> Disable, 1 -> Enable

InterCoding Control

interCodingPreset = 1 # 0 => deafult values, 1 => user defined

searchRangeHorP = 44 # [16, 144]

searchRangeVerP = 28 # [16, 32]

EarlySkipThreshold = 200 # Threshold to use for early skip

 # determination

ThresholdingCost = 1 # Thresholding cost used to set a block to

 # be not_coded

 # if the block has very few small amplitude

 # coeffs

InterSearch8x8 = 1 # Inter block search 8x8 (0=disable,

 # 1=enable)

GlobalOffsetME = 1 # ME with global offset. 0 -> Disable, 1->

 # Enable

EnableRoundingControl = 1 # When enabled alternatively toggles the

 # vop_rounding_type foe Inter frames

 # to reduce the IDCT drift

Intra Coding control

AcPredEnable = 1 # Enable AC prediction (0 = Off, 1 =

 # Enable)

intraCodingPreset = 1 # 0 => deafult values, 1 => user defined

insertGOVHdrBeforeIframe = 0 # [0,1,2,3] 1 => Inserts GOV Header before

I frame, 2 => Inserts VOL before I frame, 3 => Inserts both GOV and VOL before

airMethod = 1 # Adaptive Intra Refresh method 0-> none 1-

 # > fixed pattern 2-> slice

 # 3-> MIR (Mandatory Intra Refresh)

airParam = 12 # if airMethod == 1, this variable holds

 # airCyclicMBPeriod,

 # if airMethod == 2, this variable holds

 # airCyclicRowWidth

EnableDriftControl = 1 # Enable drift control (0 = Off, 1 =

 # Enable)

Rate control

rateControlParamPreset = 1 # 0 => Defualt; 1 => User Defined;

rcAlgo = 1 # 0 => FixedQP ; 1 => VBR ; 2 => CBR

Installation Overview

 2-19

rcFrameSkipEnable = 0 # Enabling it makes it skip frame when

 # required

qpI = 5 # QP for I frame when no RC

qpP = 5 # QP for P frame when no RC

qpMax = 31

qpMin = 1

seIntialQP = 5 # Initial QP used by Rate Control

PerceptualQuant = 1 # Perceptual Quantization. 0 -> Disable, 1-

 # > Enable

VBVSize = 0 #0 -> Default value taken by codec 1 ->

 # User controlled

initialBufferLevel = 0 #0 -> Default value taken by codec 1 ->

 # User controlled

qpMinIntra = 0 # 0 – Disable, 1-31 -> Encoder tries to

 # encode Intra macroblocks in Inter frame

 # with qpMinIntra QP value

##

#############

Slice Mode Configuration

##

##############

sliceCodingPreset = 1 # 0 => deafult values, 1 => user defined

sliceMode = 0 # 0 => no Slices

 # 1 => Fixed MBs # 2 => Fixed Bits (RM)

sliceUnitSize = 0 # if sliceMode = 1 => sliceUnitSize is

 # maxMbPerSlice

 # if sliceMode = 2 => sliceUnitSize is

 # resyncIntervalInBits or maxBitsPerSlice

GobInterval = 1 # H.263 only, insert GOB header after every

 # n GOBs

Debug Trace Configuration

DebugTraceLevel = 0 # 0 -> off, 1 -> Level 1

LastNFramesToLog = 0 # number of past frames – history

Misc

ivahdId = 0 # Select ivahd id incase of multiple ivahd

 # present in SOC. E.g. DM816x

lumaTilerSpace = 0 # Tiler enable for luma. 0-> No tiler

 # space, 1-> 8 bit

chromaTilerSpace = 0 # Tiler enable for Chroma 0 -> No tiler

 # space , 1 -> 8 bit, 2-> 16 bit

Any field in the IVIDENC2_Params structure (see Section 4.2.1.6) can be

set in the Encoder.cfg file using the syntax shown above. If you specify
additional fields in the Encoder.cfg file, ensure to modify the test
application appropriately to handle these fields.

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the codec for other input files of your choice, follow below steps:

1. Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory

Installation Overview

2-20

2. Edit the configuration file, Encoder.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Encoder.cfg file, see Section 2.5.1.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

Sample Usage

 3-21

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-
22

3.2 Address Translations 3-
25

3.3 Handshaking Between Application and Algorithm 3-
26

Sample Usage

3-22

3.1 Overview of the Test Application

The test application exercises the IVIDENC2 base class of the MPEG4 SP

Encoder library. The main test application files are MPEG4SPEncTest.c
and mpeg4enc_ti_test.h. These files are available in the \Client\Test\Src
and \Client\Test\Inc sub-directories respectively.

Figure 1-1 depicts the sequence of APIs exercised in the sample test
application.

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Encoder configuration files.

In this logical block, the test application does the following:

1. Opens the generic configuration file, configs.cfg and reads the various
configuration parameters required for the algorithm

2. (Encoder.cfg), input file name, and output/reference file name.

3. Opens the Encoder configuration file, (Encoder.cfg) and reads the
various configuration parameters required for the algorithm.

4. For more details on the configuration files, see Section 2.5.

5. Sets the IVIDENC2_Params structure based on the values it reads
from the Encoder.cfg file.

6. Reads the input bit-stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
implemented by the codec are called in sequence by ALG_create():

– algNumAlloc() - To query the algorithm about the number of memory records it requires.

Sample Usage

 3-23

– algAlloc() - To query the algorithm about the memory requirement

to be filled in the memory records.

– algInit() - To initialize the algorithm with the memory structures

provided by the application.

A sample implementation of the create function that calls algNumAlloc(),

algAlloc(), and algInit() in sequence is provided in the

ALG_create() function implemented in the alg_create.c file.

After successful creation of the algorithm instance, the test application
does resource allocation for the algorithm. This requires initialization of
Resource Manager Module (RMAN) and grant of required resources
(HDVICP2, Tiled memory, and so on) this is implemented by calling RMAN
interface functions in following sequence:

– numResourceDescriptors() - To understand the number of resources (HDVICP2 and

buffers) needed by algorithm.

– getResourceDescriptors() - To get the attributes of the resources.

– initResources() - After resources are created, application gives the

resources to algorithm through this APII

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

– Sets the dynamic parameters (if they change during run-time) by calling the control()

function with the XDM_SETPARAMS command.

– Sets the input and output buffer descriptors required for the
process() function call. The input and output buffer descriptors are

obtained by calling the control() function with the XDM_GETBUFINFO

command.

– Calls the process() function to encode/decode a single frame of data.

The behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.8). The inputs to the process function
are input and output buffer descriptors, pointer to the
IVIDENC2_InArgs and IVIDENC2_OutArgs structures.

– When the process() function is called for encoding/decoding a single

frame of data, the software triggers the start of encode/decode. After
triggering the start of the encode/decode frame, the video task can be
placed in SEM-pend state using semaphores. On receipt of interrupt
signal at the end of frame encode/decode, the application releases the
semaphore and resume the video task, which does any book-keeping
operations by the codec and updates the output parameters.

Sample Usage

3-24

Figure 3-1. Process Call with Host Release

The control() and process() functions should be called only within the

scope of the algActivate() and algDeactivate() XDAIS functions,

which activate and deactivate the algorithm instance respectively. If the
same algorithm is in-use between two process/control function calls, calling
these functions can be avoided. Once an algorithm is activated, there can
be any ordering of control() and process() functions. The following

APIs are called in sequence:

– algActivate() - To activate the algorithm instance.

– control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control
commands.

– process() - To call the Encoder with appropriate input/output buffer

and arguments information.

– control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control
commands.

– algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates frame level process() call and updates

the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts.

If the algorithm uses any resources through RMAN, then user must
activate the resource after the algorithm is activated and deactivate the
resource before algorithm deactivation.

Host
System

application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

Transfer of
tasks at Host

MB level tasks for

frame n+1

Process call frame n+1

Host system
tasks

HDVICP Busy

Sample Usage

 3-25

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application must release the
resources granted by the IRES resource Manager interface and delete the
current algorithm instance. The following APIs are called in sequence:

– getResourceDescriptors() - Free all resources granted by RMAN.

– algNumAlloc() - To query the algorithm about the number of memory

records it used.

– algFree() - To query the algorithm to get the memory record

information.

A sample implementation of the delete function that calls algNumAlloc()

and algFree() in sequence is provided in the ALG_delete() function

implemented in the alg_create.c file.

After successful execution of the algorithm, the test application frees up the
memory and HDVICP Resource allocated for the algorithm. This is
implemented by calling the RMAN interface functions in the following
sequence:

– RMAN_freeResources () - To free the resources that were allocated to the algorithm before

process call.

– RMAN_unregister() – To unregister the HDVICP protocol/resource

manager with the generic resource manager.

– RMAN_exit() - To delete the generic IRES RMAN and release

memory.

3.2 Address Translations

The buffers addresses (DDR addresses) as seen by Media Controller and
HDVICP2(VDMA) will be different. Hence, address translation is needed to
convert from one address view to another. The application needs to
implement a MEMUTILS function for this address translation. An example
of the address translation function is as shown. The codec will make a call
to this function from the host (Media Controller) library. Therefore, the
function name and arguments should follow the example provided below.
For a given input address, this function returns the VDMA view of the buffer
(that is, address as seen by HDVICP2).
void *MEMUTILS_getPhysicalAddr(Ptr Addr)

{

return ((void *)((unsigned int)Addr & VDMAVIEW_EXTMEM));

}

Sample settings for the macro VDMAVIEW_EXTMEM is as shown.

#define VDMAVIEW_EXTMEM (0xFFFFFFFF)

Sample Usage

3-26

3.3 Handshaking Between Application and Algorithm

Application provides the algorithm with its implementation of functions for
the video task to move to SEM-pend state, when the execution happens in
the co-processor. The algorithm calls these application functions to move
the video task to SEM-pend state.

Figure 3-2. Interaction Between Application and Codec

Framework Provided
HDVICP Callback APIs

process()

Application Side

Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDDEC2::process() {

 :

 …. set up for frame decode

 HDVICP_configure(mpeg4e,

mpeg4e->hdvicpHandle,

 MPEG4EISRFunction);

 HDVICP_wait(mpeg4e, mpeg4e-

>hdvicpHandle);

 // Release of HOST

 …. End of frame processing

}

void MPEG4ENC_TI_HDVICP2_ISR

(IALG_Handle handle)

{ MPEG4ENC_TI_Obj *mpeg4e =

(void *)handle;

 HDVICP_done(mpeg4e ,

 Mpeg4e-

>hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

HDVICP_wait(handle,

hdVicpHandle){

SEM_pend(_doneSemaphore);

}

HDVICP_done(handle,

hdVicpHandle) {

 SEM_post(_doneSemaphore)

}

Sample Usage

 3-27

Note:

 Process call architecture to share Host resource among multiple
threads.

 ISR ownership is with the Host layer resource manager – outside the
codec.

 The actual codec routine to be executed during ISR is provided by
the codec.

 OS/System related calls (SEM_pend, SEM_post) also outside the
codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

 Void HDVICP_configure (IALG_Handle handle,
IRES_HDVICP2_Handle iresHandle, void

(*IRES_HDVICP2_CallbackFxn)(IALG_Handle handle, void

*cbArgs),void *cbArgs)

This function is called by the algorithm to register its ISR function. The
application needs to call this function, when it receives interrupts
pertaining to the video task.

 Void HDVICP_Acquire(IALG_Handle

handle,IRES_HDVICP2_Handle iresHandle,

IRES_YieldContext *yieldCtxt, IRES_HDVICP2_Status

status, Uint32 modeId, Int lateAcquireArg)

 This function is called by the algorithm to acquire the HDVICP2
resource.

 Void HDVICP_Release(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle)

 This function is called by the algorithm to release the HDVICP2
resource.

 Bool HDVICP_wait (void *hdvicpHandle)

This function is called by the algorithm to move the video task to SEM-
pend state. Application should return false if it wants the early

termination of codec.

 Void HDVICP_done (void *hdvicpHandle)

This function is called by the algorithm to release the video task from
SEM-pend state. In the sample test application, these functions are
implemented in hdvicp_framework.c file. The application can
implement it in a way considering the underlying system.

 Bool HDVICP_Reset(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle)

This function is called by the algorithm to reset the HDVICP2 resource.

Sample Usage

3-28

This page is intentionally left blank

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-19

4.4 Interface Functions 4-63

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation is provided.

Table 4-1. List of Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

IVIDEO_FrameType For the various IVIDEO_xy_FRAME values, the frame type is

interlaced where both top and bottom fields are provided in a single
frame. The first field is an x frame, the second field is y field.

IVIDEO_NA_FRAME Frame type not available

IVIDEO_I_FRAME

IVIDEO_FRAMETYPE_D

EFAULT

Intra coded frame
Default value

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame

IVIDEO_IDR_FRAME Intra coded frame that can be used for
refreshing video content

IVIDEO_II_FRAME Interlaced frame, both fields are I
frames

IVIDEO_IP_FRAME Interlaced frame, first field is an I frame,
second field is a P frame

IVIDEO_IB_FRAME Interlaced frame, first field is an I frame,
second field is a B frame

IVIDEO_PI_FRAME Interlaced frame, first field is a P frame,
second field is a I frame

IVIDEO_PP_FRAME Interlaced frame, both fields are P
frames.

IVIDEO_PB_FRAME Interlaced frame, first field is a P frame,
second field is a B frame

IVIDEO_BI_FRAME Interlaced frame, first field is a B frame,
second field is an I frame

IVIDEO_BP_FRAME Interlaced frame, first field is a B frame,
second field is a P frame

IVIDEO_BB_FRAME Interlaced frame, both fields are B
frames

IVIDEO_MBAFF_I_FRA

ME

Intra coded MBAFF frame

API Reference

4-3

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

IVIDEO_MBAFF_P_FRA

ME

Forward inter coded MBAFF frame

IVIDEO_MBAFF_B_FRA

ME

Bi-directional inter coded MBAFF frame

IVIDEO_MBAFF_IDR_F

RAME

Intra coded MBAFF frame that can be
used for refreshing video content.

IVIDEO_ContentType IVIDEO_CONTENTTYPE

_NA

Frame type is not available

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE

_FRAME

IVIDEO_CONTENTTYPE

_DEFAULT

Progressive video content.
Default value is
IVIDEO_PROGRESSIVE

IVIDEO_INTERLACED

IVIDEO_INTERLACED_

FRAME

Interlaced video content.

Interlaced video content is not
supported in MPEG4 Encoder

IVIDEO_INTERLACED_

TOPFIELD

Interlaced video content, top field

IVIDEO_INTERLACED_

BOTTOMFIELD

Interlaced video content, bottom field

IVIDEO_RateControlPr

eset

IVIDEO_LOW_DELAY Constant Bit Rate (CBR) control for
video conferencing

IVIDEO_STORAGE

IVIDEO_RATE_CONTRO

L_PRESET_DEFAULT

Variable Bit Rate (VBR) control for local
storage (DVD) recording
Default rate control preset value

IVIDEO_TWOPASS Two pass rate control for non-real time
applications.

IVIDEO_NONE No configurable video rate control
mechanism

IVIDEO_USER_DEFINE

D

User defined configuration using
extended parameters

IVIDEO_SkipMode IVIDEO_FRAME_ENCOD

ED

IVIDEO_SKIPMODE_DE

FAULT

Input video frame successfully encoded
Default skip mode.

IVIDEO_FRAME_SKIPP

ED

Input video frame skipped. There is no
encoded bit-stream corresponding to
the input frame.

API Reference

4-4

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

IVIDEO_OutputFrameSt

atus

IVIDEO_FRAME_NOERR

OR

IVIDEO_OUTPUTFRAME

STATUS_DEFAULT

Output buffer is available (default value)
Default status of the output frame

IVIDEO_FRAME_NOTAV

AILABLE

Encoder does not have any output
buffers.

IVIDEO_FRAME_ERROR Output buffer is available and
corrupted.
For example, if a bit-stream is
erroneous and partially decoded, a
portion of the decoded image may be
available for display. Another example
is if the bit-stream for a given frame
decode may be decoded without error,
but the previously decoded dependant
frames were not successfully decoded.
This would result in an incorrectly
decoded frame.
Not applicable for encoders.

IVIDEO_PictureType IVIDEO_NA_PICTURE Frame type not available

IVIDEO_I_PICTURE

IVIDEO_PICTURE_TYP

E_DEFAULT

Intra coded picture
Default value

IVIDEO_P_PICTURE Forward inter coded picture

IVIDEO_B_PICTURE Bi-directional inter coded picture

IVIDEO_Format IVIDEO_MPEG1 Video format is MPEG1 stream

IVIDEO_MPEG2SP Video format is MPEG2/H.262 stream,
Simple Profile

IVIDEO_MPEG2MP Video format is MPEG2/H.262 stream,
Main Profile

IVIDEO_MPEG2HP Video format is MPEG2/H.262 stream,
High Profile

IVIDEO_MPEG4SP Video format is MPEG4 stream, Simple
Profile

IVIDEO_MPEG4ASP Video format is MPEG4 stream,
Advanced Simple Profile

IVIDEO_H264BP Video format is H.264 stream, Base
Profile

IVIDEO_H264MP Video format is H.264 stream, Main
Profile

API Reference

4-5

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

IVIDEO_H264HP Video format is H.264 stream, High
Profile

IVIDEO_VC1SP Video format is VC1/WMV9 stream,
Simple Profile

IVIDEO_VC1MP Video format is VC1/WMV9 stream,
Main Profile

IVIDEO_VC1AP Video format is VC1 stream, Advanced
Profile

IVIDEO_H264RCDO Video format is H.264 stream, Fast
profile/RCDO

IVIDEO_RV8 Video format is Real Video 8 stream

IVIDEO_RV9 Video format is Real Video 9 stream

IVIDEO_RV10 Video format is Real Video 10 stream,
same as RV9

IVIDEO_ON2VP6 Video format is ON2, VP6.x

IVIDEO_ON2VP7 Video format is ON2, VP7.x

IVIDEO_AVS10 Video format is AVS 1.0

IVIDEO_SORENSONSPA

RK

Video format is SorensonSpark V0/V1

IVIDEO_H263_PROFIL

E0

Video format is H263 Base line profile

IVIDEO_H263_PROFIL

E3

Video format is H263 and Annex IJKT

IVIDEO_H264SVC Video format is SVC

IVIDEO_MULTIVIEW Video format is multi-view coding

IVIDEO_VideoLayout IVIDEO_FIELD_INTER

LEAVED

Buffer layout is interleaved

IVIDEO_FIELD_SEPAR

ATED

Buffer layout is field separated

IVIDEO_TOP_ONLY Buffer contains only top field

IVIDEO_BOTTOM_ONLY Buffer contains only bottom field

IVIDEO_OperatingMode IVIDEO_DECODE_ONLY Decoding mode
Not applicable for encoders

API Reference

4-6

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

IVIDEO_ENCODE_ONLY Encoding mode

IVIDEO_TRANSCODE_F

RAMELEVEL

Transcode mode of operation
(encode/decode) that
consumes/generates transcode
information at the frame level

IVIDEO_TRANSCODE_M

BLEVEL

Transcode mode of operation
(encode/decode) that
consumes/generates transcode
information at the MB level

IVIDEO_TRANSRATE_F

RAMELEVEL

Transrate mode of operation for
encoder that consumes transrate
information at the frame level

IVIDEO_TRANSRATE_M

BLEVEL

Transrate mode of operation for
encoder which consumes transrate
information at the MB level

Not supported in this version of MPEG4
Encoder

1) IVIDEO_BitRange IVIDEO_YUVRANGE_FU

LL

Pixel range for YUV is 0-255

IVIDEO_YUVRANGE_IT

U

Pixel range for YUV is as per ITU-T

2) IVIDEO_DataMode IVIDEO_FIXEDLENGTH Data is exchanged at interval of fixed
size

IVIDEO_SLICEMODE Slice mode

IVIDEO_NUMROWS Number of rows, each row is 16 lines of
video

IVIDEO_ENTIREFRAME Processing of entire frame data

3) IVIDEO_ErrorInfoM

ode

IVIDEO_ERRORINFO_O

FF

IVIDEO_ERRORINFO_M

ODE_DEFAULT

Packet error information is unsupported
Default error info mode.

IVIDEO_ERRORINFO_O

N_INPUT

Packet error information is supported
for input data

IVIDEO_ERRORINFO_O

N_OUTPUT

Packet error information is supported
for output data

IVIDEO_ERRORINFO_O

N_BOTH

Packet error information is supported
for both input and output data

API Reference

4-7

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

4) XDM_AccessMode XDM_ACCESSMODE_REA

D

Algorithm read from the buffer using the
CPU

XDM_ACCESSMODE_WRI

TE

Algorithm writes to the buffer using the
CPU

5) XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill Status

structure

XDM_SETPARAMS Set run-time dynamic parameters
through the DynamicParams

structure

XDM_RESET Reset the algorithm. All fields in the
internal data structures are reset and all
internal buffers are flushed.

XDM_SETDEFAULT Restore the algorithm's internal state to
its original, default values.
The application only needs to initialize
the dynamicParams.size and

status.size fields prior to calling

control() with XDM_SETDEFAULT.

The algorithm must only write to the
status.extendedError field, and

potentially algorithm specific, extended
fields.
XDM_SETDEFAULT differs from

XDM_RESET. In addition to restoring

the algorithm's internal state,
XDM_RESET also resets any channel

related state.

XDM_FLUSH Handle end of stream conditions.
This command forces the algorithm to
output data without additional input.
The recommended sequence is to call
the control() function (with

XDM_FLUSH) followed by repeated

calls to the process() function until it

returns an error.
The algorithm should return the
appropriate, class-specific EFAIL error

(example, ISPHDEC1_EFAIL,

IVIDENC1_EFAIL, and so on), when

flushing is complete.

API Reference

4-8

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

XDM_GETBUFINFO Query algorithm instance regarding its
properties of input and output buffers.
The application only needs
to initialize the
dynamicParams.size, the

status.size, and set any buffer

descriptor fields (example,
status.data) to NULL prior to

calling control() with

XDM_GETBUFINFO.

XDM_GETVERSION Query the algorithm's version.
The result is returned in the data field of
the respective Status structure. There

is no specific format defined for version
returned by the algorithm.

XDM_GETCONTEXTINFO Query a split codec part for its context
needs. Only split codecs are required to
implement this command.

Not supported in this version of MPEG4
Encoder.

XDM_GETDYNPARAMSDE

FAULT

Query the algorithm to fill the default
values for the parameters which can be
configured dynamically.
To get the current value of an algorithm
instance's dynamic parameters, it is
recommended that the algorithm
provides them through the
XDM_GETSTATUS call.

Some XDM interfaces provide a struct
in the base class Status structure in

which the current state can be returned
(example,
IVIDENC2_Status.encDynamicP

arams), other codec classes do not

(and algorithms could) provide this
through an extended Status structure.

6) XDM_DataFormat XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.

XDM_LE_32 32-bit little endian stream.

XDM_LE_64 64-bit little endian stream.

XDM_BE_16 16-bit big endian stream.

XDM_BE_32 32-bit big endian stream.

API Reference

4-9

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

XDM_BE_64 64-bit big endian stream.

XDM_ChromaFormat XDM_CHROMA_NA Chroma format not applicable

XDM_YUV_420P YUV 4:2:0 planar.

XDM_YUV_422P YUV 4:2:2 planar.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian)

XDM_YUV_444P YUV 4:4:4 planar.

XDM_YUV_411P YUV 4:1:1 planar.

XDM_GRAY Gray format.

XDM_RGB RGB color format.

XDM_YUV_420SP YUV 4:2:0 chroma semi-planar format
(first plane is luma and second plane is
CbCr interleaved)
Default value.

XDM_ARGB8888 Alpha plane color format.

XDM_RGB555 RGB555 color format.

XDM_RGB565 RGB565 color format.

XDM_YUV_444ILE YUV 4:4:4 interleaved (little endian)
color format.

XDM_MemoryType XDM_MEMTYPE_ROW

XDM_MEMTYPE_RAW

Raw memory type

XDM_MEMTYPE_TILED8 2D memory in 8-bit container of tiled
memory space

XDM_MEMTYPE_TILED1

6

2D memory in 16-bit container of tiled
memory space

XDM_MEMTYPE_TILED3

2

2D memory in 32-bit container of tiled
memory space

XDM_MEMTYPE_TILEDP

AGE

2D memory in page container of tiled
memory space

XDM_EncodingPreset XDM_DEFAULT Default setting of the algorithm specific
creation time parameters

API Reference

4-10

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

XDM_HIGH_QUALITY Set algorithm specific creation time
parameters for high quality.

XDM_HIGH_SPEED Set algorithm specific creation time
parameters for high speed.

XDM_USER_DEFINED

XDM_PRESET_DEFAULT

User defined configuration using
advanced parameters
Default value

XDM_HIGH_SPEED_MED

_QUALITY

Set algorithm specific creation time
parameters for high speed medium
quality

XDM_MED_SPEED_MED_

QUALITY

Set algorithm specific creation time
parameters for medium speed medium
quality.

XDM_MED_SPEED_HIGH

_QUALITY

Set algorithm specific creation time
parameters for medium speed high
quality

XDM_EncMode XDM_ENCODE_AU Encode entire access unit, including the
headers (default value)

XDM_GENERATE_HEADE

R

Encode only header

IVIDENC2_MotionVecto

rAccuracy

IVIDENC2_MOTIONVEC

TOR_PIXEL

Motion vectors accuracy is only integer
pel
Not supported in this version of MPEG4
encoder

IVIDENC2_MOTIONVEC

TOR_HALFPEL

Motion vectors accuracy is half pel

IVIDENC2_MOTIONVEC

TOR_QUARTERPEL

Motion vectors accuracy is quarter pel
Not supported in this version of MPEG4
encoder

IVIDENC2_MOTIONVEC

TOR_EIGHTHPEL

Motion vectors accuracy is one-eighth
pel
Not supported in this version of MPEG4
encoder

IVIDENC2_MOTIONVEC

TOR_MAX

Motion vectors accuracy is not defined
Not supported in this version of MPEG4
encoder

API Reference

4-11

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

XDM_ErrorBit XDM_PARAMSCHANGE Bit 8

 1 - Sequence Parameters Change

 0 - Ignore
This error is applicable for transcoders.
It is set when some key parameter of
the input sequence changes. The
transcoder returns after setting this
error field and the correct input
sequence parameters are updated in
outArgs.

XDM_APPLIEDCONCEAL

MENT

Bit 9

 1 - Applied concealment

 0 - Ignore
This error is applicable for decoders.
It is set when the decoder was not able
to able to decode the bit-stream, and
the decoder has concealed the bit-
stream error and produced the
concealed output.

XDM_INSUFFICIENTDA

TA

Bit 10

 1 - Insufficient input data

 0 - Ignore
This error is typically applicable for
decoders. This is set when the input
data provided is not sufficient to
produce of one frame of data. This can
be also be set for encoders when the
number of valid samples in the input
frame is not sufficient to process a
frame.

XDM_CORRUPTEDDATA Bit 11

 1 - Data problem/corruption

 0 - Ignore
This error is typically applicable for
decoders. This is set when the bit-
stream has an error and not compliant
to the standard syntax.

XDM_CORRUPTEDHEADE

R

Bit 12

 1 - Header problem/corruption

 0 - Ignore
This error is typically applicable for
decoders. This is set when the header
information in the bit-stream is
incorrect. For example, it is set when
Sequence, Picture, Slice, and so on are
incorrect in video decoders.

API Reference

4-12

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

XDM_UNSUPPORTEDINP

UT

Bit 13

 1 - Unsupported
 feature/parameter in input

 0 - Ignore
This error is set when the algorithm is
not able process a certain input
data/bit-stream format. It can also be
set when a subset of features in a
standard are not supported by the
algorithm.
For example, if a video encoder only
supports 4:2:2 formats, it can set this
error for any other type of input video
format.

XDM_UNSUPPORTEDPAR

AM

Bit 14

 1 - Unsupported input
 parameter or configuration

 0 - Ignore
This error is set when the algorithm
does not support certain configurable
parameters. For example, if the video
decoder does not support the display
width feature, it will return
XDM_UNSUPPORTEDPARAM when the

control function is called for setting the
display width attribute.

XDM_FATALERROR Bit 15

 1 - Fatal error (stop encoding)

 0 - Recoverable error
If there is an error and this bit is not set,
the error is recoverable.
This error is set when the algorithm
cannot recover from the current state.
It informs the system not to try the next
frame and possibly delete the
multimedia algorithm instance.
It implies the codec will not work when
reset.
You should delete the current instance
of the codec.

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are

interpreted as:

 Bit 16-32: Reserved

 Bit 0-7: Codec and implementation specific (see Table 4-3)

The algorithm can set multiple bits to one depending on the error

API Reference

4-13

condition.

Table 4-2. MPEG4 Encoder Specific Enumerated Data Types.

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IMPEG4VENC_Level IMP4VENC_SP_LEVEL_0 MPEG-4 Simple profile level 0
Value = 0

IMP4VENC_SP_LEVEL_0B MPEG-4 Simple profile level 0b
Value = 9

IMP4VENC_SP_LEVEL_1 MPEG-4 Simple profile level 1
Value = 1

IMP4VENC_SP_LEVEL_2 MPEG-4 Simple profile level 2
Value = 2

IMP4VENC_SP_LEVEL_3 MPEG-4 Simple profile level 3
Value = 3

IMP4VENC_SP_LEVEL_4A MPEG-4 Simple profile level 4a
Value = 4

IMP4VENC_SP_LEVEL_5 MPEG-4 Simple profile level 5
Value = 5

 IMP4VENC_SP_LEVEL_6 MPEG-4 Simple profile level 5
Value = 6

IMPEG4ENC_H263Level Level information for H263 Baseline

IMPEG4ENC_H263_LEVEL_10 H263 baseline profile level 10

IMPEG4ENC_H263_LEVEL_20 H263 baseline profile level 20

IMPEG4VENC_H263_LEVEL_30 H263 baseline profile level 30

IMPEG4VENC_H263_LEVEL_40 H263 baseline profile level 40

IMPEG4VENC_H263_LEVEL_45 H263 baseline profile level 45

IMPEG4VENC_H263_LEVEL_50 H263 baseline profile level 50

IMPEG4VENC_H263_LEVEL_60 H263 baseline profile level 60

IMPEG4VENC_H263_LEVEL_70 H263 baseline profile level 70

IMPEG4ENC_nonMultip

le16RefPadMethod

These enumerations define the type of padding done when dimension is non-
multiple of 16.

IMPEG4_PAD_METHOD_DIVX Method as suggested by DivX spec.

IMPEG4_PAD_METHOD_MPEG4 Method as suggested by MPEG4
spec.

API Reference

4-14

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IMPEG4_PAD_METHOD_DEFAULT

Takes the values of
IMPEG4_PAD_METHOD_MPEG4

IMPEG4ENC_InterCodi

ngPreset

These enumerations control the type of inter coding.

IMPEG4_INTERCODING_DEFAU

LT

Default inter coding params

IMPEG4_INTERCODING_USERD

EFINED

User defined inter coding params
Default value

IMPEG4_INTERCODING_EXIST

ING

Keep inter coding params as existing.
This is useful during control call, if you
do not want to change the inter coding
params

IMPEG4ENC_InterBloc

kSize

These enumerations are defined for minimum inter block size.

IMPEG4_BLOCKSIZE_16x16 16x16 block size

IMPEG4_BLOCKSIZE_8x8 8x8 block size

IMPEG4_BLOCKSIZE_DEFAULT Default block size

IMPEG4ENC_RateContr

olAlgoPreset

These enumerations control the RateControl Algorithm

IMPEG4_RATECONTROLALGO_N

ONE

No RC. Fixed QP Encoding.

IMPEG4_RATECONTROLALGO_V

BR

VBR RC Algorithm

IMPEG4_RATECONTROLALGO_C

BR

CBR RC Algorithm aka low Delay RC
Algorithm

IMPEG4ENC_IntraCodi

ngPreset

These enumerations control the type of intra coding.

IMPEG4_INTRACODING_DEFAUL

T

Default intra coding params

IMPEG4_INTRACODING_USERDE

FINED

User defined intra coding params
Default value

IMPEG4ENC_IntraRefr

eshMethods

Intra refresh method type identifier for MPEG4 Encoder

IMPEG4_INTRAREFRESH_NONE Do not insert forcefully any intra macro
blocks

IMPEG4_INTRAREFRESH_CYCLI

C_MBS

Inserts intra macro blocks in a cyclic
fashion . Cyclic interval is equal to
intraRefreshRate

API Reference

4-15

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IMPEG4_INTRAREFRESH_CYCLI

C_ROWS

Inserts Intra Rows in a cyclic fashion.
Cyclic interval is equal to
intraRefreshRate.

IMPEG4_INTRAREFRESH_MANDA

TORY

Mandatory Intra Refresh – Inserts Intra
MBs sucn that it evenly distributes
number of INTRA MBs over frames.

IMPEG4_INTRAREFRESH_RDOPT

_MBS

Position of intra macro blocks is
chosen by encoder, but the number of
forcibly coded intra macro blocks in a
frame is gaurnteed to be equal to
totalMbsInFrame/

intraRefreshRate.

This method is not implemented
currently.

IMPEG4ENC_SliceCodi

ngPreset

These enumerations control the slice coding parameters

IMPEG4_SLICECODING_DEFAUL

T

Default slice coding params

IMPEG4_SLICECODING_USERDE

FINED

User defined slice coding params
Default value

IMPEG4_SLICECODING_EXISTI

NG

Keep slice coding params as existing.
This is useful during control call, if you
do not want to change the slice coding
parameters.

IMPEG4ENC_SliceMode These enumerations captures the slice coding mechanism

IMPEG4_SLICEMODE_NONE Does not enable any Slice Mechanism

IMPEG4_SLICEMODE_MBUNIT Enables the Slice Coding Mechanism
based on number of Macroblocks

IMPEG4_SLICEMODE_BITS Enables the Slice Coding Mechanism
based on number of bits consumed.
H.241 Mechanism.

IMPEG4ENC_PixelRang

e

IMPEG4ENC_PR_16_235 video_range=0, gives a range of Y

from 16 to 235, Cb and Cr from 16 to
240. See Section 6.3.2 in
MPEG-4 visual standard

IMPEG4ENC_PR_0_255 video_range=1 gives a range of Y

from 0 to 255, Cb and Cr from 0 to
255. See Section 6.3.2 in
MPEG-4 visual standard.

API Reference

4-16

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IMPEG4ENC_PR_DEFAULT IMPEG4ENC_PR_0_255

IMPEG4ENC_SceneChan

geAlgo

IMPEG4ENC_SCDA_DISABLE Disables the algorithm to detect
scene change in the video sequence

 IMPEG4ENC_SCDA_ENABLE Enables the algorithm to detect
scene change in the video
sequence.

 IMPEG4ENC_SCDA_DEFAULT IMPEG4ENC_SCDA_ENABLE

IMPEG4ENC_AspectRat

ioIdc

IMPEG4ENC_ASPECTRATIO_SQU

ARE

1:1 (square) aspect ratio

IMPEG4ENC_ASPECTRATIO_12_

11

12:11 aspect ratio

IMPEG4ENC_ASPECTRATIO_10_

11

10:11 aspect ratio

IMPEG4ENC_ASPECTRATIO_16_

11

16:11 aspect ratio

IMPEG4ENC_ASPECTRATIO_40_

33

40:33 aspect ratio

IMPEG4ENC_ASPECTRATIO_EXT

ENDED

Extended Aspect Ratio

The MPEG4 SP Encoder specific error status messages are listed in Table
4-3.

Table 4-3. MPEG4 Encoder Error Statuses

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IMPEG4VENC_ErrorBit IMPEG4ENC_LEVEL_INCOMPLAINT

_PARAMETER

Bit 0 – Level in-complaint parameter

This error is thrown when the
resolution/frame rate/bit rate
exceeds the standard specified
values for the level set by the
application.

API Reference

4-17

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IMPEG4ENC_PROFILE_INCOMPLAI

NT_CONTENTTYPE

Bit 1 - Profile in-complaint content
type.

This error is applicable when
IVIDENC2_Params::inputCon

tentType is not set as

IVIDEO_PROGRESSIVE

, and
IVIDENC2_Params::profile is

set as
IMPEG4_BASELINE_PROFILE.

 IMPEG4ENC_IMPROPER_HDVICP2_

STATE

Bit 16 – HDVCIP2 is not in correct
state. Before using the HDVICP2,
the encoder checks clock setting for
all the modules of HDVICP2 and
checks for HDVCIP2 being in
standby state. If not then codec
throws this error

 IMPEG4ENC_WARNING_H263_PLUS

_CUSTOM_SOURCE_FORMAT

Bit 17 - Indication that the input
resolution given to codec is custom
source format supported in H.263+
not the standard resolutions
supported with H263 baseline or
MPEG4 with short video header.

 IMPEG4ENC_ERROR_BITSTREAM_

MEMORY_INSUFFICIENT

Bit 18 - Indication that the buffer
given to codec from getBuffer
function is insufficient so that codec
cannot continue encoding. It means
that if return value from getBuffer
function is -1, then this bit gets set
by the codec. This is the situation
where application might not be able
to provide memory to codec.

 IMPEG4ENC_IMPROPER_DATASYNC

_SETTING

Bit 19 - data synch settings are not
proper.

This error is set when encoder is
asked to operate at sub frame level
but the call back function pointer is
NULL.

 IMPEG4ENC_UNSUPPORTED_VIDEN

C2PARAMS

Bit 20 - Invalid videnc2 parameters.

This error is set when any parameter
of structure IVIDENC2_Params is

not in allowed range.

API Reference

4-18

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IMPEG4ENC_UNSUPPORTED_RATEC

ONTROLPARAMS

Bit 21 - Invalid rate control
parameters.

This error is set when any parameter
of structure
IMPEG4ENC_RateControlPara

ms is not in allowed range.

 IMPEG4ENC_UNSUPPORTED_INTER

CODINGPARAMS

Bit 22 - Invalid inter coding
parameters.

This error is set when any parameter
of structure
IMPEG4ENC_InterCodingPara

ms is not in allowed range.

 IMPEG4ENC_UNSUPPORTED_INTRA

CODINGPARAMS

Bit 23 - Invalid Intra coding
parameters.

This error is set when any parameter
of structure
IMPEG4ENC_IntraCodingPara

ms is not in allowed range.

 IMPEG4ENC_UNSUPPORTED_SLICE

CODINGPARAMS

Bit 25 - Invalid slice coding
parameters

This error is set when any parameter
of structure
IMPEG4ENC_SliceCodingPara

ms is not in allowed range

 IMPEG4ENC_UNSUPPORTED_MPEG4

ENCPARAMS

Bit 29 - Invalid Create time extended
parameters

This error is set when any parameter
of structure IMPEG4ENC_Params

is not in allowed range

 IMPEG4ENC_UNSUPPORTED_VIDEN

C2DYNAMICPARAMS

Bit 30 - Invalid base class dynamic
parameters during control

This error is set when any parameter
of structure
IVIDENC2_DynamicParams is

not in allowed range

 IMPEG4ENC_UNSUPPORTED_MPEG4

ENCDYNAMICPARAMS

Bit 31 - Invalid extended class
dynamic parameters during control

This error is set when any parameter
of structure
IMPEG4ENC_DynamicParams

(excluding embedded structures) is
not in allowed range

API Reference

4-19

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM2_SingleBufDesc

 XDM2_BufDesc

 XDM1_AlgBufInfo

 IVIDEO1_BufDescIn

 IVIDEO2_BufDesc

 IVIDENC2_Fxns

 IVIDENC2_Params

 IVIDENC2_DynamicParams

 IVIDENC2_Inargs

 IVIDENC2_Status

 IVIDENC2_OutArgs

 XDM_Date

 XDM_Point

 XDM_Rect

 XDM_DataSyncDesc

API Reference

4-20

4.2.1.1 XDM2_SingleBufDesc
║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data Type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer address

memType XDAS_Int32 Input Type of memory, See XDM_MemoryType

enumeration in Table 4-1 for more details

bufSize XDM2_BufSize Input Buffer size for tile memory/row memory

accessMask XDAS_Int32 Input Mask filled by the algorithm, declaring how the buffer
was accessed by the algorithm processor.
If the buffer was not accessed by the algorithm
processor (example, it was filled through DMA or other
hardware accelerator that does not write through the
algorithm's CPU), then bits in this mask should not be
set.
It is acceptable to set several bits in this mask, if the
algorithm accessed the buffer in several ways.
This mask is often used by the application and/or
framework to manage cache on cache-based
systems.
See XDM_AccessMode enumeration in Table 4-1 for

more details.
In the current version of the MPEG4 Encoder, Media
Controller does not read or write the buffers given by
out by application meaning accessMask for inBufs or
outBufs is zero.

4.2.1.2 XDM2_BufDesc
║ Description

This structure defines the buffer descriptor for output buffers.
║ Fields

Field Data Type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers. Must be less than
XDM_MAX_IO_BUFFERS.

descs[XDM_MAX_IO

_BUFFERS]

XDM2_SingleB

ufDesc

Input Array of buffer descriptors

API Reference

4-21

4.2.1.3 XDM1_AlgBufInfo
║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function

with the XDM_GETBUFINFO command.

║ Fields

Field Data Type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Minimum number of input buffers

minNumOutBufs XDAS_Int32 Output Minimum number of output buffers

minInBufSize[XDM_

MAX_IO_BUFFERS]

XDM2_BufSi

ze

Output Minimum size required for each input buffer

minOutBufSize[XDM

_MAX_IO_BUFFERS]

XDM2_BufSi

ze

Output Minimum size required for each output buffer

inBufMemoryType[X

DM_MAX_IO_BUFFERS

]

XDAS_Int32 Output Required memory type for each input buffer.
See XDM_MemoryType enumeration in Table

4-1 for more details.

outBufMemoryType[

XDM_MAX_IO_BUFFER

S]

XDAS_Int32 Output Required memory type for each output buffer.
See XDM_MemoryType enumeration in Table

4-1 for more details.

minNumBufSets XDAS_Int32 Output Minimum number of buffer sets for buffer
management

Note:

For MPEG4 Encoder, the buffer details are:

 Number of input buffer required is 2 for YUV 420SP chroma format
(memType is XDM_MEMTYPE_TILED8 and XDM_MEMTYPE_TILED16)

 Number of output buffer required is 1 (memType is

XDM_MEMTYPE_ROW and XDM_MEMTYPE_TILEDPAGE)

 The input buffer sizes (in bytes) for CIF format is:

 Y buffer = 352 * 288
 UV buffer = 352* 144

 There is no restriction on output buffer size except that it should
contain atleast one frame of encoded data.

These are the example buffer sizes but you can reconfigure depending
on the input format.

4.2.1.4 IVIDEO1_BufDescIn
║ Desciption

API Reference

4-22

This structure defines the buffer descriptor for inputs video buffers.
║ Fields

Field Data Type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers in bufDesc[]

frameWidth XDAS_Int32 Input Width of the video frame

frameHeight XDAS_Int32 Input Height of the video frame

framePitch XDAS_Int32

Input Frame pitch used to store the frame.
This field can also be used to
indicate the padded width.

bufDesc[XDM_MAX_IO_BUFFERS] XDM1_Singl

eBufDesc

Input Picture buffers.

4.2.1.5 IVIDEO2_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.

║ Fields

Field Data Type Input/
Output

Description

numPlanes XDAS_Int32 Input/Ou
tput

Number of buffers for video planes

numMetaPlanes XDAS_Int32
Input/Ou
tput Number of buffers for Metadata

dataLayout XDAS_Int32 Input/Ou
tput

Video buffer layout, field
interleaved or field separated. See
IVIDEO_VideoLayout

enumeration in Table 4-1for more
details

planeDesc

[IVIDEO_MAX_NUM_PLANES]

XDM2_Singl

eBufDesc

Input/Ou
tput

Description for video planes

metadataPlaneDesc

[IVIDEO_MAX_NUM_METADATA_PL

ANES]

XDM2_Singl

eBufDesc

Input/Ou
tput

Description for metadata planes

secondFieldOffsetWidth[IVID

EO_MAX_NUM_PLANES]

XDAS_Int32 Input/Ou
tput

Offset value for second field in
planeDesc buffer (width in pixels)

Valid only if pointer is not NULL.

secondFieldOffsetHeight[IVI

DEO_MAX_NUM_PLANES]

XDAS_Int32 Input/Ou
tput

Offset value for second field in
planeDesc buffer (height in lines)

Valid only if pointer is not NULL.

API Reference

4-23

Field Data Type Input/
Output

Description

imagePitch XDAS_Int32 Input/Ou
tput

Image pitch, common for all planes

imageRegion XDM_Rect Input/Ou
tput

Decoded image region including
padding/encoder input image (top
left and bottom right).

activeFrameRegion XDM_Rect
Input/Ou
tput

Actual display region/capture
region top left and bottom right).

extendedError XDAS_Int32 Input/Ou
tput

Indicates the error type, if any.
Not applicable for encoders.

frameType XDAS_Int32 Input/Ou
tput

Video frame types. See
enumeration
IVIDEO_FrameType

enumeration in Table 4-1 for more
details.
Not applicable for encoder input
buffer.

topFieldFirstFlag XDAS_Int32 Input/Ou
tput

Indicates when the application
(should display)/(had captured) the
top field first. Not applicable for
progressive content.
Not applicable for encoder
reconstructed buffers.
Valid values are XDAS_TRUE and

XDAS_FALSE.

repeatFirstFieldFlag XDAS_Int32 Input/Ou
tput

Indicates when the first field should
be repeated.
Valid values are XDAS_TRUE and

XDAS_FALSE.

Only applicable for interlaced
content, not progressive.
Not applicable for encoders.

frameStatus XDAS_Int32 Input/Ou
tput

Video in/out buffer status.
Not applicable for encoder
reconstructed buffers.

repeatFrame XDAS_Int32 Input/Ou
tput

Number of times the display
process
needs to repeat the displayed
progressive frame.
This information is useful for
progressive content when the
decoder expects the display
process to repeat the displayed
frame for a certain number of
times. This is useful for pull-down
(frame/field repetition by display
system) support
where the display frame rate is
increased without increasing the

API Reference

4-24

Field Data Type Input/
Output

Description

decode frame rate.
Default value is 0.
Not applicable for encoder
reconstructed buffers.
Not required for encoder input
buffer

contentType XDAS_Int32 Input/Ou
tput

Video content type. See
IVIDEO_ContentType

enumeration in Table 4-1 for more
details.
This is useful when the content is
both interlaced and progressive.
The
display process can use this field to
determine how to render the
display buffer.

chromaFormat XDAS_Int32 Input/Ou
tput

Chroma format for encoder input
data/decoded output buffer. See
XDM_ChromaFormat

enumeration in Table 4-1 for more
details.

scalingWidth XDAS_Int32 Input/Ou
tput

Scaled image width for post
processing for decoder.
Not applicable for encoders.

scalingHeight XDAS_Int32 Input/Ou
tput

Scaled image height for post
processing for decoder.
Not applicable for encoders.

rangeMappingLuma XDAS_Int32 Input/Ou
tput

Applicable for VC1, set to -1 as
default for other codecs

rangeMappingChroma XDAS_Int32 Input/Ou
tput

Applicable for VC1, set to -1 as
default for other codecs

enableRangeReductionFlag XDAS_Int32 Input/Ou
tput

Flag indicating whether to enable
range reduction or not.
Valid values are XDAS_TRUE and

XDAS_FALSE.

Applicable only for VC-1

API Reference

4-25

Figure 4-3 shows IVIDEO2_BufDesc structure with the associated

variables.

Figure 4-3. IVIDEO2_BufDesc With Associated Parameters.

IV
ID

E
O

_
V

id
e
o
L
a

y
o
u
t

planeDesc[PLANE_INDEX].bufSize.width,
for memType=tiled

planeDesc[PLANE_IN
DEX].bufSize.height,
for memType=titled

planeDesc[PL
ANE_INDEX].
buf

Video Plane(s)

bottomRight (XBR,YRB)

topLeft (XTL,YTL)

Field Interleaved Field Separated, top field and
bottom field

secondField
OffsetWidth

secondField
OffsetHeight

bottomRight (X,Y)

activeFrameRegion

imageRegion

topLeft (X,Y)

imagePitch

Video Plane

API Reference

4-26

4.2.1.6 IVIDENC2_Fxns
║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Data Type Input/
Output

Description

Ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function. See section 4.4

for more information

*control XDAS_Int32 Input Pointer to the control() function. See section 4.4

for more information

4.2.1.7 IVIDENC2_Params
║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to

be specified for these parameters. For the default and supported values,
see Table 4-6.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the base or extended (if being used)
data structure in bytes.
Supported Values:

 sizeof(IVIDENC2_Params)

 sizeof(IMPEG4ENC_Params)

encodingPreset XDAS_Int32 Input Preset to control encoder quality. See
XDM_EncodingPreset enumeration in

Table 4-1 for more details.

rateControlPreset XDAS_Int32 Input Preset to control rate control selection. See
IVIDEO_RateControlPreset

enumeration in Table 4-1 for more details.

API Reference

4-27

Field Data Type Input/
Output

Description

maxHeight XDAS_Int32 Input Maximum video height to be supported in
pixels.
Maximum height should be multiple of 2.

maxWidth XDAS_Int32 Input Maximum video width to be supported in
pixels.
Maximum width should be multiple of 16.

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second.
This field is ignored by the current version of
the encoder.

minBitRate XDAS_Int32 Input Minimum Bit Rate for encoding in bits per
second.
This field is ignored by the current version of
the encoder.

dataEndianness XDAS_Int32 Input Endianness of output data. See
XDM_DataFormat enumeration in Table

4-1for more details.

maxInterFrameInterval XDAS_Int32 Input This is used for setting the maximum number
of B frames between two reference frames.
Distance from I-frame to P-frame:

Currently B frames are not supported in
MPEG SP encoder, hence this field is
ignored by the encoder.

inputChromaFormat XDAS_Int32 Input Chroma format for the input buffer.
See XDM_ChromaFormat enumeration in

Table 4-1 for more details.

inputContentType XDAS_Int32 Input Video content type of the buffer being
encoded.
See IVIDEO_ContentType enumeration

in Table 4-1 for more details.
In this version of encoder, only
IVIDEO_PROGRESSIVE is

supported.

operatingMode XDAS_Int32 Input Video coding mode of operation..
See IVIDEO_OperatingMode

enumeration in Table 4-1 for details

Profile XDAS_Int32 Input Profile indicator of video encoder.
Only simple and baseline profile is supported
in current version of the MPEG4 and H263
Encoder respectively.

Level XDAS_Int32 Input Level Indicator of video encoder.
See IMPEG4VENC_Level enumeration in

Table 4-2 for details.

API Reference

4-28

Field Data Type Input/
Output

Description

inputDataMode XDAS_Int32 Input Input data mode.
See IVIDEO_DataMode enumeration in

Table 4-1for details.
See in Appendix C for more details on
datasynch usage with MPEG4 Encoder.

outputDataMode XDAS_Int32 Input Output data mode.
See IVIDEO_DataMode enumeration in

Table 4-1 for details.
See in Appendix C for more details on
datasynch usage with MPEG4 Encoder.

numInputDataUnits XDAS_Int32 Input Number of input slices/rows.
Units depend on the inputDataMode,

such as number of slices/rows/blocks, and
so on.
Ignored if inputDataMode is set to full

frame mode.

numOutputDataUnits XDAS_Int32 Input Number of output slices/rows.
Units depend on the outputDataMode,

such as number of slices/rows/blocks, and
so on.
Ignored if outputDataMode is set to full

frame mode.

Note:

For the supported maxBitRate values, see Table A.1 – Level Limits in

ISO/IEC 14496-2:2003.

The following fields of IVIDENC2_Params data structure are level

dependent:

 maxHeight

 maxWidth

To check the values supported for maxHeight and maxWidth use the

following expression:

maxFrameSizeinMbs >= (maxHeight*maxWidth) / 256;

See Table A.1 – Level Limits in ISO/IEC 14496-2:2003 for the supported
maxFrameSizeinMbs values.

For example, consider you have to check if the following values are
supported for level L2:

 maxHeight = 480

 maxWidth = 720

The supported maxFrameSizeinMbs value for level 2.0 as per Table

API Reference

4-29

N.1 – Level Limits is 396.

Compute the expression as:

maxFrameSizeinMbs >= (480*720) / 256

The value of maxFrameSizeinmbs is 1350 and hence the condition is

not true. Therefore, the above values of maxHeight and maxWidth are

not supported for level 2.0.

See Table N.1 – Level Limits in ISO/IEC 14496-2:2003 for the supported
values of maxMbsPerSecond.

Use the following expression to calculate FrameSizeinMbs:

FrameSizeinMbs = (maxWidth * maxHeight) / 256;

4.2.1.8 IVIDENC2_DynamicParams
║ Description

This structure defines the run-time parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to

be specified for these parameters. For the default and supported values,
see Table 4-7.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes

inputHeight XDAS_Int32 Input Height of input frame in pixels. Input Height
needs to be multiple of 2.

inputWidth XDAS_Int32 Input Width of input frame in pixels. Input width can be
changed before start of encoding with in the
limits of Max width set in creation phase.

inputWidth must be multiples of two.

Minimum width supported is 64.
Note:

 For MPEG4, width can be multiple of 2 but
for H263 with custom picture format, width
should be multiple of 4.

 When the input width is a non-multiple of 16,
the encoder expects the application to pad
the input frame to the nearest multiple of 16
to the right of the frame. In this case,

application shall set inputWidth to actual

width but should provide the padded input
YUV data buffer to encoder.

refFrameRate XDAS_Int32 Input Reference or input frame rate in fps * 1000. For
example, if the frame rate is 30, set this field to
30000.

API Reference

4-30

Field Data Type Input/
Output

Description

targetFrameRate XDAS_Int32 Input Target frame rate in fps * 1000. For example, if
the frame rate is 30, set this field to 30000.
Note that both refFrameRate and
targetFrameRate should have the same value for
the encoder input.

targetBitRate XDAS_Int32 Input Target bit-rate in bits per second. For example, if
the bit-rate is 2 Mbps, set this field to 2097152.

intraFrameInter

val

XDAS_Int32 Input Interval between two consecutive intra frames.
For example:

 0 – One I frame followed by all Inter Frames

 1 - No inter frames (all intra frames)

 N - One intra frame and N-1 inter frames,
where N > 0.

generateHeader XDAS_Int32 Input Encode entire access unit or only header. See
XDM_EncMode enumeration for details.

captureWidth XDAS_Int32 Input If the field is set to:

 0 - Encoded image width is used as pitch.

 Any non-zero value, capture width is used
as pitch (if capture width is greater than
image width). This value should be multiple
of 16.

forceFrame XDAS_Int32 Input Force the current (immediate) frame to be
encoded as a specific frame type.

interFrameInter

val

XDAS_Int32 Input Number of B frames between two reference
frames; that is, the number of B frames between
two P frames or I/P frames. DEFAULT(0).

Currently not supported in this version of MPEG4
Encoder, hence this value needs to be zero.

mvAccuracy XDAS_Int32 Input Pixel accuracy of the motion vector.
See IVIDENC2_MotionVectorAccuracy

enumeration in Table 4-1 for details. Only Half
pel accuracy is supported in this version of
MPEG4 encoder.

sampleAspectRat

ioHeight

XDAS_Int32 Input Sample aspect ratio height. This will be
considered by encoder only when
IVIDENC2_DynamicParams ::

aspectRatioIdc is

IMPEG4ENC_ASPECTRATIO_EXTENDED

API Reference

4-31

Field Data Type Input/
Output

Description

sampleAspectRat

ioWidth

XDAS_Int32 Input Sample aspect ratio width. This will be
considered by encoder only when
IVIDENC2_DynamicParams ::

aspectRatioIdc is

IMPEG4ENC_ASPECTRATIO_EXTENDED

ignoreOutbufSiz

eFlag

XDAS_Int32 Input Flag to indicate that for bit-stream buffer size,
codec to expect the requested size or not
Valid values are XDAS_TRUE and

XDAS_FALSE.

putDataFxn XDM_DataSy

ncPutFxn

Input Function pointer to produce data at sub-frame
level

putDataHandle XDM_DataSy

ncHandle

Input Handle that identifies the data sync FIFO and is
passed as argument to putData calls

getDataFxn XDM_DataSy

ncPutFxn

Input Function pointer to receive data at sub-frame
level

getDataHandle XDM_DataSy

ncHandle

Input Handle that identifies the data sync FIFO and is
passed as argument to getData calls

getBufferFxn XDM_DataSy

ncPutFxn

Input Function to receive buffer at sub frame level

getBufferHandle XDM_DataSy

ncHandle

Input Handle that identifies the datasync FIFO and is
passed as argument to getBufferFxn

calls

lateAcquireArg XDAS_Int32 Input Argument used during late acquire, For all
control() commands other than

#XDM_SETLATEACQUIREARG, this field is

ignored and can therefore be set by the caller to
any value. This is a identifier for a channel in
multi channel scenario.

4.2.1.9 IVIDENC2_Inargs
║ Description

This structure defines the run time input arguments for an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

API Reference

4-32

Field Data Type Input/
Output

Description

inputID XDAS_Int32 Input Identifier to attach with the corresponding input
frames to be encoded.
Zero (0) is not a supported inputID. This value is

reserved for cases when there no input buffer is
provided.
This is useful when frames require buffering
(example, B frames) and to support buffer
management.
When there is no re-ordering,
IVIDENC2_OutArgs:: freeBufId will be the

same as this inputID field.

control XDAS_Int32 Input Encoder control operations. By this parameter various
control operations like forcing a frame to be SKIP can
be achieved, See IVIDENC2_Control

enumeration for more details.

4.2.1.10 IVIDENC2_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code.
See XDM_ErrorBit enumeration in Table

4-1 for details.

Data XDM1_SingleBuf

Desc

Output Buffer descriptor for data passing
If this field is not used, the application must
set data.buf to NULL.

This buffer can be used as either input or
output, depending on the command.
The buffer will be provided by the
application, and returned to the application
on return of the
IVIDENC1_Fxns.control()

call. The algorithm must not retain a pointer
to this data.

encodingPreset XDAS_Int32 Output Encoding preset.
See XDM_EncodingPreset enumeration

in Table 4-1 for details.

API Reference

4-33

Field Data Type Input/
Output

Description

rateControlPreset XDAS_Int32 Output Rate control preset
See IVIDEO_RateControlPreset

enumeration in Table 4-1 for details.

maxInterFrameInte

rval

XDAS_Int32 Output This is used for setting the maximum
number of B frames between two reference
frames.
Distance from I-frame to P-frame:

B frames are not supported in the current
MPEG4 Encoder.

inputChromaFormat XDAS_Int32 Output Chroma format for the input buffer.
See XDM_ChromaFormat enumeration in

Table 4-1for details.

inputContentType XDAS_Int32 Output Video content type of the buffer being
encoded.
See IVIDEO_ContentType enumeration

in Table 4-1 for details.

operatingMode XDAS_Int32 Output Mode of video coding.
See IVIDEO_OperatingMode

enumeration in Table 4-1for details

profile XDAS_Int32 Output Profile indicator of video encoder.

level XDAS_Int32 Output Level indicator of video encoder.
See IMEPG4VENC_Level enumeration in

Table 4-2 for details.

inputDataMode XDAS_Int32 Output Input data mode.
See IVIDEO_DataMode enumeration n

Table 4-1for details.

outputDataMode XDAS_Int32 Output Output data Mode.
See IVIDEO_DataMode enumeration n

Table 4-1 for details.

bufInfo XDM1_AlgBufInf Output Input and output buffer information.
This field provides the application with the
algorithm's buffer requirements. The
requirements may vary depending on the
current configuration of the algorithm
instance.

See XDM1_AlgBufInfo data structure for

details.

API Reference

4-34

Field Data Type Input/
Output

Description

encDynamicParams IVIDENC2_Dynam

icParams

Output Dynamic parameters in use by encoder.
See IVIDENC2_DynamicParams

enumeration for more details.
In case of extended dynamic parameters,
algorithm can check the size of Status or

DynamicParams and return the

parameters accordingly.

API Reference

4-35

4.2.1.11 IVIDENC2_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code.
See XDM_ErrorBit enumeration in Table

4-1for details.

bytesGenerated XDAS_Int32 Output The number of bytes generated during the
 IVIDENC2_Fxns::process() call.

encodedFrameType XDAS_Int32 Output Frame types for video.
See IVIDEO_FrameType enumeration in

Table 4-1for details.

inputFrameSkip XDAS_Int32 Output Frame skipping modes for video.
See IVIDEO_SkipMode enumeration in Table

4-1for details.

freeBufID[IVIDEO2_

MAX_IO_BUFFERS]

XDAS_Int32 Output This is an array of input IDs corresponding to the
buffers that have been unlocked in the current
process call.
The first zero entry in array will indicate end of
valid freeBufIDs within the array

Buffers returned to the application for display
(through
IVIDDEC2_OutArgs#displayBufs)

continue to be owned by the algorithm until they
are released - indicated by the ID being returned
in this freeBuf array.

The buffers released by the algorithm are
indicated by their non-zero ID (previously
provided through
IVIDDEC2_InArgs#inputID).

A value of zero (0) indicates an invalid ID. The
first zero entry in array will indicate end of valid
freeBufIDs within the array. Hence, the

application can stop searching the array when it
encounters the first zero entry.
If no buffer was unlocked in the process call,
freeBufID[0] will have a value of zero.

reconBufs IVIDEO2_Buf

Desc

Output Pointer to re-construction buffer descriptor.
See IVIDEO2_BufDesc data structure for

more information

API Reference

4-36

4.2.1.12 XDM_Date
║ Description

This structure contains the date and time information.
║ Fields

Field Data Type Input/
Output

Description

msecsOfDay XDAS_Int32 Input Milliseconds of the day

month XDAS_Int32 Input Month (0 = January, 11 = December)

dayOfMonth XDAS_Int32 Input Day (1 - 31)

dayOfWeek XDAS_Int32 Input Day of week (0 = Sunday, 6 = Saturday)

year XDAS_Int32 Input Year (since 0)

4.2.1.13 XDM_Point
║ Description

This structure specifies the two dimensional point.
║ Fields

Field Data Type Input/
Output

Description

X XDAS_Int32 Input X field of the frame

Y XDAS_Int32 Input Y field of the frame

API Reference

4-37

4.2.1.14 XDM_Rect
║ Description

This structure defines the region in the image that is to be encoded.
║ Fields

Field Data Type Input/
Output

Description

topLeft XDM_Point Input Top left corner of the frame.
See XDM_Point data structure for details.

bottomRight XDM_Point Input Bottom right corner of the frame.
See XDM_Point data structure for details.

4.2.1.15 XDM_DataSyncDesc
║ Description

This structure provides the descriptor for the chunk of data being
transferred in one call to putData or getData function.

This DataSyncDesc Syntax is common to Input Data Synchronization and

Output Data Synchronization implementation.
║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input/
Output

Size of this structure

*baseAddr XDAS_Int32 Input/
Output

Input: not used
Output: Address of first byte on first block

numBlocks XDAS_Int32 Input/
Output

Input: Number of input rows available in the frame
buffer to encode
Output: Number of 2 KBytes buffers available to put
the encoded bit stream data

varBlockSize

sFlag

XDAS_Int32 Input/
Output

Flag indicating whether any of the data blocks vary in
size.
Valid values are XDAS_TRUE and XDAS_FALSE.

varBlockSizesFlag with XDAS_TRUE is not

supported.

*blockSizes XDAS_Int32 Input/
Output

Variable block sizes array.
If varBlockSizesFlag is XDAS_TRUE, this array

contains the sizes of each block.
If varBlockSizesFlag is XDAS_FALSE, this

array contains the size of same-size blocks.
Memory for this array (of size numBlocks) has to be

allocated by the caller of the putData or getdata

API Reference

4-38

Field Data Type Input/
Output

Description

API.

4.2.2 MPEG4 Encoder Data Structures

This section includes the following MPEG4 Encoder specific extended data
structures:

 IMPEG4ENC_Params

 IMPEG4ENC_RateControlParams

 IMPEG4ENC_InterCodingParams

 IMPEG4ENC_IntraCodingParams

 IMPEG4ENC_SliceCodingParams

 IMPEG4ENC_DynamicParams

 IMPEG4ENC_Inargs

 IMPEG4ENC_Status

 IMPEG4ENC_OutArgs

 IMPEG4ENC_Fxns

 IMPEG4ENC_DataSyncDesc

4.2.2.1 IMPEG4ENC_Params
║ Description

This structure defines the creation parameters and any other
implementation specific parameters for a MPEG4 Encoder instance object.
The creation parameters are defined in the XDM data structure,
IVIDENC2_Params. For the default and supported values, see Table 4-.

║ Fields

Field Data Type Input/
Output

Description

videnc2Params IVIDENC2_Params Input See IVIDENC2_Params data structure for

details.

rateControlPara

ms

IMPEG4ENC_RateC

ontrolParams

Input Controls all rate control related parameters.
See IMPEG4ENC_RateControlParams

data structure for details.

API Reference

4-39

Field Data Type Input/
Output

Description

interCodingPara

ms

IMPEG4ENC_Inter

CodingParams

Input Controls all inter coding related parameters.
See IMPEG4ENC_InterCodingParams

data structure for details.

intraCodingPara

ms

IMPEG4ENC_Intra

CodingParams

Input Controls all intra coding related parameters.
See IMPEG4ENC_IntraCodingParams

data structure for details.

sliceCodingPara

ms

IMPEG4ENC_Slice

CodingParams

Input Controls all Slice coding related parameters.
See IMPEG4ENC_SliceCodingParams

data structure for details.

useDataPartitio

ning

XDAS_UInt32 Input Data partition mode on/off.

 1 - ON

 0 - OFF
Default value is 0. This mode can be
switched ON only when sliceMode is

IMPEG4_SLICEMODE_BITS and non-

zero sliceUnitSize or else MPEG4

Encoder returns error.
If useShortVideoHeader is enabled,

MPEG4 Encoder automatically disables this
mode.
Also note that, with DP ON,

 bitrate and packet adherence is not
guaranteed.

 Does not support output data
synch mode. Codec returns error
with this combination.

useRvlc XDAS_UInt32 Input RVLC mode ON/OFF.

 1 - ON

 0 - OFF
Default value is 0.

This mode can be switched on only when
useDataPartitioning is ON or else

MPEG4 Encoder return error.

If useShortVideoHeader is enabled,

MPEG4 Encoder automatically disable this
mode.

API Reference

4-40

Field Data Type Input/
Output

Description

useShortVideoHe

ader

XDAS_UInt32 Input Controls the encoding format.
1 - H.263
0 - MPEG4
Default value is 0.
If useShortVideoHeader is 1, MPEG4

Encoder automatically sets the
minBlockSizeP to

IMPEG4_BLOCKSIZE_16x16 . But can

have H.241 (resyncIntervalInbits) feature
with outputMode set to SLICE_MODE. See

more details about this in Appendix A.

vopTimeIncremen

tResolution

XDAS_UInt32 Input Resolution of vop_time_increment bit-

stream syntax element,
 number of ticks/sec.

Default value is 30.

nonMultiple16Re

fPadMethod

XDAS_UInt32 Input Controls the way the padding is done for Ref
Frame when Height is Non-multiple of 16.

 IMPEG4_PAD_METHOD_MPEG4 –

MPEG4 Standard specific way of
padding

 IMPEG4_PAD_METHOD_DIVX – VLC,

DIVx way of padding

Default value is
IMPEG4_PAD_METHOD_MPEG4.

pixelRange XDAS_UInt32 Input Pixel range to be put in header

See IMPEG4VENC_PixelRange
enumeration for details.
Default value is IMPEG4VENC

_PR_DEFAULT.

API Reference

4-41

Field Data Type Input/
Output

Description

enableSceneChan

geAlgo

XDAS_UInt32 Input This parameter enables or disables the
scene change detection algorithm to be
used by the codec.

IMPEG4ENC_SCDA_ENABLE -> Enable

the scene change detection algorithm.

IMPEG4ENC_SCDA_DISABLE -> Disable

the scene change detection algorithm.

Note When Scene Change Detection algo is

enabled, based on the algorithm logic, Intra
frames can be inserted forcefully during the
scene change in the video sequence.
Usually not recommended for CBR (low
delay) rate control since it is tough to meet
the bitrate if frequent I frames get inserted.
Also not recommended in H241 slice
mechanism as I frame generates more
slices than P frames at the cost of
performance.

Also note that SCD algo is disabled by the
codec automatically whenever early frame
skip is enabled i.e. allowFrameSkip is 2.

useVOS XDAS_UInt32 Input This parameter enables or disables the
insertion of video object sequence header in
the bitstream.
1 -> Enable inserting VOS header
0 -> Disable inserting VOS header

API Reference

4-42

Field Data Type Input/
Output

Description

enableMONA XDAS_UInt32 Input Flag to indicate that the encoder should
enable MONA mode settings and override
any previous MPEG4 encoder initializations.
It should also neglect any encoder
initializations after this flag is enabled.

1 - Enable MONA settings
0 – Disable MONA settings and use normal
encoder settings

Note:
MONA Settings for MPEG-4:

targetBitRate <= 64000
levelIdc = Level 0
refFrameRate <= 15fps
targetFrameRate <= 15fps
aspectRatio = 1
timerResolution = 30000
inputWidth = 176
inputHeight = 144
packetSize <= 2048
useDataPartition = 1
useRVLC = 0
rcAlgo = IMP4VENC_RC_CBR
qpMax = 31
qpMin = 1

MONA Settings for H.263:

targetBitRate <= 64000
refFrameRate <= 15fps
targetFrameRate <=15fps
timerResolution = 30000
inputWidth = 176
inputHeight = 144
rcAlgo = IMP4VENC_RC_CBR
qpMax = 31
qpMin = 8

enableAnalytici

nfo

XDAS_UInt32 Input Flag to enable or disable the dumping of
Motion vector and SAD info from the codec
to the application.
1 -> Enable dumping of MV info and SAD
0 -> Disable dumping of MV info and SAD
See in Appendix D for more details on the
implementation and interface details.

debugTraceLevel XDAS_UInt32 Input This parameter configures the codec to
dump a debug trace log.
0-> Disables the dumping of debug trace
parameter.
1 -> Frame level information
Note that this parameter is only used for
debugging.

API Reference

4-43

Field Data Type Input/
Output

Description

lastNFramesToLo

g

XDAS_UInt32 Input This parameters configures the codec to
maintain history of debug trace parameters
for last N frames.
0 -> no history will be maintained by the
codec
>0 -> history of past specified number of
frames will be maintained.
This parameter is valid if debugTraceLevel
is enabled.

4.2.2.2 IMPEG4ENC_RateControlParams
║ Description

This structure controls rate control behavior. For the default and supported
values, see Table 4-8.

║ Fields

Field Data Type Input/
Output

Description

rateControlPa

ramsPreset

IMPEG4ENC_RateC

ontrolParamsPre

set

Input This preset controls the USER_DEFINED

versus DEFAULT mode. If user are not aware of
the below fields, it should be set as
IMPEG4_RATECONTROLPARAMS_DEFAULT

rcAlgo IMPEG4ENC_RateC

ontrolAlgo

Input This defines the rate control algorithm to be
used.

 0 - IMPEG4_RATECONTROLALGO_NONE

 1 - IMPEG4_RATECONTROLALGO_VBR

 2 - IMPEG4_RATECONTROLALGO_CBR

default value is
IMPEG4_RATECONTROLALGO_VBR .

qpI XDAS_Int32 Input Initial quantization parameter for I frames. Valid
range is 1 to 31.
When rateControlPreset =

IVIDEO_NONE, this quantization parameter is

used by the video frame/field.
default value is 5.

qpP XDAS_Int32 Input Initial quantization parameter for P frames. Valid
Range is 1 to 31.
When rateControlPreset =

IVIDEO_NONE, this quantization parameter is

used by the whole video frame/field.
default value is 5.

API Reference

4-44

Field Data Type Input/
Output

Description

seIntialQP XDAS_Int32 Input Initial quantization parameter for the first frame in
the sequence when RC is ON.
Valid range is 1 to 31.
When rcAlgo is not
IMPEG4_RATECONTROLALGO_NONE this value

is used as the initial QP when Rate Control is on.
Default value is 5.
If user is not aware of what this value needs to
be, then specify this value as ZERO, where by
codec would internally calculate optimal initial
QP.

qpMax XDAS_Int32 Input Maximum quantization parameter for I/P
frame(s).
Range is 1 to 31.
Default Value is 31.

qpMin XDAS_Int32 Input Minimum quantization parameter for I/P frame(s).
Range is 1 to 31.
Default Value is 1.
Note: qpMin shall not be greater than qpMax or
else MPEG4 Encoder return error.

enablePercept

ualQuantMode

XDAS_Int32 Input Controls the MB Level QP change in a row by
Perceptual Quantization Method.

 1 – Enabled

 0 - Disabled
Default value is 0.
MPEG4 Encoder automatically disables
enablePerceptualQuantMode when low

Delay RC (CBR) is enabled or H.241 or
DP/RVLC modes enabled.

allowFrameSki

p

XDAS_Int32 Input Controls the frame skip feature based on the bit
consumption.

 2 – Enabling early frame skip

 1 – Enabling late frame skip

 0 – Disabling frame skip

Default value is 0.

MPEG4 Encoder automatically enable this mode
when low Delay RC(CBR) is enabled.

Note: When user selects output data mode as
IVIDEO_FIXEDLENGTH or

IVIDEO_SLICEMODE then codec assumes the

value of allowFrameSkip as 2. That is early
frame skip will be enabled whenever output data
synch is enabled.

API Reference

4-45

Field Data Type Input/
Output

Description

initialBuffer

Level

XDAS_Int32 Input Initial buffer level for VBV compliance. It informs
that hypothetical decoder can start decoding on
the fullness of the VBV buffer. See the Table 4-4
for the range of value supported by this
parameter.
Default value is 0, where codec will internally
calculate the value based on the RC algo type.

vbvBufferSize XDAS_Int32 Input Virtual Buffer Verifier buffer size. This size
controls the frame skip logic of the encoder. For
low delay applications this size should be small.
This size is in bits.
Maximum Value is level dependant and min
value is 0.1* TargetBitRate.

Default value is 0, where codec will internally
calculate the value based on the RC algo type.
See the Table 4-5 for the range of value
supported by this parameter.

qpMinIntra XDAS_Int32 Input Minimum quantization parameter for Intra
macroblocks in Inter frames. Codec will not
always encode all the Intra macroblocks in Inter
frames with this value but tries to encode with
this user configured QP value. This depends on
the QP of the previous macroblock of the Intra
macroblock. As per H.263, standard, adjacent
QP values can vary between +/-2. So if the
previous macroblock has QP as qpPrev, then the
Intra macroblock QP will be decided as follows:

min(qpPrev + 2, qpMinIntra)

This variable is applicable only to H.263 and not
applicable to MPEG-4.
This is only applicable to Intra macroblocks in
Inter frames and not applicable to Intra
macroblocks in Intra frame.

Default value is 0
Valid values: 0, 1-31
0 – No effect in QP values for Intra macroblocks
in Inter frame. Used for backward compatibility.

Note:

The following parameters are considered during run-time:

 qpI

 qpMax

 qpMin

 qpP

API Reference

4-46

 qpMinIntra

 allowFrameSkip for VBR (storage). For CBR, codec always

assumes allowFrameSkip is enabled.

The following parameters are ignored during run-time:

 rcAlgo

 initialBufferLevel

 vbvBufferSize

 enablePerceptualQuantMode

 seInitialQP

4.2.2.3 IMPEG4ENC_InterCodingParams
║ Description

This structure contains all the parameters which controls inter MBs
coding behavior. For the default and supported values, see Table 4-9.

║ Fields

Field Data Type Input/
Output

Description

interCodingPr

eset

IMPEG4ENC_Inter

CodingPreset

Input This preset controls the USER_DEFINED versus

DEFAULT mode. If user is not aware of below

fields, it should be set as
IMPEG4_INTERCODING_DEFAULT

searchRangeHo

rP

XDAS_Int32 Input Horizontal search range for P frames
Possible values: Non zero, maximum up to 144.

searchRangeVe

rP

XDAS_Int32 Input Vertical search range for P frames
Possible Values: Non-zero, maximum up to 32

globalOffsetM

E

XDAS_Int32 Input ME with global offset.

 0 – Disable

 1 – Enable
Default value is 1.

earlySkipThre

shold

XDAS_Int32 Input Threshold to use for early skip decision of a
macroblock.
Default value is 200.

enableThresho

ldingMethod

XDAS_Int32 Input Threshold cost method used to set a block to be
not_coded if the block has very few small

amplitude coefficients,.Can take values 0 and 1.
Default value is 1.

minBlockSizeP XDAS_Int32 Input Minimum Block size for MB coding in P Frame.

 0 – IMPEG4_BLOCKSIZE_16x16 -- 16x16

API Reference

4-47

Field Data Type Input/
Output

Description

block size

 1 – IMPEG4_BLOCKSIZE_8x8 -- 8x8 block

size
Default value is IMPEG4_BLOCKSIZE_8x8.

enableRoundin

gControl

XDAS_Int32 Input When enabled reduces the IDCT drift.

 0 – Disable

 1 – Enable
Default value is 1.

4.2.2.4 IMPEG4ENC_IntraCodingParams
║ Description

This structure defines all the operations on MPEG4 Encoder instance
objects. For the default and supported values, see Table 4-10.

║ Fields

Field Data Type Input/
Output

Description

intraCodingPr

eset

IMPEG4ENC_Intra

CodingPreset

Input This preset controls the USER_DEFINED versus

DEFAULT mode. If user is not aware of below

fields, it should be set as
IMPEG4_INTRACODING_DEFAULT

intraRefreshM

ethod

XDAS_UInt32 Input Specifies the Adaptive Intra Refresh method to be
used

 0 – IMPEG4_INTRAREFRESH_NONE

 1 –
IMPEG4_INTRAREFRESH_CYCLIC_MBS

 2 –
IMPEG4_INTRAREFRESH_CYCLIC_ROWS

 3 –IMPEG4_INTRAREFRESH_MANDATORY

 4 – IMPEG4_INTRAREFRESH_RDOPT_MBS

Default value is 0.
Current version of MPEG4 Encoder does not
support value 4.

intraRefreshR

ate

XDAS_UInt32 Input Specifies the additional parameter for the
intraRefreshMethod.
When intraRefreshMethod==
IMPEG4_INTRAREFRESH_CYCLIC_MBS, this

field provides the information of number of MBs
after which a MB need to be coded as intra.
When intraRefreshMethod==

API Reference

4-48

Field Data Type Input/
Output

Description

IMPEG4_INTRAREFRESH_CYCLIC_ROWS, this

field provides the information of number of Rows
to be refreshed as Intra per frame.
Default value is 0.

acpredEnable XDAS_UInt32 Input Flag to switch ON/OFF ac prediction for I
frames/MBs

 0 – Disable ac prediction

 1 – Enable ac prediction
Default value is 1.

insertGOVHdrB

eforeIframe

XDAS_UInt32 Input
 1 - IMPEG4_ENCODE_GOV_ONLY - Inserts

GOV Header before I Frame

 2 - IMPEG4_ENCODE_VOL_ONLY - Inserts
VOL before I Frame

 3 - IMPEG4_ENCODE_VOL_AND_GOV -
Inserts both GOV and VOL before I frame

Default value is – 0 -
IMPEG4_NO_GOV_NO_VOL

enableDriftCo

ntrol

XDAS_UInt32 Input If non-zero, enables drift control.

Default value is 1.

API Reference

4-49

4.2.2.5 IMPEG4ENC_SliceCodingParams
║ Description

This structure contains all the parameters which controls slice encoding.
For the default and supported values, see Table 4-11.

║ Fields

Field Data Type Input/
Output

Description

sliceCodingPr

eset

IMPEG4ENC_Slice

CodingPreset

Input This preset controls the USER_DEFINED versus

DEFAULT mode. If user is not aware of below

fields, it should be set as
IMPEG4_SLICECODING_DEFAULT

sliceMode XDAS_UInt32 Input Can take values of

 IMPEG4_SLICEMODE_NONE – No slices are

generated

 IMPEG4_SLICEMODE_MBUNIT –slices are

generated based on maximum number of
MBs provided by sliceUnitSize. This is not
supported with short video header mode.

 IMPEG4_SLICEMODE_BITS – slices are

generated based on the bits consumptions
whose max is provided by sliceUnitSize; Also
used to support H.241

Default value is IMPEG4_SLICEMODE_NONE

sliceUnitSize XDAS_UInt32 Input When sliceMode is

IMPEG4_SLICEMODE_MBUNIT,

sliceUnitSize assumes the definition of

maximum MBs Per Slice. Unit is in number

of Macroblocks.

When sliceMode is

IMPEG4_SLICEMODE_BITS,

sliceUnitSize assumes the definition of

maximum Bits Per Slice. Unit is in number

of bits.

If IMPEG4_SLICEMODE_BITS is non zero,

MPEG4 Encoder automatically disable the
enablePerceptualQuantMode.

gobInterval XDAS_UInt32 Input Insert GOB header after every n GOBs in H263
encoding mode.
Valid values: 0 to maximum number of rows in a
frame.

API Reference

4-50

Field Data Type Input/
Output

Description

useHec XDAS_UInt32 Input Header Extension Code on/off. Only applicable
incase of MPEG4 but not in H263

 0 – No Header Extension Code

 1 – Use HEC only after first RM

 2 – Use HEC after all RM‟s except the first
RM

Default value is 0.

4.2.2.6 IMPEG4ENC_DynamicParams
║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for a MPEG4 Encoder instance object.
The run-time parameters are defined in the XDM data structure,
IVIDENC2_DynamicParams. For the default and supported values, see

Table 4-12.
║ Fields

Field Data Type Input/
Output

Description

videnc2DynamicParams IVIDENC2_Dynami

cParams

Input See IVIDENC2_DynamicParams

data structure for details.

rateControlParams IMPEG4ENC_RateC

ontrolParams

Input Controls all rate control related
parameters. Only few are supported to
be changed as part control call.
See
IMPEG4ENC_RateControlParams

data structure for more details.

interCodingParams IMPEG4ENC_Inter

CodingParams

Input Controls all inter MB coding related
parameters. Only few are supported to
be changed as part control call.
See
IMPEG4ENC_InterCodingParams

data structure for more details

sliceCodingParams IMPEG4ENC_Slice

CodingParams

Input Controls all slice coding related
parameters. See
IMPEG4ENC_SliceCodingParams

data structure for more details.

API Reference

4-51

Field Data Type Input/
Output

Description

aspectRatioIdc XDAS_UInt32 Input Encoder inserts aspectRatioIdc as

it is in the bit-stream. It is user's
responsibility
to input appropriate value.

See Table 6-14 of MPEG4 standard or
enum
IMPEG4ENC_AspectRatioIdc for

valid values.
When aspectRatioIdc ==

IMPEG4ENC_ASPECTRATIO_EXTEN

DED(15), encoder will look at

IVIDENC2_DynamicParams::sam

pleAspectRatioHeight and

IVIDENC2_DynamicParams::sam

pleAspectRatioWidth and use

them as sar_height and

sar_width respectively.

aspectRatioIdc is left to user to

provide correct value. For extended
PAR, the
sampleAspectRatioHeight and

sampleAspectRatioWidth should

be relatively prime as per the standard.

if aspectRatioIdc ==0 then

encoder uses 1:1 as default picture
aspect ratio.

Note that aspectRatioIdc is valid for

MPEG4 and H263 custom picture
formats.

Note:

Any field from the IMPEG4VENC_DynamicParams structure is useful only

when the encodingPreset field of IVIDENC2_Params data structure is

equal to XDM_USER_DEFINED.

4.2.2.7 IMPEG4ENC_Inargs
║ Description

This structure defines the run-time input arguments for MPEG4 SP
Encoder instance object.

║ Fields

Field Data Type Input/
Output

Description

videnc2InArgs IVIDENC2_Inargs Input See IVIDENC2_Inargs data

structure for details

API Reference

4-52

4.2.2.8 IMPEG4ENC_Status
║ Description

This structure defines parameters that describe the status of the MPEG4
Encoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDENC2_Status.

║ Fields

Field Data Type Input/
Output

Description

Videnc2Status IVIDENC2_Status Output See IVIDENC2_Status data structure for

details.
Status of the MPEG4 encoder along with
error information, if any.

rateControlPar

ams

IMPEG4ENC_RateC

ontrolParams

Output See IMPEG4ENC_RateControlParams

data structure for details.

interCodingPar

ams

IMPEG4ENC_Inter

CodingParams

Output See IMPEG4ENC_InterCodingParams

data structure for details.

intraCodingPar

ams

IMPEG4ENC_Intra

CodingParams

Output See IMPEG4ENC_IntraCodingParams

data structure for details.

sliceCodingPar

ams

IMPEG4ENC_Slice

CodingParams

Output See IMPEG4ENC_SliceCodingParams

data structure for details.

useDataPartiti

oning

XDAS_UInt32 Output Controls data partitioning for MPEG4
Encoder.

useRvlc XDAS_UInt32 Output Controls RVLC for MPEG4 Encoder.

useShortVideoH

eader

XDAS_UInt32 Output Controls the encoding mode i.e. MPEG4 or
H263.

vopTimeIncreme

ntResolution

XDAS_UInt32 Output Resolution of vop_time_increment bit-

stream syntax element,
 number of ticks/sec.

nonMultiple16R

efPadMethod

XDAS_UInt32 Output Controls the way the padding is done for Ref
Frame when Height is Non-multiple of 16.

 IMPEG4_PAD_METHOD_MPEG4 –

MPEG4 Standard specific way of
padding

 IMPEG4_PAD_METHOD_DIVX – VLC,

DIVx way of padding

Default value is
IMPEG4_PAD_METHOD_MPEG4.

API Reference

4-53

Field Data Type Input/
Output

Description

pixelRange XDAS_UInt32 Output Pixel range to be put in header

See IMPEG4VENC_PixelRange
enumeration for details.
Default value is IMPEG4VENC
_PR_DEFAULT.

enableSceneCha

ngeAlgo

XDAS_UInt32 Output This parameter enables or disables the
scene change detection algorithm to be
used by the codec.

IMPEG4ENC_SCDA_ENABLE -> Enable

the scene change detection algorithm.
Note that in this case, based on the
algorithm logic, Intra frames can be inserted
forcefully.

IMPEG4ENC_SCDA_DISABLE -> Disable

the scene change detection algorithm.

useVOS XDAS_UInt32 Output Control to enable or disable putting VOS
header in the stream.

enableMONA XDAS_UInt32 Output Control to enable or disable MONA setting
based encoding.

enableAnalytic

info

XDAS_Int32 Output Control to enable or disable dumping
analytjc info by the codec.

debugTraceLeve

l

XDAS_UInt32 Output Control to enable or disable to dump trace
information.

lastNFramesToL

og

XDAS_UInt32 Output This parameters configures the codec to
maintain history of debug trace parameters
for last N frames

extMemoryDebug

TraceAddr

XDAS_UInt32 Output External memory address (as seen by
Media Controller) where debug trace
information is being dumped .

extMemoryDebug

TraceSize

XDAS_UInt32 Output External memory buffer size (in bytes)
where debug trace information is being
dumped - the size of last memory buffer

4.2.2.9 IMPEG4ENC_OutArgs
║ Description

This structure defines the run-time output parameters for the MPEG4
Encoder instance object.

║ Fields

API Reference

4-54

Field Data Type Input/
Output

Description

videnc2OutArg

s

IVIDENC2_OutArg

s

Output See IVIDENC2_OutArgs data structure for

details.

4.2.2.10 IMPEG4ENC_Fxns
║ Description

This structure defines all the operations on MPEG4 SP Encoder instance
objects.

║ Fields

Field Data Type Input/
Output

Description

ividenc IVIDENC2_Fxns Output See IVIDENC2_Fxns data structure for details.

4.2.2.11 IMPEG4ENC_DataSyncDesc
║ Description

This structure is an extension of XDM_DataSyncDesc to provide additional
information required for Mode B Packetization.

║ Fields

Field Data Type Input/
Output

Description

dataSyncDesc XDM_DataSyncDes

c

Output See XDM_DataSyncDesc data structure for

details.

mbAddr XDAS_UInt16 Output this is a pointer to an array of First MB Addresses
in different slices

gobNumber XDAS_UInt16 Output this is a pointer to an array of GOB Number of first
Mb in different slices

quantScale XDAS_UInt16 Output this is a pointer to an array of Quant values of first
MB in different slices

mv XDAS_UInt32 Output this is a pointer to an array of MV of first MB in
different slices. NOTE: Motion vectors are in Half-
pel resolution

API Reference

4-55

4.3 Default and Supported Values of Parameters

This section provides the default and supported values for the following
data structures:

 IVIDENC2_Params

 IVIDENC2_DynamicParams

 IMPEG4ENC_RateControlParams

 IMPEG4ENC_InterCodingParams

 IMPEG4ENC_IntraCodingParams

 IMPEG4ENC_SliceCodingParams

 IMPEG4ENC_Params

 IMPEG4ENC_DynamicParams

Table 4-6. Default and Supported Values for IVIDENC2_Params

Field Default Value Supported Value

size sizeof(IMPEG4ENC_P

arams) sizeof(IVIDENC2_Params)

 sizeof(IMPEG4ENC_Params)

encodingPreset XDM_DEFAULT
 XDM_DEFAULT

 XDM_USER_DEFINED

rateControlPreset IVIDEO_STORAGE
 IVIDEO_STORAGE

 IVIDEO_LOWDELAY

 IVIDEO_NONE

 IVIDEO_USER_DEFINED

maxHeight 2048 [64, 2048]

maxWidth 2048 [64, 2048]

dataEndianness XDM_BYTE XDM_BYTE

maxInterFrameInte

rval

0 0

API Reference

4-56

Field Default Value Supported Value

maxBitRate 24000000 Ignored.
No error check.

minBitRate 0 Ignored.
No error check.

inputContentType IVIDEO_PROGRESSIVE

 IVIDEO_PROGRESSIVE

operatingMode IVIDEO_ENCODE_ONLY

 IVIDEO_ENCODE_ONLY

profile 3 (Simple Profile)
3 (Simple Profile)

level IMPEG4ENC_SP_LEVEL

_5 IMPEG4ENC_SP_LEVEL_0

 IMPEG4ENC_SP_LEVEL_0B

 IMPEG4ENC_SP_LEVEL_1

 IMPEG4ENC_SP_LEVEL_2

 IMPEG4ENC_SP_LEVEL_3

 IMPEG4ENC_SP_LEVEL_4A

 IMPEG4ENC_SP_LEVEL_5

 IMPEG4ENC_SP_LEVEL_6

 IMPEG4ENC_H263_LEVEL_10

 IMPEG4ENC_H263_LEVEL_20

 IMPEG4ENC_H263_LEVEL_30

 IMPEG4ENC_H263_LEVEL_40

 IMPEG4ENC_H263_LEVEL_45

 IMPEG4ENC_H263_LEVEL_50

 IMPEG4ENC_H263_LEVEL_60

 IMPEG4ENC_H263_LEVEL_70

inputDataMode IVIDEO_ENTIREFRAME
 IVIDEO_ENTIREFRAME

 IVIDEO_NUMROWS

outputDataMode IVIDEO_ENTIREFRAME
 IVIDEO_ENTIREFRAME

API Reference

4-57

Field Default Value Supported Value

 IVIDEO_FIXEDLENGTH

 IVIDEO_SLICEMODE

numInputDataUnits 1
 Any value > 0 and <= 8 when inputDataMode

is IVIDEO_NUMROWS. Ignored incase of

IVIDEO_ENTIREFRAME.

numOutputDataUnit

s

1
 Any value > 0 and <= 8 when outputDataMode

is either IVIDEO_FIXEDLENGTH or

IVIDEO_SLICEMODE. Ignored incase of

IVIDEO_ENTIREFRAME.

Table 4-7. Default and Supported Values for IVIDENC2_DynamicParams

Field Default Value Supported Value

size sizeof(IMPEG4ENC_D

ynamicParams) sizeof(IVIDENC2_DynamicParams)

 sizeof(IMPEG4ENC_DynamicParams)

inputHeight 2048 [64, 2048]

inputWidth 2048 [64, 2048]

refFrameRate 30000 Ignore

targetFrameRate 30000 Valid Values as per Level Limit

targetBitRate 8000000 Valid Values as per Level Limit

intraFrameInterva

l

0
Any value >= 0.

generateHeader XDM_ENCODE_AU
 XDM_ENCODE_AU

 XDM_GENERATE_HEADER

captureWidth 2048 >= inputWidth

forceFrame IVIDEO_NA_FRAME
 IVIDEO_NA_FRAME

 IVIDEO_I_FRAME

interFrameInterva

l

0 0

API Reference

4-58

Field Default Value Supported Value

mvAccuracy IVIDENC2_MOTIONVEC

TOR_HALFPEL

IVIDENC2_MOTIONVECTOR_HALFPEL

sampleAspectRatio

Height

1 Any value, only lower 8 bits are considered by
encoder

sampleAspectRatio

Width

1 Any value, only lower 8 bits are considered by
encoder

ignoreOutbufSizeF

lag

XDAS_TRUE [0,1]

*putDataFxn NULL Valid function pointer, NULL

putDataHandle 0 Ignore

*getDataFxn NULL Valid function pointer, NULL

getDataHandle 0 Ignore

*getBufferFxn NULL Valid function pointer, NULL

getBufferHandle 0 Ignore

Table 4-8. Default and Supported Values for IMPEG4ENC_RateControlParams

Field Default Value Supported Value

rateControlParams

Preset

IMPEG4_RATECONTROL

PARAMS_DEFAULT IMPEG4_RATECONTROLPARAMS_DEFAULT

 IMPEG4_RATECONTROLPARAMS_USERDEF

INED

 IMPEG4_RATECONTROLPARAMS_EXISTIN

G

rcAlgo IMPEG4_RATECONTROL

ALGO_VBR IMPEG4_RATECONTROLALGO_NONE

 IMPEG4_RATECONTROLALGO_VBR

 IMPEG4_RATECONTROLALGO_CBR

qpI 5 [1,31]

qpP 5 [1,31]

seInitialQP 5 [0,31].
0 -> Codec will internally calculate the initial QP
required for encoding.

qpMax 31 [1,31]

API Reference

4-59

Field Default Value Supported Value

qpMin 1 [1,31]

enablePerceptualQ

uantMode

0 [0, 1]

allowFrameSkip 0 [0, 1, 2]

initialBufferLeve

l

0 -> codec will internally
calculate the value based
on the rate control algo.

For CBR, minimum value is equal to 0.1 *
targetBitRate
For VBR, minimum value is equal to 0.4 *
targerBitRate.
Max value is vbvBufferSize.
If user does not know what value to set , then set
this value of 0, codec will internally calculate the
value based on the rate control algo.

vbvBufferSize 0 -> codec will internally
calculate default value
based on rate control
algo.

For CBR, minimum value is equal to 0.1 *
targetBitRate
For VBR, minimum value is equal to 0.6 *
targerBitRate.
Max value is level dependent.

If user does not know what value to set , then set
this value of 0, codec will internally calculate the
value based on the rate control algo

qpMinIntra 0 [0, 1 to 31]
0 -> disables this feature

Table 4-9. Default and Supported Values for IMPEG4ENC_InterCodingParams

Field Default Value Supported Value

interCodingPreset IMPEG4_INTERCODING

_DEFAULT IMPEG4_INTERCODING_DEFAULT

 IMPEG4_INTERCODING_USERDEFINED

searchRangeHorP 144 [16,144]

searchRangeVerP 32 [16,32]

globalOffsetME 1 [0,1]

earlySkipThreshol

d

200 [0, 200]

enableThresholdin

gMethod

1 [0,1]

minBlockSizeP IMPEG4_BLOCKSIZE_8

x8 IMPEG4_BLOCKSIZE_16x16

 IMPEG4_BLOCKSIZE_8x8

API Reference

4-60

Field Default Value Supported Value

enableRoundingCon

trol

0
[0,1]

Table 4-10. Default and Supported Values for IMPEG4ENC_IntraCodingParams

Field Default Value Supported Value

intraCodingPreset

IMPEG4_INTRACODIN

G_DEFAULT

 IMPEG4_INTRACODING_DEFAULT

 IMPEG4_INTRACODING_USERDEFINED

intraRefreshMetho

d

IMPEG4_INTRAREFRE

SH_NONE

 IMPEG4_INTRAREFRESH_NONE

 IMPEG4_INTRAREFRESH_CYCLIC_MBS

 IMPEG4_INTRAREFRESH_CYCLIC_ROWS

 IMPEG4_INTRAREFRESH_MANDATORY

intraRefreshRate

0

>=0, effective only intraRefreshMethod !=

IMPEG4_INTRAREFRESH_NONE

acpredEnable 1 [0, 1]

insertGOVHdrBefor

eIframe

0 • IMPEG4_NO_GOV_NO_VOL
• IMPEG4_ENCODE_GOV_ONLY
• IMPEG4_ENCODE_VOL_ONLY
• IMPEG4_ENCODE_VOL_AND_GOV

enableDriftContro

l

1 [0, 1]

Table 4-11. Default and Supported Values for IMPEG4ENC_SliceCodingParams

Field Default Value Supported Value

sliceCodingPreset IMPEG4_SLICECODIN

G_DEFAULT IMPEG4_SLICECODING_DEFAULT

 IMPEG4_SLICECODING_USERDEFINED

 IMPEG4_SLICECODING_EXISTING

sliceMode IMPEG4_SLICEMODE_

NONE IMPEG4_SLICEMODE_NONE

 IMPEG4_SLICEMODE_MBUNIT

 IMPEG4_SLICEMODE_BITS

API Reference

4-61

Field Default Value Supported Value

sliceUnitSize 0
Any value >= 0.

If sliceMode is

IMPEG4_SLICEMODE_MBUNIT and

sliceUnitSize is greater than number of MBs

in frame, then it is assumed to be single slice i.e
entire frame as single slice.

If sliceMode is IMPEG4_SLICEMODE_BITS,

then sliceUnitSize indicates number of bits required
to form one slice.

gobInterval 0
[0, max MB rows in a frame]

useHec 0 [0, 1, 2]

Table 4-12. Default and Supported Values for IMPEG4ENC_Params

Field Default Value Supported Value

videnc2Params See Table 4-6

rateControlParams See Table 4-8

interCodingParams See Table 4-9

intraCodingParams See Table 4-10

sliceCodingParams See Table 4-11

useDataPartitioni

ng

0 [0, 1]

useRvlc 0 [0, 1]

useShortVideoHead

er

0 [0, 1]

vopTimeIncrementR

esolution

30 [1, 65535]

nonMultiple16RefP

adMethod

IMPEG4_PAD_METHOD

_MPEG4 IMPEG4_PAD_METHOD_DIVX

 IMPEG4_PAD_METHOD_MPEG4

pixelRange
IMPEG4ENC_PR_0_25

5
 IMPEG4ENC_PR_16_235

 IMPEG4ENC_PR_0_255

enableSceneChange

Algo

IMPEG4ENC_SCDA_EN

ABLE IMPEG4ENC_SCDA_ENABLE

mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group___h_d_v_i_c_p2_m_p_e_g4.html#ggaa9ffce90c14644574e96b26a876088faa9e59665e7a26533ed3b290813f35f7c7
mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group___h_d_v_i_c_p2_m_p_e_g4.html#ggaa9ffce90c14644574e96b26a876088faa9e59665e7a26533ed3b290813f35f7c7
mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group___h_d_v_i_c_p2_m_p_e_g4.html#ggaa9ffce90c14644574e96b26a876088faabc564091fdec00c4ac59fea9692da038
mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group___h_d_v_i_c_p2_m_p_e_g4.html#ggaa9ffce90c14644574e96b26a876088faa9e59665e7a26533ed3b290813f35f7c7

API Reference

4-62

Field Default Value Supported Value

 IMPEG4ENC_SCDA_DISABLE

useVOS 1 [0,1]

enableMONA 0 [0,1]

enableAnalyticinf

o
IVIDEO_METADATAPL

ANE_NONE
 IVIDEO_METADATAPLANE_NONE

 IVIDEO_METADATAPLANE_MBINFO

debugTraceLevel
0 0

 1

lastNFramesToLog
0 >= 0

Table 4-13. Default and Supported Values for IMPEG4ENC_DynamicParams

Field Default Value Supported Value

videnc2DynamicParam

s

See Table 4-7

rateControlParams See Table 4-8

interCodingParams See Table 4-9

sliceCodingParams See Table 4-11

aspectRatioIdc
IMPEG4ENC_ASPECT

RATIO_SQUARE

 IMPEG4ENC_ASPECTRATIO_SQUARE

 IMPEG4ENC_ASPECTRATIO_12_11

 IMPEG4ENC_ASPECTRATIO_10_11

 IMPEG4ENC_ASPECTRATIO_16_11

 IMPEG4ENC_ASPECTRATIO_40_33

 IMPEG4ENC_ASPECTRATIO_EXTENDED

mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group__ti__xdais__dm___i_v_i_d_e_o.html#gga3e0d6c6bd8fa37db0b88aeae961962fea78081d631dc40260b4eb2049a94b30c1
mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group__ti__xdais__dm___i_v_i_d_e_o.html#gga3e0d6c6bd8fa37db0b88aeae961962fea78081d631dc40260b4eb2049a94b30c1
mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group__ti__xdais__dm___i_v_i_d_e_o.html#gga3e0d6c6bd8fa37db0b88aeae961962fea78081d631dc40260b4eb2049a94b30c1
mk:@MSITStore:D:/Karthick/Dox_mp4_beta/mpeg4enc_ti_hdvicp20.chm::/group__ti__xdais__dm___i_v_i_d_e_o.html#gga3e0d6c6bd8fa37db0b88aeae961962fea6a080d2da5643120b53fb56b3e846f06

API Reference

4-63

4.4 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the MPEG4/H.263 Encoder. The APIs are logically grouped into the
following categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),

algDeactivate(), and algFree() are standard XDAIS APIs. This

document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

API Reference

4-64

4.4.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc()

method requires. This operation allows you to allocate sufficient space to
call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

API Reference

4-65

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm

functions */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines

the creation parameters. This pointer may be NULL; however, in this case,

algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.

algAlloc() may return a pointer to its parent‟s IALG functions. If an

algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory

requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

4.4.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the IVIDENC2_Params structure

(see Data Structures section for details).
║ Name

API Reference

4-66

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

4.4.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the Status data structure (see Data Structures section for

details).
║ Name

API Reference

4-67

control() – change run time parameters and query the status

║ Synopsis

XDAS_Int32 (*control) (IVIDENC2_Handle handle,

IVIDENC2_Cmd id, IVIDENC2_DynamicParams *params,

IVIDENC2_Status *status);

║ Arguments

IVIDENC2_Handle handle; /* algorithm instance handle */

IVIDENC2_Cmd id; /* algorithm specific control commands*/

IVIDENC2_DynamicParams *params /* algorithm run time

parameters */

IVIDENC2_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run time parameters of an algorithm instance
and queries the algorithm‟s status. control() must only be called after a

successful call to algInit() and must never be called after a call to

algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IVIDENC2_DynamicParams and IVIDENC2_Status data structures

respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data

structures respectively. Also, ensure that the size field is set to the size

of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

API Reference

4-68

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from

algInit() and algActivate().

 If algorithm uses DMA resources, control() can only be called after

a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm‟s instance object.

 params must not be NULL and must point to a valid
IVIDENC2_DynamicParams structure.

 status must not be NULL and must point to a valid IVIDENC2_Status

structure.

 If a buffer is provided in the status->data field, it must be physically

contiguous and owned by the calling application.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either

IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this
operation is not equal to IALG_EOK.

 The algorithm should not modify the contents of params. That is, the
data pointed to by this parameter must be treated as read-only.

 If a buffer was provided in the status->data field, it is owned by the

calling application.
║ Example

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algActivate(), process()

API Reference

4-69

4.4.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

algActivate() – initialize scratch memory buffers prior to processing.

║ Synopsis

void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance‟s scratch buffers using the

persistent memory that is part of the algorithm‟s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm‟s processing
methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-70

║ Name

process() – basic encoding/decoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDENC2_Handle handle,

IVIDEO2_BufDesc *inBufs, XDM2_BufDesc *outBufs,

IVIDENC2_InArgs *inargs, IVIDENC2_OutArgs *outargs);

║ Arguments

IVIDENC2_Handle handle; /* algorithm instance handle */

IVIDEO2_BufDesc *inBufs; /* algorithm input buffer

descriptor */

XDM2_BufDesc *outBufs; /* algorithm output buffer

descriptor */

IVIDENC2_InArgs *inargs /* algorithm runtime input

arguments */

IVIDENC2_OutArgs *outargs /* algorithm runtime output

arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function does the basic encoding/decoding. The first argument to
process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM_BufDesc data structure

for details).

The fourth argument is a pointer to the IVIDENC2_InArgs data structure

that defines the run time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDENC2_OutArgs data structure

that defines the run time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and OutArgs data structures

respectively. Also, ensure that the size field is set to the size of the

extended data structure. Depending on the value set for the size field,

the algorithm uses either basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

API Reference

4-71

 process() can only be called after a successful return from

algInit() and algActivate().

 If algorithm uses DMA resources, process() can only be called after

a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm‟s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.

 inBufs->numBufs indicates the total number of input

 Buffers supplied for input frame, and conditionally, the encoders MB
data buffer.

 inArgs must not be NULL and must point to a valid

IVIDENC2_InArgs structure.

 outArgs must not be NULL and must point to a valid

IVIDENC2_OutArgs structure.

 inBufs must not be NULL and must point to a valid

IVIDEO1_BufDescIn structure.

 inBufs->bufDesc[0].bufs must not be NULL, and must point to a

valid buffer of data that is at least inBufs->bufDesc[0].bufSize

bytes in length.

 outBufs must not be NULL and must point to a valid XDM2_BufDesc

structure.

 outBufs->buf[0] must not be NULL and must point to a valid buffer

of data that is at least outBufs->bufSizes[0] bytes in length.

 The buffers in inBuf and outBuf are physically contiguous and

owned by the calling application.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the process operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either

IALG_EFAIL or an algorithm specific return value.

 After successful return from process() function, algDeactivate()

can be called.

 The algorithm must not modify the contents of inArgs.

 The algorithm must not modify the contents of inBufs, with the

exception of inBufs.bufDesc[].accessMask. That is, the data and

buffers pointed to by these parameters must be treated as read-only.

API Reference

4-72

 The algorithm must appropriately set/clear the
IVIDEO2_BufDescIn::bufDesc[].accessMask field in inBufs to

indicate the mode in which each of the buffers in inBufs were read.

For example, if the algorithm only read from
inBufs.bufDesc[0].buf using the algorithm processor, it could

utilize #XDM_SETACCESSMODE_READ to update the appropriate

accessMask fields. The application may utilize these returned values

to manage cache.

 The buffers in inBufs are owned by the calling application.

║ Example

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algDeactivate(), control()

Note:

 A video encoder or decoder cannot be preempted by any other
video encoder or decoder instance. That is, you cannot perform task
switching while encode/decode of a particular frame is in progress.
Pre-emption can happen only at frame boundaries and after
algDeactivate() is called.

 The input data is an uncompressed video frame in one of the format
defined by inputChromaFormat of IVIDENC2_Params structure.

The encoder outputs MPEG4 compressed bit-stream in the little-
endian format.

 outBufs->bufs[0] may contain the encoded data buffer. See

IVIDENC2_OutArgs.encodedBufs for more details.

 outBufs->bufs[1], outBufs->bufs[2], and outBufs-

>bufs[3] are used when providing reconstruction buffers.

API Reference

4-73

║ Name

algDeactivate() – save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm‟s instance object.

The first (and only) argument to algDeactivate() is an algorithm

instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algActivate() and

processing.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algActivate()

4.4.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

API Reference

4-74

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree() determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

Frequenty Asked Questions

5-75

Chapter 5

Frequenty Asked Questions

This section answers frequently asked questions related to using
MPEG4/H.263 Encoder.

5.1 Release Package

Question Answer

Can this codec release be
used on any Media
Controller and HDVICP2
based platform?

Yes, you can use it on any Media Controller and HDVICP2 based platform.
But the Test application shipped along with this release is meant for a
particular platform. Before using it to different platform, you need to ensure
that the addresses provided in linker command file are taken care. In addition,
the HDVICP2 related addresses through HDVICP IRES interface should be
provided correctly.

5.2 Code Build and Execution

Question Answer

Build error saying that code
memory section is not
sufficient

Make sure that project settings are not changed from the released package
settings such as making project setting as File -03 and no debug information
which throws an error that code memory section is not sufficient.

Application returns an error
saying “Cannot open input
file “….YUV” while running
the host test app

Make sure that input YUV path is given correctly. If the application is
accessing YUVs from network, ensure that the network connectivity is stable.

Codec misbehaves or
hangs with some of the
features enabled like
DPand H.241 on simulator.

This is the known shortcoming in the simulator. These features have been
tested and verified on hardware.

5.3 Issues with Tools/FC Version

Question Answer

What tools are required to run
the standalone codec?

To run the codec on standalone setup, you need Framework
components, Code Composer Studio, ARM compiler tools (CG tools).
If you are running on the simulator, then the correct version of the
Platform specific CSP is needed (See section 2.2 for more details.)

Frequenty Asked Questions

5-76

Question Answer

What tools are required to run
the standalone codec?

To run the codec on standalone setup, you need Framework
components, Code Composer Studio, ARM compiler tools (CG tools).
If you are running on the simulator, then the correct version of the
Platform specific CSP is needed (See section 2.2 for more details.)

Which simulator version should
I use for this release of MPEG4
encoder on HDVICP2?

Code Composer Studio (CCSv4) version 4.2.0.09000 has to be installed.
DM816x simulator CSP version 0.7.1 (or newer) has to be installed after
installing Code Composer Studio,
This release can be obtained by software updates on CCSV4. Please
make sure that following site is listed as part of “Update sites to visit”

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NE
TRA/site.xml

Is this encoder integrated with
codec engine, if yes with which
version?

Yes, this encoder is integrated with Codec Engine version 3.20.00.16

What CG tools version should I
use for code compilation?

You may use CG tools version 4.5.1 for HDVICP2 processor and 5.0.3
for Media controller processor to compile the code.

What if the application is using
different CG tools version?

The memory layout of the interface data structures does not change with
different version of compilers(if bit-fields are not used). In addition, it does
not change the mechanism of generating signature for functions. This
version can be used even if the application is with different CG tools
because no bit-fields are used in interface.

5.4 Algorithm Related

Question Answer

 What XDM interface does
codec support?

Codec supports XDM IVIDENC2 interface

Does MPEG4 Encoder support
non-multiple of 16 frame height
and width?

Yes. But image width should be atleast multiple of 2.

What are the profiles supported
in this version encoder?

Supports MPEG4 Simple Profile and H.263 baseline profile.

What is the maximum level
supported by this encoder?

Supports MPEG4 Simple Profile levels 0, 0b, 1, 2, 3, 4A, 5 and 6.
Supports H.263 baseline profile levels 10, 20, 30, 45, 50, 60 and 70.

The encoder gives error during
creation, what could be the
reason?

The create call failure is due to non-availability of the memory requested
by the codec.

Does this version of MPEG4
Encoder support ASP?

No, Only limited tools of simple profile supported, which is explained in
section 4.3

Can DDR footprint of encoder
be reduced?

Yes. DDR foot print is dependent on maxWidth and maxHeight
parameters and also dependent on feature of Data partitioning.

Frequenty Asked Questions

5-77

Question Answer

What are the input frame
formats supported?

This version supports only YUV420 semi-planar input format.

Does this version of MPEG4
Encoder expose motion vectors
for a frame to the application?

Yes. Details can be found in Appendix D.

Can I encode with bit rate other
than specified for a level in
standard?

Yes. Video encoder will return a non-fatal level incompliance error, but
still it continues encoding. It is not guaranteed to achieve real time
performance for bit rates higher than specified.

Can I control video quality
levels?

Yes, but no presets are supported. This is achieved by controlling
parameters like globalOffsetME, perceptualQaunt, searchRange,
1MV/4MV, VBV buffer size etc

Does this version of MPEG4
Encoder support interlaced
coding?

No, this version of MPEG4 Encoder supports only progressive type
coding.

Does this version of MPEG4
Encoder allow me to encode
multiple packets?

Yes. In MPEG4 both fixed MBs and fixed bytes per packet is supported
where as in short video header only fixed bytes is supported.

Can I disable frac-pel
refinement of Motion vectors?

No

Is there a limit on number of
slices supported per frame by
encoder?

Functionality wise, there is no limit. Encoder can support one slice per
MB also.
Note, however, that number of slices per frame supported in Real Time
depends on frequency of HDVICP2.
Ex: For average 40 slices per frame of average content can be supported
at 266 Mhz, 1080p resolution, 30 fps.

Can the encoder give multiple
Motion vector for a macro
block?

Yes

What is the maximum resolution
supported by this version of
MPEG4 encoder?

This version of MPEG4 encoder supports resolution up to 2048x2048.

Does Algorithm support
DataSync mechanism for low-
delay applications?

Yes. It has the mechanism for both input and output buffers.

Does Algorithm support H.241
based packetization (slice cap/
maxBitsPerSlice) feature ?

Yes.

Does algorithm support DP with
H.241?

Yes. But packet size and bit rate adherence is not guaranteed due to
constraint in the hardware.

For a given configuration why
performance is poorer incase of
H.241 enabled compared to
without H.241?

Incase of H.241, for every slice boundaries encoder needs to flush and
restart the pipeline t0 meet the strict restriction on the bytes generated for
slices. The performance becomes poorer as the number of slices
generated per frame is higher (in other words if bytes/ slice is very low).

Frequenty Asked Questions

5-78

Question Answer

Encoder asks few buffers in
TILED memory, can I override
the encoder‟s request and
provide buffers in different
space?

Yes, you can over ride the encoder‟s request but with below constraints

 TILED PAGE can be overridden by RAW

 TILED8, TILED16 can be overridden by TILED PAGE, RAW

 TILED16 can be overridden by TILED8, RAW, TILED PAGE

Encoder requires large amount
of memory to compress bit-
streams. The encoder does not
require the same amount
memory after compression. Can
this memory usage be reduced?

Yes, you need to set igonoreOutBufSizeFlag = XDAS_TRUE

&& getBufferFxn = Valid Function Pointer

If the application is not capable of providing memory at run time with
codec‟s request by getBufferFxn then it can point to a dummy

function which returns -1.

Can I change bit-rate, frame
rate, resolution at run time

Yes

Can the encoder support higher
resolutions at lower FPS?

Yes, But maximum resolution supported is 2048 x2048. Not beyond that.

Is the performance quoted in
datasheet the worst-case
performance?

No, they are average numbers.

Does the encoder support multi-
channel operation?

Yes.

The XDM control call fails, what
could be the reason?

The following are few of reasons for the error:

 If create time parameter is not set properly then encoder returns
back during subsequent process/control call with detailed error code

 Encoder is called with un-supported dynamic parameter.

The process call returns error,
what are the possible reasons?

The following are few of reasons for the error:

 The input or output pointers are null

 The input or output buffer sizes are not sufficient or incorrect

 Creation/control time failure

Can the motion vectors of a
macro block exceeds the
search range?

No in case of globalOffsetME is disabled. But with globalOffsetME
enabled the search range of a macroblock is with respect to global
motion vector and hence MV can exceed the search range.

What is granularity of the
process call?

The encoder supports only frame level encoding API. However, it
supports data sync APIs for sub frame level data exchange between
Application and Encoder, both at input and output side. Refer Appendix
for more information.

Can the encoder be run on any
OS?

Yes.
Encoder implementation is independent of Operating System.
Only necessity is that the component interacting with encoder has to be
VIDENC2interface compliant.

Frequenty Asked Questions

5-79

Question Answer

Encoder asks few buffers in
TILED memory, can I override
the encoder‟s request and
provided buffers in different
space?

Yes, you can over ride the encoder‟s request but with below constraints

1. TILED PAGE can be overridden by RAW

2. TILED8, TILED16 can be overridden by TILED PAGE, RAW

3. TILED16 can be overridden by TILED8, RAW, TILED PAGE

However note that in cases, 2 and 3, there will be certain performance
impacts.

Can Application allocate few
Luma buffers in TILED8 and
few in other areas (like RAW
region)?

No. All Luma Buffers for the given instance of the encoder need to be in
same type of area.

Can Application allocate few
Chroma buffers in TILED16 and
few in other areas (like RAW
region)?

No. All Chroma Buffers for the given instance of the encoder need to be
in same type of area.

Does the encoder support
encoding of VOL/GOV for every
I frame?

Yes. Use create time parameter – insertGOVHdrBeforeIframe. More info
is given in section 4.2.2.4

Frequenty Asked Questions

5-80

This page is intentionally left blank

A-1

Appendix A

H.241 Packetization in Case of H.263

This section describes the mechanism that needs to be taken care by the
application to handle the H.263 bit-stream with H.241 packetization.

A.1 Description of the Requirement

In H.263 standard, the packetization concept is restricted to multiple rows
of MBs, where in GOB header is inserted by the encoder at beginning of
the row. However, incase of real-time low delay network communication,
splitting the bit-stream at the MB level whenever the max size of the packet
is exceeds is preferred mechanism. This is similar to the Slice Structured
mode as described in the ANNEX K of H.263 standard, but with slight
modification in the stuffing part. H.241 packetization with H.263 needs the
output data synch functionality to be set to SLICE MODE. i.e.,
outputDataMode = IVIDEO_SLICE_MODE.

Following section describes the mechanism that is needed to handle the
packetized H.263 stream to extract the actual bit-stream content from the
additional stuffing bits in the bit-stream.

A.2 Bit-stream Stitching Mechanism

The codec library generates the H.263 bit-stream with stuffing bits inserted
at the position wherever packet ends at the non byte boundary. This
stream cannot be decoded by the decoder due to stuffing bits. Therefore,
the application/decoder must stitch the bit-stream between two packets
and should be able to extract the actual content of the bit-stream. Following
diagram explains the bit-stream structure provided by the codec to the
application/decoder.

Figure A-1. H.263 stream with GSTUFF bits embedded

H.241 Packetization in Case of H.263

A-2

Codec embeds the GSTUFF bits in between two packets to make the
packet boundary byte aligned. If the packet ends at the byte boundary,
then codec does not put any GSTUFF bits. E.g. If the packet N terminated
at the non byte boundary say at 2046 bits, then remaining number of bits
which required to make byte aligned will be filled by GSTUFF bits i.e. in
this case 2 zeros (part of GSTUFF bits) will be inserted in the current
packet N. Remaining 6 zeros (other part of GSTUFF bits) will be inserted
in the starting of next packet N+1 (refer Figure A-1).

The protocol to communicate the bit-stream details is through DataSync
API where in codec gives out number of packets and packet sizes. Note
that packet size given out by codec through datasync descriptors will be in-
terms of bits not bytes. This will help in recognizing the valid standard
bitstream out of GSTUFFed bitstream. If the packet size is multiple of 8,
that indicates packet is ended at the byte boundary and no stuffing bits are
put by the codec and size of the packet size will be in the data sync
descriptors.

Application/decoder is required to remove these GSTUFF bits and extract
only standard syntax bits and stitch the same with next packet to generate
the final standard syntax bits.

Appendix B

Debug Trace Usage

This section describes the debug trace tool supported by the codec and its
usage.

B.1 Introduction

This section explains the approach and overall design that will be adopted for
enabling a trace from a video codec.

The primary use of Debug Trace Usage are:

– Make the codec implementation capable of producing a trace containing details about the
history of executing a particular instance of the codec

– Enable the application to dump certain debug parameters from the
codec in case of a failure. A failure might even be a hang or crash but
in general can be defined as any unacceptable or erroneous behaviour

Such a feature is targeted at providing more visibility into the operation of the
codec and thus easing and potentially accelerating the process of debug.

B.2 Enabling and Using Debug Information
To enable debug information, following two parameters are added in the
create time parameter list .

– debugTraceLevel

– lastNFrameToLog

Hence, the MPEG4 Encoder create time parameter is modified as:

typedef struct IMPEG4ENC_Params {

 IVIDENC2_Params videnc2Params;

 IMPEG4ENC_RateControlParams rateControlParams;

 IMPEG4ENC_InterCodingParams interCodingParams;

 IMPEG4ENC_IntraCodingParams intraCodingParams;

 IMPEG4ENC_sliceCodingParams sliceCodingParams;

 XDAS_UInt32 useDataPartitioning;

 XDAS_UInt32 useRvlc;

 XDAS_UInt32 useShortVideoHeader;

 XDAS_UInt32 vopTimeIncrementResolution;

 XDAS_UInt32 nonMultiple16RefPadMethod;

Debug Trace Usage

B-2

 XDAS_UInt32 pixelRange;

 XDAS_UInt32 enableSceneChangeAlgo;

 XDAS_UInt32 useVOS;

 XDAS_UInt32 enableMONA;

 XDAS_Int32 enableAnalyticinfo;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

} IMPEG4ENC_Params;

B.2.1 debugTraceLevel

This parameter configures the codec to dump a debug trace log.

 0: Disables dumping of debug trace parameters

 > 0: ,Enables dumping of debug trace parameters, value specifies the
debug trace level

This parameter can take on additional values in future to support higher and
higher levels of debug trace

B.2.2 lastNFramesToLog:

This parameters configures the codec to maintain history of debug trace
parameters for last N frames.

 0: Current frame will be maintained by the codec

 > 0: History of past specified number of frames + Current frame will be
maintained

In order to avoid book-keeping by the application to know whether the codec
has been configured to dump debug trace and where the debug information is
available, the following changes are done in the Status structure.

typedef struct

{

 IVIDENC2_Status videnc2Status;

 IMPEG4ENC_RateControlParams rateControlParams;

 IMPEG4ENC_InterCodingParams interCodingParams;

 IMPEG4ENC_IntraCodingParams intraCodingParams;

 IMPEG4ENC_sliceCodingParams sliceCodingParams;

 XDAS_UInt32 useDataPartitioning;

 XDAS_UInt32 useRvlc;

 XDAS_UInt32 useShortVideoHeader;

 XDAS_UInt32 vopTimeIncrementResolution;

 XDAS_UInt32 nonMultiple16RefPadMethod;

 XDAS_UInt32 pixelRange;

 XDAS_UInt32 enableSceneChangeAlgo;

Debug Trace Usage

B-3

 XDAS_UInt32 useVOS;

 XDAS_UInt32 enableMONA;

 XDAS_Int32 enableAnalyticinfo;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 *extMemoryDebugTraceAddr;

 XDAS_UInt32 extMemoryDebugTraceSize;

} IMPEG4ENC_Status;

debugTraceLevel: Debug trace level configured for the codec - 0, 1

lastNFramesToLog: Number of frames for which history information is

maintained by the codec

extMemoryDebugTraceAddr: External memory address (as seen by Media

Controller) where debug trace information is being dumped – last memory
buffer requested by the codec

extMemoryDebugTraceSize: External memory buffer size (in bytes) where

debug trace information is being dumped - the size of last memory buffer

Now the application can retrieve this information from the codec at any time
by the existing GETSTATUS query through the codec‟s Control API.

B.3 Requirements on the Application Side
The following are the requirements on the application side:

– The application should be capable of configuring debugTraceLevel and lastNFrameToLog

which are part of the Initialization Parameters of the codec

– The application should be capable of querying the codec for its debug
parameter memory regions and size

– The application should be capable of retrieving these memory regions
(In external memory or SL2) for the specified size and preserving these
memory dumps in case of any erroneous behavior including a
hang/crash.

– The application, at any time (in case of hang, crash or any unexpected
behavior) is expected to be also capable of retrieving the SL2 memory
region as returned by the codec in Control-GETSTATUS specified by
the SL2 memory debug trace address and size and provide it to the
codec developer. The codec developer will have a PC based tool to
parse and interpret this dump and produce a readable log of the debug
trace parameters.

Debug Trace Usage

B-4

This page is intentionally left blank

C-1

Appendix C

DataSynch API Usage Guide

This section describes the data synch API usage from application point of
view with codec.

C.1 Description
Most of the TI Video Codec interfaces prior to IVIDENC2 and IVIDDEC3
allow only frame level data communication capabilities. A user can
configure the codec to encode/decode a complete frame but not any sub-
frame level data communications. If at all needed then it is via codec‟s
extended interface. This document explains the sub-frame level data
communication capabilities of video codec using data synch call backs
defined with IVIDENC2 interface.

C.2 Video Encoder Input with Sub-frame Level Synchronization
This section explains the IVIDENC2 interface details, which help to achieve
the sub-frame level communications.
Table C-1, Table C-2 and Table C-3 explain the creation, control and
handshake parameters related to sub frame level data communication for
input data of video encoder respectively.
Details column is a generic column and “valid values” column is specific to
video encoder input.

Table C-1.Creation time parameter related to sub frame level data communication for
input-data of video encoder

Parameter Name Details Valid Values

IVIDENC2_Par

ams::inputDa

taMode

Defines the mode of accepting the input
frame. IVIDEO_ENTIREFRAME: entire

frame data is given to encoder

 IVIDEO_NUMROWS: Frame data is

given in unit of Number of MB rows,
each MB row is 16 lines of video
data.

IVIDENC2_Par

ams::numInpu

tDataUnits

Unit of input data Don‟t care if inputDataMode ==

IVIDEO_ENTIREFRAME

Any positive value if inputDataMode

== IVIDEO_NUMROWS

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d

DataSynch API Usage Guide

C-2

Table C-2. Dynamic Parameters Related to sub–frame Level Data Communication for
Input Data of Video Encoder

Parameter Name Details Valid values

IVIDENC2_DynamicPara

ms::getDataFxn

This function pointer is provided by the
app/framework to the video encoder.
The encoder calls this function to get
partial video buffer(s) from the
app/framework. Apps/frameworks that
support datasync should set this to non-
NULL

Any non-NULL value if
inputDataMode !=

IVIDEO_ENTIREFRAME

IVIDENC2_DynamicPara

ms::getDataHandle

It defines the handle to be used while
requesting data to application. This is a
handle which the codec must provide

when calling getDataFxn.

Apps/frameworks that support datasync
should set this to non-NULL. For an
algorithm, this handle is read-only; it
must not be modified when calling the
app-registered
IVIDENC2_DynamicParams.getDa

taFxn(). The app/framework can use

this handle to differentiate callbacks
from different algorithms.

Any Value

Table C-3. Handshake Parameters Related to Sub-frame Level Data Communication for
Input Data of Video Encoder

Parameter Name Details Valid values

XDM_DataSyncDesc::si

ze
Size of the XDM_DataSyncDesc

structure

Sizeof(XDM_DataSyncDesc)

XDM_DataSyncDesc::

scatteredBlocksFlag
Flag indicating whether the
individual data blocks may be
scattered in memory.
Note that each individual block must
be physically contiguous.

Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr

field points directly to the start of the
first block, and is not treated as a
pointer to an array.

If set to XDAS_TRUE, the baseAddr

array must contain the base address
of each individual block.

Don‟t care as buffer is assumed to
be contiguous

XDM_DataSyncDesc::ba

seAddr
Base address of single data block or
pointer to an array of data block

addresses of size numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points

Don‟t care since it is assumed to
be contiguous yuv buffer and initial
address is via inbuf.

DataSynch API Usage Guide

C-3

Parameter Name Details Valid values

directly to the start of the first block,
and is not treated as a pointer to an
array.

If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an

array of pointers to the data blocks.
XDM_DataSyncDesc::nu

mBlocks

Number of data blocks Any Value. If <= zero then codec
assumes no data provided and
does call back to App again. The
unit of this is number of row.

XDM_DataSyncDesc::va

rBlockSizeFlag

Flag indicating whether any of the
data blocks vary in size.

Don‟t care, as unit of size is one
row

XDM_DataSyncDesc::bl

ockSizes

Variable block sizes array. Don‟t care Since unit is assumed
to be multiple of number of rows

which is indicated by numBlocks.

If application want to use video encoder to operate with sub frame on input
side

 It should create the video encoder with
IVIDENC2_Params::inputDataMode = IVIDEO_NUMROWS.

 It should also make a control call with

IVIDENC2_DynamicParams::getDataFxn = non-NULL; to use sub

frame level data communication, control call is mandatory.

 It should provide the base address of the input buffer during process
call

 It should provide all the data availability via getDataFxn call back,

during process call the input buffer is assumed to be data-less.

 IVIDENC2_DynamicParams::getDataFxn == NULL &&
IVIDENC2_Params::inputDataMode == IVIDEO_NUMROWS is an
erroneous situation and codec returns error during process call.

C.3 Video Encoder Output with Sub-frame Level Synchronization

This section explains the IVIDENC2 interface details, which help to achieve
the sub frame level communications for output.

Table C-4, Table C-5 and Table C-6 explain the creation, control and
handshake parameters related to sub frame level data communication for
output data of video encoder respectively.

Details column is a generic column and “valid values” column is specific to
video encoder output.

DataSynch API Usage Guide

C-4

Table C-4. Creation Time Parameter Related to Sub-frame Level Data Communication for
Output Data of Video Encoder

Parameter Name Details Valid values

IVIDENC2_Params::outp

utDataMode

Defines the mode
of providing the
output data.

IVIDEO_ENTIREFRAME : Entire frame bit-

stream is given out by the encoder

IVIDEO_FIXEDLENGTH: bit-stream is

provided by
encoder after a fixed length of bytes. The
length has to be multiple of 2K.
IVIDEO_SLICEMODE: bit-stream is

provided by encoder after producing a
single(or more) number of slice units

IVIDENC2_Params::numO

utputDataUnits

Unit of output data Don‟t care if inputDataMode ==
IVIDEO_ENTIREFRAME

Any positive value if outputDataMode !=

IVIDEO_ENTIREFRAME.

If outputDataMode ==

IVIDEO_FIXEDLENGTH then it indicates the

basic unit of size (in multiple of 2K) at
which encoder should inform the
application.
For example: Here 4 means that encoder
should inform after producing every 4*2048
bytes to application

if outputDataMode ==

IVIDEO_SLICEMODE then it indicates the

basic unit of slices at which encoder should
produce the bit-stream.
For example: Here 5 means that after
encoding a set of 5 slices, encoder should
inform to application

Table C-5. Dynamic parameters related to sub frame level data communication for output
data of video encoder

Parameter Name Details Valid values

IVIDENC2_DynamicPara

ms::putDataFxn
This function pointer is provided by
the app/framework to the video
encoder. The encoder calls this
function when data has been put in
output buffer. It is to inform the
app/framework. Apps/frameworks
that support datasync should set this
to non-NUL

Any non-NULL value if
outputDataMode !=

IVIDEO_ENTIREFRAME

IVIDENC2_DynamicPara

ms::putDataHandle

It defines the handle to be used
while informing data availability to

Any Value

DataSynch API Usage Guide

C-5

Parameter Name Details Valid values

application. This is a handle which
codec must provide when calling

putDataFxn. Apps/frameworks that

support datasync should set this to
non-NULL. For an algorithm, this
handle is read-only; it must not be
modified when calling the app-
registered
IVIDENC2_DynamicParams.putDa

taFxn(). The app/framework can

use this handle to differentiate
callbacks from different algorithms.

To simplify the codec implementation, the information sharing by codec to
application happens at a quantum of 2K byte data. In this document each
2K byte, is referred as page.

C.3.1 For outputDataMode Equal to IVIDEO_SLICEMODE

Incase of outputDataMode = IVIDEO_SLICEMODE, following points

should be noticed

1. numOutputDataUnit is the frequency after which codec will inform to

Application. So in IVIDEO_SLICE_MODE, lets numOutputDataUnit is

8 then after 8 slices, codec has to make putData call. Larger the

number of numOutputDataUnit, larger the size requirement of

encoder in Sl2 to retain the information for each slice. So to keep the
SL2 size impact minimal, TI‟s encoder implementations has constraint

of limiting maximum allowed value of numOutputDataUnit as 8.

2. Within 2K, encoder can not handle generation of more than 8 slices (it
is specific constraint of the TI‟s encoder implementation to keep SL2
size impact minimal, as each data unit requires SL2 space to store the
associated information).

3. Information point to app (i.e. point at which codec makes putData call)
is at 2K boundary.

4. Bit-stream is assumed to be contiguous in memory incase of packet
generation based on MBs. This is due to the fact that slice size cannot
be assumed to be exact during creation time incase of MBs based
slice, hence the bit-stream address is obtained during process call and

the XDM_DataSyncDesc::baseAddr is don‟t care for sliceMode =

IMPEG4_SLICEMODE_MBUNIT. It is a constraint of TI‟s encoder

implementation.

For sliceMode = IMPEG4_SLICEMODE_BITS, both contiguous or

non-contiguous memory is supported. For details on non-contiguous
memory support, refer to the section C.4.

5. Application provides buffer size and address for bit-stream during
process call, both of them are honored and consumed by encoder until

DataSynch API Usage Guide

C-6

it needs more space to write bit-stream (refer getBuf interface of video

encoder for more details, section C.4)

6. All data availability is informed via data synch calls, while process exit
the bytesGenerated indicates the total sum (not the size of last chunk)

Table C-6. Handshake parameters related to sub frame level data communication for
output data of video encoder (outputDataMode = IVIDEO_SLICEMODE)

Parameter Name Details Valid values

XDM_DataSyncDesc::si

ze

Size of the XDM_DataSyncDesc

structure

Sizeof(XDM_DataSyncDesc)

XDM_DataSyncDesc::

scatteredBlocksFlag

Flag indicating whether the individual
data blocks may be scattered in
memory.
Note that each individual block must be
physically contiguous.

Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr

field points directly to the start of the first
block, and is not treated as a pointer to
an array.

If set to XDAS_TRUE, the baseAddr

array must contain the base address of
each individual block.

Flag indicating whether the individual
data slices may be scattered in
memory.

Constraint: This will be XDAS_FALSE

for sliceMode =

IMPEG4_SLICEMODE_MBUNIT and

will be XDAS_FALSE or

XDAS_TRUE for sliceMode =

IMPEG4_SLICEMODE_BITS.

XDM_DataSyncDesc::ba

seAddr

Base address of single data block or
pointer to an array of data block

addresses of size numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly

to the start of the first block, and is not
treated as a pointer to an array.

If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an array

of pointers to the data blocks.

Base address of single data block or
pointer to an array of block addresses

of size numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly

to the start of the first block, and is
to an array of pointers to the data
blocks.
not treated as a pointer to an array.

If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an

array of pointers to the data blocks i.e.

from baseAddr[0] to

baseAddr[numBlocks-1]

XDM_DataSyncDesc::nu

mBlocks

Number of data blocks Any Value and it is the number of
slices generated till the point of

putData call. If outputDataUnit

is 7, in the page cross over which
would be the communication point and
it generated 8 slices, then

numbBlocks is 8 and all 8 slices will

be informed to App.
1 <= numBlocks <= 15

XDM_DataSyncDesc::va

rBlockSizeFlag

Flag indicating whether any of the data
blocks vary in size.

XDAS_TRUE or

XDAS_FALSE(slice sizes are not

constant most of the time)

DataSynch API Usage Guide

C-7

Parameter Name Details Valid values

XDM_DataSyncDesc::bl

ockSizes

Variable block sizes array. If varBlockSizesFlag is

XDAS_TRUE, this array contains the

sizes of each slice. So total slice size

is sum of (blockSizes[0] to

blockSizes[numBlocks -1].

If varBlockSizesFlag is

XDAS_FALSE, this contains the size

of same-size slices. So total data
given by encoder to app would be
(numBlocks * blocSizes[0]).

Note : Incase of H.263 enabled with
H.241, the blockSizes given out by
codec will be interms of bits not bytes.
Please refer Appendix A for more
details.

C.3.2 For outputDataMode equal to IVIDEO_FIXEDLENGTH

Incase of outputDataMode = IVIDEO_FIXEDLENGTH, following points

should be noticed

1. numOututDataUnit is the frequency after which codec will inform to

App. so in IVIDEO_FIXED_LENGTH, lets outputDataUnit is 10 then

after 20KB codec will make putData call. if numOutputDataUnit is

10, and initial bit-stream buffer size given in process call is 0.5 KB,

then codec will put a putData call after 18.5 kB of encoding, not after

21.5 kB.

2. Application provides buffer size and address for bit-stream during
process call, both of them are honored and consumed by encoder until
it needs more space to write bit-stream (refer getBuf interface of video

encoder for more details)

3. All data availability is informed via data synch calls, while process exit

the bytesGenerated indicates the total sum (not the size of last

chunk)

DataSynch API Usage Guide

C-8

Table C-7. Handshake parameters related to sub frame level data communication for
output data of video encoder (outputDataMode = IVIDEO_FIXEDLENGTH)

Parameter Name Details Valid values

XDM_DataSyncDesc::si

ze

Size of the XDM_DataSyncDesc

structure

Sizeof(XDM_DataSyncDesc)

XDM_DataSyncDesc::

scatteredBlocksFlag

Flag indicating whether the individual
data blocks may be scattered in
memory.
Note that each individual block must be
physically contiguous.

Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr

field points directly to the start of the first
block, and is not treated as a pointer to
an array.

If set to XDAS_TRUE, the baseAddr

array must contain the base address of
each individual block.

Flag indicating whether the individual
data slices may be scattered in
memory.
XDAS_TRUE or XDAS_FALSE

XDM_DataSyncDesc::ba

seAddr

Base address of single data block or
pointer to an array of data block

addresses of size numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly

to the start of the first block, and is not
treated as a pointer to an array.

If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an array

of pointers to the data blocks.

Base address of single data block or
pointer to an array of block addresses

of size numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly

to the start of the first block, and is
to an array of pointers to the data
blocks.
not treated as a pointer to an array.

If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an

array of pointers to the data blocks i.e.

from baseAddr[0] to

baseAddr[numBlocks-1]

XDM_DataSyncDesc::nu

mBlocks

Number of data blocks It is the number of blocks generated till

the point of putData call.

1 <= numBlocks <= 8

XDM_DataSyncDesc::va

rBlockSizeFlag

Flag indicating whether any of the data
blocks vary in size.

Flag indicating whether any of the data
blocks vary in size. Valid values

XDAS_TRUE or XDAS_FALSE

XDM_DataSyncDesc::bl

ockSizes

Variable block sizes array. If varBlockSizesFlag is

XDAS_TRUE, this array contains the

sizes of each block. So total data size
or bitstream is sum of (blockSizes[0] to
blockSizes[numBlocks -1].

If varBlockSizesFlag is

XDAS_FALSE, this contains the size

of same-size data blocks. So total data
given by encoder to app would be

(numBlocks * blocSizes[0])

DataSynch API Usage Guide

C-9

If application want to use video encoder to operate with sub frame on input
side,

1. It should create the video encoder with
IVIDENC2_Params::outputDataMode = IVIDEO_SLICEMODE or

IVIDEO_FIXEDLENGTH.

2. It should also make a control call with
IVIDENC2_DynamicParams::putDataFxn = non-NULL; to use sub

frame level data communication, control call is mandatory.

3. It should provide the base address and available space of the output
buffer during process call

IVIDENC2_DynamicParams::putDataFxn == NULL &&

IVIDENC2_Params::outputDataMode != IVIDEO_ENTIREFRAME is

an erroneous situation and codec returns error during process call.

C.4 Video Encoder with partial buffer on output side

With IVIDENC2 interface video encoder can work with a situation when it
has not been provided complete bit-stream buffer to it during process call.
Application can provide non contiguous chunks of memory with some size
constraints to encoder and it can produce the bit-stream in these buffers.

It is achieved by IVIDENC2_DynamicParams::getBufFxn() interface.

To get the encoder working with partial output buffer, there is no specific
creation time parameter. Control call is mandatory and application need to
provide a valid function pointer as
IVIDENC2_DynamicParams::getBufFxn.

Application also need to set
IVIDENC2_DynamicParams::ignoreOutbufSizeFlag as true to prevent

encoder reporting error.

Table C-8 and Table C-9 explain the control and handshake parameters
related to sub frame level data communication to handle partial output
buffer by video encoder respectively.

Details column is a generic column and “valid values” column is specific to
video encoder.

Table C-8. Dynamic parameters related to accept partial buffer for output bit-stream

Parameter Name Details Valid values

IVIDENC2_DynamicPara

ms::getBufFxn

This function pointer is provided by the
app/framework to the video encoder. The
encoder calls this function to get partial bit-
stream buffer(s) from the app/framework.
Apps/frameworks that support datasync should
set this to non-NULL.

Any non-NULL value to use
partial buffer for bit-stream
space

IVIDENC2_DynamicPara

ms::getDataHandle

This is a handle which the codec must provide
when calling the app-registered
IVIDENC2_DynamicParam.getBufferFx

Any Value

DataSynch API Usage Guide

C-10

Parameter Name Details Valid values

n(). Apps/frameworks that don't support

datasync should set this to NULL. For an
algorithm, this handle is read-only; it must not be
modified when calling the app-registered
IVIDENC2_DynamicParams.getBufferF

xn(). The app/framework can use this handle

to differentiate callbacks from different
algorithms.

Table C-9. Handshake parameters related to accept partial buffer for output bit-stream

Parameter Name Details Valid values

XDM_DataSyncDesc::si

ze

Size of the XDM_DataSyncDesc

structure

sizeof(XDM_DataSyncDesc)

XDM_DataSyncDesc::

scatteredBlocksFlag

Flag indicating whether the individual
data blocks may be scattered in
memory.
Note that each individual block must be
physically contiguous.
Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the

baseAddr field points directly to the

start of the first block, and is not treated
as a pointer to an array.
If set to XDAS_TRUE, the

baseAddr array must contain the base

address of each individual block.

XDAS_TRUE or XDAS_FALSE

XDM_DataSyncDesc::ba

seAddr

Base address of single data block or
pointer to an array of data block
addresses of size numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly

to the start of the first block, and is not
treated as a pointer to an array.
If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an array

of pointers to the data blocks.

non-NULL, if NULL then again call
back.
If baseAddress[i] is NULL then

again call back (where i=0 to
numBlock -1 when

scatteredBlocksFlag is non-

zero)

XDM_DataSyncDesc::nu

mBlocks

Number of data blocks Any Value. If <= zero then codec
assumes no data provided and does
call back to App again.
<=8 if scatteredBlocksFlag != 0

XDM_DataSyncDesc::va

rBlockSizeFlag

Flag indicating whether any of the data
blocks vary in size.

XDAS_TRUE or XDAS_FALSE

XDM_DataSyncDesc::bl

ockSizes

Variable block sizes array. non-NULL. If it is NULL then again call
back
blockSizes[i] is terated as blockSizes[i]
&& 0xFFFFF800. This is to make sure
that the block size is always multiple of

DataSynch API Usage Guide

C-11

Parameter Name Details Valid values

2K
totalBlockSize =

SUM(blockSizes[0] to

blockSizes[numBlocks-1]) if

varBlockSizesFlag is non zero.

totalBlockSize = numBlocks *

blockSizes[0] if

varBlockSizesFlag is zero

if totalBlocksSize is 0 the call

back again

Following points should be noticed to use video encoder with partial buffer
on output side

1. getBuf is independent of outputDataMode or inputDataMode. It is

only meant for codec to ask application for a buffer, if encoder has
exhausted for output bit-stream

2. For non slice mode and sliceMode = IMPEG4_SLICEMODE_MBUNIT,

a. During process call the initial stream address and size are
provided by application. No constraint on this information and
encoder consumes this buffer space.

b. During data synch (via getBuf) codec can accept a multiple

non contiguous buffers from application each of them has to be
multiple of 2K. This is true for non slice mode. But incase of
sliceMode = IMPEG4_SLICEMODE_MBUNIT, memory cannot be

non-continuos as slice sizes are not deterministic and can fall
same slice in different memory regions incase non-continous
memory is given.

c. Codec assumes the lower 11 bits to be 0 for the size to make
sure that size is multiple of 2K bytes.

3. For sliceMode = IMPEG4_SLICEMODE_BITS (H.241 mode),

a. For non-continuous stream buffer , during the process call, the
initial buffer size should be atleast equal to slice size or
multiple of slice size i.e. blockSize = N x sliceUnitSize,

where N can take any value greater than zero.

Assumption here is that, in one getBuf call codec expects

blockSize such that for one complete slice stream buffer is

continuous. E.g. if slice size is 600 bytes, then in one getBuf

call, blockSize should be atleast 600 bytes and should be

continuous for entire 600 bytes.

Application can give different DDR address in each getBuf

call meaning each slice can sit in different memory locations in
DDR stream buffer.

b. For continuos stream buffer, refer to point 2)

4. if scatteredBlocksFlag is non zero

DataSynch API Usage Guide

C-12

Constraint: Maximum number of blocks provided by user should be
8. If application provides more than 8 block then codec will just accept
8 blocks and rest of the blocks will be ignored

5. If scatteredBlocksFlag flag is zero than there is no limit on

numBlocks.

6. If the function pointer IVIDENC2_DynamicParams::getBufFxn

provided is null then encoder will first consume the buffer provided in
process call (by writing the bit stream data), if that buffer is exhausted
then encoder has to do proper pipe down and come out from the
process call with error (XDM_INSUFFICIENT_DATA).

Note:

In some cases when data sync is enabled, MPEG-4 encoder calls
HDVICP_Done() more times than it calls HDVICP_Wait() in a single process
call. The application should not make an assumption of equal number of
HDVICP_Wait() and HDVICP_Done() calls in a process call. For example, in a
multi-codec or multi-instance scenario, applications using semaphores
might need to reset/clear the semaphore during HDVICP_Configure or
HDVICP_Release() so that the effect of the extra HDVICP_Done() does not get
carried over to the next codec or instance running on the same HDVICP2.

DataSynch API Usage Guide

C-13

This page is intentionally left blank

D-14

Appendix D

Motion Vector and SAD Access API

This section describes the method to access MV and SAD (Analytic
Information) data dumped by the encoder.

D.1 Description

The Motion Vector and SAD Access API is a part of the XDM process()

call, used by the application to encode a frame. A parameter
enabledAnalyticinfo is provided as a part of create time parameters,

which can be set or reset at a frame level during create-time. Setting this
flag to 1 indicates that the analytic info is needed. When this parameter is
set to 1, the process() call returns the motion vector and SAD data in the

buffer provided by the application.

For every macro block, the data returned is 8 bytes, a signed horizontal
displacement component (signed 16-bit integer) and a vertical
displacement component (signed 16-bit integer) and SAD, as shown.

The following sequence should be followed for Analytic Info access:

1. In the create time parameters, set the flag to access analytic data.

/* Enable MV access */

createParams ->enableAnalyticinfo =

IVIDEO_METADATAPLANE_MBINFO;

2. Allocate output buffers and define the output buffer descriptors

/* Output Buffer Descriptor variables */

XDM_BufDesc outputBufDesc;

/* Get the input and output buffer requirements for the

codec */

control(.., XDM_GETBUFINFO, extn_dynamicParams, ..);

If Analytic info access is enabled in step1, this call returns the output
buffer info as numBufs =2, along with the minimal buffer sizes.

/* Initialize the output buffer descriptor */

Motion Vector and SAD Access API

D-15

outputBufDesc.numBufs = 2;

/* Stream Buffer */

outputBufDesc.bufs[0] = streamDataPtr; //pointer to

mpeg4 bit-stream

outputBufDesc.bufSizes[0] =

status.bufInfo.minOutBufSize[0];

/* MV Buffer */

outputBufDesc.bufs[1] = Output_Buffer_Base_Addr;

//pointer to MV data

outputBufDesc.bufSizes[1] =

status.bufInfo.minOutBufSize[1];

3. Call frame encode API

/* Process call to encode 1 frame */

process(.. ,.. , outputBufDesc, ..);

After this call, the buffer outputBufDesc.bufs[1] will have SAD and

Motion vector data.

The data format of output buffer given by user for MV/SAD exposure
should be like,

AnalyticHeaderInfo Data (MV and SAD)

Define a structure:

struct AnalyticHeaderInfo

{

 U32 NumElements;

 ElementInfo elementInfoSAD;

 ElementInfo elementInfMV;

} ;

Where as

NumElements -> Total number of elements in the buffer

(As of now SAD and MV)

ElementInfo is

typedef struct

{

 /*Starting position of data from the buffer base

address*/

Motion Vector and SAD Access API

D-16

 U32 StartPos;

 /* No. of bytes to

jump from the current position to get the next data

 of this element group */

 U16 Jump;

 /* Number of data elements in this group */

 U16 Count;

}Element_Info;

For example, consider the data in output buffer dumped by the codec is
stored as,

To get the MVL0 data for all macroblocks, the application should have
code as,
S16 *Src = (U32)Output_Buffer_Base_Addr +

 elementInfoMV->StartPos;

U16 Jump = elementInfoMV->Jump;

S16 *MVL0 = Addr_to_store_MV_inL0

for (i = 0; i < elementInfoMV->Count; i = i++)

{

 * MVL0 ++ = Src[i * Jump]; // To get MVx

 * MVL0 ++ = Src[((i *Jump) + 1)]; //To get MVy

}

[MVxL0, MVyL0]MB0,

[MVxL0, MVyL0]MB1,

……….

[MVXL0, MVyL0]MBm-1

SAD_MB0,

SAD_MB1,

……..

SAD_MBm-1

elementInfMV

elementInfoSAD

NumElements

Output_Buffer_Base_Addr

elementInfoSAD->startPos

elementInfoMV->startPos

AnalyticHeader

Motion Vector and SAD Access API

D-17

Note:

 The motion vectors are with halfpel resolution. The halfpel resolution
MVs are the fulpel MVs multiplied by 2 and added with the halfpel
MVs in the range [+/-1,+/-1].

 SAD = ABS(Ref(i,j) – Src(i,j)) where, Ref is the macro block of the
reference region and Src is the macro block of the source image.

 The motion vectors seen in the encoded stream is based on the best
coding decision, which is a combination of motion estimation and
mode decision. The MV buffer returns the results of the motion
estimation in halfpel resolution (lowest SAD) and this may be
different from the motion vectors seen in the bit-stream. More details
are given below :

Chapter 6Some macro blocks in a P-frame may be coded as
Intra macro blocks based on the post motion estimation decisions.
In this case, the motion vectors computed in the motion estimation
stage (assuming that this macro block is inter) is returned.

Chapter 7Due to the post motion estimation decisions for some
macro blocks, the actual motion vector encoded may be forced to
(0,0). In this case, the non-zero motion vector available after the
motion estimation is returned.

Chapter 8Some inter macroblocks may be “not coded” due to
zero residual. In this case, the half pel motion vectors computed in
the motion estimation stage are returned.

Chapter 9For I-frames, motion vectors and SAD in the buffer will
be zero.

Picture Format

E-18

Appendix E

Picture Format

This appendix explains the picture format details for encoder. Encoder
expects the input uncompressed picture to be in NV12 format.

E.1 NV12 Chroma Format

NV12 is YUV 420 planar with 2 separate planes, one for Y, one for U and V
interleaved.

Picture Format

E-19

E.2 Progressive and Interlaced Format

E.2.1 Progressive Format

ActiveRegion: Data to be encoded

Extra region beyond the ActiveRegion may be allocated by application due
to imagePitch constraints.

Both luma and chroma buffers can be allocated independently and both
can have their pitch different.

Picture Format

E-20

E.2.2 Interlaced Format

ActiveRegion: Data to be encoded

Extra region beyond the ActiveRegion may be allocated by application due
to imagePitch constraints.

Both luma and chroma buffers can be allocated independently and both
can have their pitch different

The figure shown is for the case when field data is separate,

Picture Format

E-21

E.3 Constraints on Parameters

imagePitch need to comply with following constraints

- imagePitch shall be greater or equal to the Width (passed by the
application host).

- imagePitch is “don‟t care” if the buffer is in TILED8, TILED16 or
TILED32 region

Buffer Addresses need to comply with following constraints

- addresses shown as picLumaBufferAddr in figures shouldn‟t point to
any region which is not TILED8 or RAW/TILED PAGE

- The addresses shown as picChromaBufferAddr in figures shouldn‟t
point to any region which is not TILED8, TILED16 or RAW/TILED
PAGE

- In interlaced picture for field interleaved case the luma and chroma
buffer must be in RAW buffer

Constraints on resolutions are defined as below

- Progressive

Minimum frameWidth = 96

Minimum frameHeight = 80

Maximum frameWidth = 2048

Maximum frameHeight = 2048

frameWidth shall be a multiple of 16 bytes

frameHeight shall be multiple of 2

- Interlaced

Minimum frameWidth = 96

Minimum (frameHeight/2) = 80

Maximum frameWidth = 2048

Maximum (frameHeight/2) = 2048

frameWidth shall be a multiple of 16 bytes

 frameHeight shall be multiple of 4.

