GPIO LLD User Guide

TABLE OF CONTENTS

INTRODUCTION

KEY FEATURES

HARDWARE SUPPORT (EVM/SOCS)

DESIGN OVERVIEW

4.1 PERIPHERAL DEVICE DRIVERccceiiiiiiiiittieeeeeieeiitteeeeeeeeeeiisseeeeeeeeesissssseseseeeaasssssseseesaasssssssseessessisssssseessensssnnes
4.2 DEVICE SPECIFIC MODULE LAYER.......cccciuutttteeeieiiitteeeeeeeeeiitreeeeeeeeesisrsseeeeeeeatsassesaeeesaaissssesssessesssssesssessenssnees
4.3 APPLICATION CODE......cceitiiiiiiitiieeeeeeeeeeitareeeeeeeeeeiaeeeeeeeeeeetsasseeeeeeasasssssesaeeeaaasassssaeeeeaassssasseeeeaassssssseeeseenanrees
A4 OSAL ..t e e e e e e e e e ee————eeeeeeate———taaaeeeaaa————taaeeeeaataraaaaaeeeaaatrraaeaeeeaannraes
4.5 CSLREGISTER LLAYERccoiiitttiiiiei ettt e e ettt e e e e eeetae e e e e e eeeettaaaeeeeeeeeeasaaaeeaeeeeeensasseeeeeeeenssnsraeeeeeeennnnrees

MODES OF OPERATION

5.1 INPUT OR OUTPUT c.vvvviiiiiiiitiiieeeeeeeeeeeteeeeeeeeeeesaaeeeeeeeeeesaaaseeeeeeseesaaaaeseeeeseesaasasseesseasssssareeeeesessstasseseeeessnsaareeeeas
5.2 INTERRUPT SUPPORTcottiuutttriieeeeiiitteeeeeeeeeeesuaeeeeeeeeeessaseeseeeseesiaaseseeesseasssrasseesseaststssseeeeesesstasssseseessnssereseeas

DRIVER CONFIGURATION

6.1 BOARD SPECIFIC CONFIGURATIONcetteiieiiiiurreeeeeeeeeiiusseeeeeeeeaiissseseeeeeesaissssseseseessossssseseseessesssssssessesmssssseseens
6.2 GPIO CONFIGURATION STRUCTUREccceceiiiiiuuttieeeeeeeeiitteeeeeeeeeiisreeeeeeeeeeissssseeeseessisssseseeeeesessssseseseesesssnsseeeens
0.3 AP S e e e e e e e et ——— e e e e et ee i ———aeeeeeeaa———aaaeeeaaai——ataeaeeeaaattraaaaeeeaaararraaaans
0.4 USAGE.....uuiiiiie ettt e ettt e e e e ettt et e e e e e e ee e aabeeaeeeeeaa———aataeeeaaa————aaaaeeeaai—rataaaeeeaaattaraaaeeeaaararraaaans
6.5 API CALLING SEQUENCE........ccttiiiiiiiititteeeeeeeeeiiusteeeeeeeaetissseeeeeeeaeitssreseeaeeaaaissssseseseeaaasrsseeaeeeasassssesaseeessesnrseeeens
6.0 FLOW CHARTcuuttiiiiee e e ettt e e eeeeeee e e e e e ettt e e e e e e e eeeetaaseeeeeeeeeaasseaeeeeeeaatatsaaeeeeeeeasssssaeeeeeasassasseeaeeeaannsssseeeens

EXAMPLES

T.T LED TOGGLING: ..utttteiiiteeeeitteeeitte e sttt e esutteeeeaiteeesatteeeaabteesaaabeeesbtteesaabteesaasbeessbbeeeensbaeesansbeeesasbaeesnabaeesansaeas
7.1.1 Building the eXamples:c..cccoeieiimiiiniiiieiieeete ettt ettt s e e
7.1.2 RUNNING THE EXAMPIES ...oonveeveeie et eeeeeeie e steeeteesteesiteesiteesaaeessbeessseesaseessseesssaensseesssaensseessseensseenns

T7.1.2.1 AMST2X IDK EVM Lottt sttt st b e sttt et st sa e e bt besaa et smeenesae
7122 AMSTIX IDK EVM Lottt st sttt st b e sttt et st ae et besaa et s e e b sae
T.1.2.3 AMST2X GP EVM c..iiiiii ettt
7.1.3 SUppOrted PIALOTIS:cc.eoviiiiiiiiiiiiiiiieee ettt

TEST

8.1.1 Building the eXAMPLEs:ccccccieiuimiieiieiiieiiiieeeeeeeet ettt ettt ettt s sttt et s s
8.1.2 RUNNING THE CXAMPLES ...t eete et eete et e e stte et e s aaeebeesaeeesbeessseessbaesnseesnseesnsaesnseesnseennses
8.1.2.1 AMST2X IDK EVIM ..ottt sttt sttt sttt s be et s bt et s bttt sbeenesbeenaesbees
8.1.2.2 AMSTIX IDK EVIM ..ottt sttt ettt sttt sttt s be et s bt et s bttt sbeenesbeentenbees
8123 AMST2X GP EVIM ...ttt
8.1.3 SUPPOTIEd PIALIOFIS: ...ttt s st et et s

MIGRATION GUIDE

BENCHMARKING

1 Introduction

The GPIO module allows you to manage General Purpose I/O pins and ports via simple and portable
APIs.

Because of its simplicity, the GPIO driver does not follow the model of other PDK drivers in which driver
application interface has handle based approach. GPIO driver implementation will be based on pin based
approach.

2 Key Features

* Pins can be configured as either input or Output.
¢ Interrupts can be generated on the each gpio pin.

3 Hardware Support (EVM/SoCs)

Board SoC Cores

AMS572x IDK EVM AMS572x A15 & C66X
AM572x GP EVM AM572x A15 & C66X
AM571x IDK EVM AMS571x A15 & C66X

4 Design Overview

The GPIO driver provides a well-defined API layer which allows applications to use the
GPIO peripheral to control different GPIO Pins.

The below figure which shows the GPIO Driver architecture.

KOC Kernel/X0C
Runtime/BIOS

O5AL

Applicaticn Code

*

Driver Exposed APls

OSALARI . .
s Device specific

Peripheral
Information

Cther 05

The fi

4.1

4.2

4.3

4.4

4.5

5L Reglster Layer

gure illustrates the following key components:-

Peripheral device driver

This is the core GPIO device driver. The device driver exposes a set of well-defined APIs
which are used by the application layer. The driver also exposes a set of well-defined OS
abstraction APIs which will ensure that the driver is OS independent and portable. The
driver uses the CSL register layer for MMR accesses.

Device specific module layer

This layer implements a well-defined interface which allows the core GPIO device driver
to be ported to any device which has the same GPIO IP block. This layer may change for
every device.

Application Code

This is the user of the driver and its interface through the well-defined APIs set.
Application uses the driver APIs to send and receive data via the GPIO peripheral.

OSAL

The driver is OS independent and exposes all the operating system callouts via this OSAL
layer.

CSL Register Layer

The GPIO driver uses the CSL GPIO functional layer to program the device IP by
accessing the MMR (Memory Mapped Registers).

5 Modes of Operation

GPIO driver provides the following modes of operations.

5.1 Input or Output

Each gpio pin can be configured as either input or output. If it is configured as an output then the
pin level can be written on the gpio pin.

5.2 Interrupt support

Each gpio pin can be configured to generate interrupts based on the interrupt event type configured.
To generate the interrupt, gpio pin has to be of type input pin.

6 Driver Configuration

6.1 Board Specific Configuration

All the board specific configurations like enabling the clock and pin-mux before calling any of
the driver APIs. The GPIO module allows you to manage General Purpose I/O pins via simple
and portable APIs. GPIO pin behavior can be configured completely statically, or dynamically
defined at runtime.

The application is required to supply a device specific GPIOXXX_Config structure to the
module. This structure communicates to the GPIO module how to configure the pins that will be
used by the application. The application is required to call GPIO_init (). This function will
initialize all the GPIO pins defined in the GPIO_PinConfig table to the configurations specified.
Once that is completed the other APIs can be used to access the pins.

6.2 GPIO Configuration Structure

The GPIO_soc.c file contains the declaration of the hardware attributes corresponding to the
GPIO peripheral. These hardware attributes will include base address, interrupt number etc.

6.3 APIs

In order to use the GPIO module APIs, the GPIO.h header file should be included in an
application as follows:

#include <ti/drv/gpio/GPIO.h>

The following are the GPIO APIs:

® GPIO_init The pins defined in the application-provided *GPIOXXX_config* structure are
initialized accordingly

®* GPIO_read() Reads the value of a GPIO pin.

® GPIO_write () Writes the value to a GPIO pin

* GPIO_toggle () Toggles the current state of a GPIO

® GPIO_setConfig () Dynamically configure a gpio pin to a device specific setting. For many
applications, the pin configurations provided in the static GPIO_PinConfig array is sufficient.
e GPIO_enablelnt() Enable a GPIO pin interrupt

e GPIO_disablelnt() Disable a GPIO pin interrupt

® GPIO_clearInt() Clear a GPIO pin interrupt flag

6.4 Usage

Once the GPIO_init() function has been called, the other GPIO APIs functions can be called. For
example, LEDs can be switched on as follows:

GPIO_write (Board_ LEDO, Board_ LED_ON);
GPIO_write (Board_LED1, Board_LED_ON) ;
GPIO_write (Board_ LED2, Board_ LED_ON);

For GPIO interrupts, once the GPIO_setupCallbacks() has been called for a port's GPIO_Callback
structure, that port may be enabled for interrupts as follows:

GPIO_setupCallbacks (&Board_gpioCallbacksO)
GPIO_enablelInt (Board _BUTTONO, GPIO_INT_FALLING) ;
GPIO_enableInt (Board BUTTON1, GPIO_INT_RISING);

Interrupts may be configured to occur on rising edges, falling edges, both edges, a high level, or a low
level.

6.5 API Calling Sequence

The below sequence indicates the calling sequence of GPIO driver APIs for a use case of toggling the
LEDs.

GPIO_init ();

While (1)

{
GPIO_write (Board_LED1, GPIO_PIN_VAL_HIGH) ;
Delay ()

GPIO_write (Board_LED1, GPIO_PIN_VAL_LOW) ;
Delay ()

6.6 Flow chart

API flow path of GPIO driver is as shown in fig.

Configure the board specific GPIO pin configurations
inside the board specific file. Module clock enable should
be performed before calling GPIO driver APls. Hardware
attributes have to be defined inside the SoC specific file

GPIO_soc.c
|
'
GPIO_init() Initializes the GPIO module. The pins defined
in the application-provided “GPIOX XX _config* structure
are initialized accordingly.

Iz dynamic
configuration required

k 4

GPIO _setConfig() To configure pins
dynamically.

I5 interrupt
callbacks neaded?

GPIO_setCallback().
GPIO_enablelnt()

|
w

Following APls can be called to controliread level
an GPIO pins:
GPIO_read()
GPIO_write()
GPIO_toggle()

L 4
To clear interrupt status and disable interrupts
following APls can be called:
GPIO_clearlnt()
GPIO_disablelnt()

7 Examples
Following are the examples of supported for the GPIO Driver

7.1 LED toggling:

This application will toggle the led. The led toggling will be done inside a callback function,
which will be called by Interrupt Service Routine. Interrupts are triggered manually and no
external source is used to trigger interrupts.

7.1.1 Building the examples:

Following are list of GPIO projects which will reside the following location
“packages/MyExampleProjects”

GPIO_LedBlink_AMS571X_armExampleProject
GPIO_LedBlink_AMS571X_c66xExampleProject
GPIO_LedBlink_ AMS572X_armExampleProject
GPIO_LedBlink_ AMS572X_c66xExampleProject
GPIO_LedBlink_ AMS572X_GpEvm_armExampleProject
GPIO_LedBlink_ AMS572X_GpEvm_c66xExampleProject

These projects have to be imported in CCS and have to be built. The “.out” files corresponding to
each project will be generated after successfully compiling the projects.

7.1.2 Running the examples

The “.out” have to be loaded and executed. If the project is executed successfully, then one of the
on board LED will blink.

7.1.2.1 AM572x IDK EVM
Status LED1 Yellow will blink.

7.1.2.2 AM571x IDK EVM
Industrial LED3 Red will blink

7.1.2.3 AM572x GP EVM
Userl LED will blink

7.1.3 Supported platforms:

AMS572x GP EVM
AMS572x IDK EVM
AMS571x IDK EVM

8 Test

This application will toggle the led. The led toggling will be done inside a callback function,
which will be called by Interrupt Service Routine. Interrupts are triggered manually and no
external source is used to trigger interrupts.

8.1.1 Building the examples:

Following are list of GPIO projects which will reside the following location
“packages/MyExampleProjects”

GPIO_LedBlink_AMS571X_armTestProject
GPIO_LedBlink_ AMS571X_c66xTestProject
GPIO_LedBlink_ AMS572X_armTestProject
GPIO_LedBlink_ AMS572X_c66xTestProject
GPIO_LedBlink_ AM572X_GpEvm_armTestProject
GPIO_LedBlink_ AMS572X_GpEvm_c66xTestProject

These projects have to be imported in CCS and have to be built. The “.out” files corresponding to
each project will be generated after successfully compiling the projects.

8.1.2 Running the examples

The “.out” have to be loaded and executed. If the project is executed successfully, then one of the
on board LED will blink.

8.1.2.1 AM572x IDK EVM
Status LED1 Yellow will blink.

8.1.2.2 AM571x IDK EVM
Industrial LED3 Red will blink

8.1.2.3 AM572x GP EVM
Userl LED will blink

8.1.3 Supported platforms:

AMS572x GP EVM
AMS572x IDK EVM
AMS571x IDK EVM

9 Migration Guide

The driver supports multiple SoCs, Cores and different IP versions. High level APIs names will
be same and internal implementation will differ for different versions of IPs. Separate source
files will present for different versions of IPs and the files are which are not relevant to any
particular IP version will be compiled out during library generation.

Users who are using the low level APIs (Device abstraction APIs: which perform hardware

register read/write) have to use the high level APIs which are described in the section 6.3.

10 Benchmarking

Code size for library in bytes:
Initialized data: 21

Code: 5152

