
Specification of Make files for Modules and Applications

1

Specification of

Make files for Modules and Applications

Version 2.0

Specification of Make files for Modules and Applications

2

1. Introduction ... 3
2. Structure... 3

a. Makerules:.. 3

b. Interfaces: ... 4
3. Specification .. 5

a. Make variables ... 5
b. Identifiers ... 9
c. Build options .. 11

4. How these make files work? .. 13
a. Building modules ... 13
b. Building applications ... 13

5. Appendix ... 15

Specification of Make files for Modules and Applications

3

1. Introduction
This document outlines the specification of make build system. This is meant for

module/component developers and integrators of these modules. The document gives

details of module and application make files.

2. Structure
The following figure gives a high level view of the structure of the make files.

Figure 2.1

The make rules are implemented in a common set of make files that are used by

module/component developers, middle-ware developers, sub-system integrators and high

level app developers/integrators.

a. Makerules:

The complex part of make files is usually the rules – targets, dependencies and recipes.

These are created as a template and shared and re-used across all levels of software stack.

For example, rules to compile, archive and link for each of the ISAs are implemented as a

part of these common make files. Other common build steps that are typically required to

build TI’s software, eg. XDC specific build steps, are also a part of these common make

files.

Build options

CCCooommmmmmooonnn

mmmaaakkkeee fffiiillleeesss

Interface

Make rules

Integrator
Module

developer

App/example
defines

Module
defines

Component
defines

Component

Specification of Make files for Modules and Applications

4

b. Interfaces:

 These common make rules are “configured” to work in a specific way.

These would come from the “build options” that are defined by those who

run the build. The option could be, for example, to build the complete

stack for “little” endian-ness or build for ELF binary format, etc.

 Going from the highest level of the software stack, the integrators would

integrate components and modules, add system/sub-system

application/framework source code and would build an application or sub-

system. They would specify app/example defines in the application’s

makefile to specify things like list of components/modules that are needed

by the application, etc.

 In the next level, we have components. The definition of a component here

is, it is just a collection of modules. Hence, in the strict sense it does not

“use” common make files. The component’s makefile would call other

makefiles – that of modules and examples/apps that consume the modules.

It would define several characteristics of the component and its modules.

For example, relative path of each of the modules from the packages

repository are defined. This makefile would also iterate the build process

for multiple cores or boards, etc. as needed.

 The lowest level is a module. The makefiles of the modules specify the

source files that would need to be compiled and archived in module’s

library, location of source files and the external interfaces (header files)

that it includes, etc.

The defines in all these above levels of software stack are used by the common make files

to build the required targets.

Specification of Make files for Modules and Applications

5

3. Specification
This section describes the specification of make files. Name of identifiers and variable

names are specified here.

a. Make variables

The following table lists all the make variables that are set from either application

makefiles or module makefiles. These variables are used by the common make files. It is

important to maintain the case of the variables.

Variables in both application and module makefiles

Sl Make variable Description

1 SRCDIR List of directories (each space

separated) where the source files

are located. These directories

would be relative to the directory

where “makefile” for the

app/module is located (top-level

directory of the app/module).

2 INCDIR List of directories (each space

separated) where the local header

files are located. These directories

would be relative to the directory

where “makefile” for the

app/module is located (top-level

directory of the app/module).

3 INCLUDE_EXTERNAL_INTERFACES List of names of components

whose interface header files the

app/module includes in the source

code

4 INCLUDE_INTERNAL_INTERFACES List of names of modules whose

interface header files the

app/module includes in the source

code

5 SRCS_COMMON List of all C files (each space

separated) which are common

across boards, cores, ISAs and

SoCs.

6 SRCS_<identifier> List of C files (each space

separated) which are specific to the

<identifier>. Here, <identifier>

could be:

<core> eg: SRCS_ a15_0 lists C

source files that apply to and are

Specification of Make files for Modules and Applications

6

specific only for a15_0 core

<BOARD> eg: SRCS_tda2xx-evm

lists C source files that are specific

only for tda2xx-evm

<SOC> eg: SRCS_tda2xx lists C

source files that are specific only

for tda2xx SOC

NOTE: List of all core names,

board names, etc are listed later in

the document

7 CFLAGS_LOCAL_COMMON List of CFLAGS specific to the

component/module. These flags

will be passed as argument at the

time of compilation

Table 3.1

The following table lists the variables that are required to be set by the module makefile

(other than what is mentioned in Table 3.1).

Variables required to be defined by module makefiles

Sl Make variable Description

1 MODULE_NAME A unique single word that identifies

the module. This name is used

everywhere else in the make build

system to identify the module.

Table 3.2

The following table lists the variables that are required to be set by the

application/example makefile (other than what is mentioned in Table 3.1).

Variables required to be defined by application makefiles

Sl Make variable Description

1 APP_NAME A unique single word that identifies

the application/example. This name is

used everywhere else in the make

build system to identify the

application

2 COMP_LIST_< identifier

>

List of name of components/modules

(each space separated) that are

required by the application to build the

executable for a specfic <core> or

“COMMON” across all cores. Each

<core> used by the application should

Specification of Make files for Modules and Applications

7

have this entry separately.

3 XDC_CFG_FILE_<core> If the application uses XDC

packages//components, then this has

the file name of the configuration file

name of the CFG file (this is parsed

and used by the XDC’s configuro

command.

5 XDC_CONFIGURO Flag to mention whether XDC

configuro needs to be performed for

this application. Set to yes/no. This is

used to have both XDC and baremetal

application to use the same make

infrastructrue

4 EXTLIB_LIST_<core> List of names of components/modules

whose libraries have to be linked into

the executable for <core>

Table 3.3

The following table lists the variables that are required to be set by the component’s

make files, typically “component.mk” file that is found at the top-level directory of the

component.

Variables required to be defined by component make files (typically

component.mk)

Sl Make variable Description

1 <mod>_RELPATH Relative path (from the packages

repository of the component) of the

module <mod>. Each of the modules

that are in the component have to

have a separate entry.

2 <mod>_PATH This has the absolute path of the

module <mod>. This has to be set by

appending <mod>_RELPATH to

<comp>_PATH (<comp> is the

name of the component) which

would be set in the environment.

3 <mod>_INCLUDE List of directories (each space

separated) that contains the interface

header files that are required to be

included by other modules and

applications that use this module

Specification of Make files for Modules and Applications

8

4 <mod>_BOARD_DEPENDENCY Specifies if the module <mod> is

dependent on boards or not. If set to

“yes” (note: all lower case), then the

object files and libraries are created

under <board> directory, so that each

board for which it is built, we’d have

a separate copy of the libraries/objs.

If it is set to “no” or blank or not

defined at all, then it signifies that

this module does not change based

on boards.

5 <mod>_SOC_DEPENDENCY Specifies if the module <mod> is

dependent on soc or not. If set to

“yes” (note: all lower case), then the

object files and libraries are created

under <soc> directory, so that each

soc for which it is built, we’d have a

separate copy of the libraries/objs. If

it is set to “no” or blank or not

defined at all, then it signifies that

this module does not change based

on soc but in fact depends on board.

6 <mod>_CORE_DEPENDENCY Specifies if the module <mod> is

dependent on core or not. If set to

“yes” (note: all lower case), then the

object files and libraries are created

under <core> directory, so that each

core for which it is built, we’d have a

separate copy of the libraries/objs. If

it is set to “no” or blank or not

defined at all, then it signifies that

this module does not change based

on core.

7 <mod>_APP_STAGE_FILES List of names of source files (each

space separated) belonging to the

module <mod> that have to be

compiled as a part of the application

stage make build step. The file path

should be relative to the makefile of

the module (ot top-level of the

module). This could be link time

configuration of the module or any

other source that has to be built in

the context of an application

(typically, if it is app-dependent). If

it is blank or not defined at all, then

Specification of Make files for Modules and Applications

9

it is taken that there are no source

files of the module that have to be

compiled in the context of the

application

8 <mod>_PKG_LIST List of names of sub-modules that

are in the module. Note that each of

these sub-modules has to have

separate variables described above

(1-6). If this is blank or not defined

at all, then there are no sub-modules.

9 <comp>_LIB_LIST List of names of modules that are a

part of the component <comp>

whose libraries have to be linked

when the component is supplied as a

pre-built component.

10 <comp>_BOARDLIST List of BOARD for which this

module needs to be built. If board is

defined, then it will define SOC

based on board. Hence, no need to

build define <comp>_SOCLIST

Note: Application needs to have

<comp>_BOARDLIST defined.

11 <comp>_SOCLIST List of SOC to which this module

needs to be built

Note: Module needs to have

<comp>_SOCLIST defined.

12 <comp>_<SOC>_CORELIST List of CORE for a particular SOC to

which this module needs to be built

Table 3.4

b. Identifiers

All other identifiers used in the make files are listed in the table below.

Identifiers used in the make files

Sl identifier Description

1 <board> Example: tda2xx-evm

idkAM572x evmK2H

Note: These can be extended in future to

add similar boards by adding support in

platform.mk

Specification of Make files for Modules and Applications

10

2 <SoC> Example:

am572x k2h tda2xx tda3xx

For Application/Examples, These values

are not directly set by the user. These are

derived from the <board>. For Module it

is set directly as all the <module> are

board independent.

3 <core> Example: ipu1_0 c66x a15_0 a9_host

4 <ISA> Example: m4 (ISA value for ARM®

Cortex™ M4)

Table 3.5

NOTE: Please note that the values for the identifiers above maybe extended further as we

support more boards, SOCs and applications scenarios.

Specification of Make files for Modules and Applications

11

c. Build options

The following table lists the build time options that can be either set in build_config.mk

or at the command line. The command line settings would take precedence over the ones

set in build_config.mk.

Build options that are used in common make files

Sl Make variable Description

1 ENDIAN This specifies the endian-ness of the

objects and binaries to be built. Valid

values are:

big (big-endian)

little (little-endian)

2 FORMAT This specifies the format of the binaries

to be built. Valid values are:

COFF (COFF format)

ELF (ELF format)

3 BOARD Board for which the object and binaries

are being built for. The value set here

would be same that is translated to

<board> identifier in the rest of the

make files.

4 SOC soc for which the object and binaries

are being built for. The value set here

would be same that is translated to

<board> identifier for application. For

rest of the make files cases where

board is not defined, it is needed to be

defined.

5 CFLAGS_GLOBAL_<identifier> C compiler switches that are global in

nature (applies to everything that is

built) for the given <identifier>. Here

<identifier> can be <board>, <core>,

<ISA> or <SoC>

6 LNKFLAGS_GLOBAL_<identifier> Linker switches that are global in

nature (similar to CFLAGS)

7 PROFILE_<core> The profile for which the build is being

done for. Valid values:

debug (Debug profile)

release (Release profile)

The debug profile is typically used

Specification of Make files for Modules and Applications

12

during development and debugging.

However, the performance may not be

good.

The release profile is typically used

after the “debug” build is functionally

working. This profile might improve

the performance to a great extent, as it

optimizes to the highest possible level.

Please note the comments in the

build_config.mk while setting, as tool-

chain for some of the cores (ISAs)

don’t support whole_program_debug

profile. Also note that more such

profiles could be added in the future.

Table 3.6

Specification of Make files for Modules and Applications

13

4. How these make files work?
Now that all the necessary variables and identifiers are familiar, this chapter describes

how the common make files work on these variables. This section gives a brief overview

of the flow.

a. Building modules

The module level makefile is typically called either while building the application that

consumes it or by the release process of the component to which the module belongs.

The make for the module is invoked something like

make –C $(<mod>_PATH)

which tells make to look out for a “makefile” under <mod>_PATH and build the default

target specified. The module makefile sets MODULE_NAME (refer table 3.2) and other

required variables in table 3.1. It then “includes” a common make file “common.mk”.

This file has some of the common make rules and also includes other necessary common

make files. The default make target is specified in common.mk, which is to compile and

create an archive (library) for the module.

The common make files uses the variables that are set in the module makefile

appropriately. For example, the INCLUDE_EXTERNAL_INTERFACES variable is

acted upon in the following manner:

A loop iterates for each of the “word”s (component/module name) in this variable and

value of <”word”>_INCLUDE variable (which has the absolute path of the directories

that has the interface header files for the module “word”) is used to specify the include

search path (for example, prefixing each directory with “-I” switch).

b. Building applications

The application makefile is typically called from a top-level make file. This is required

because the same makefile needs to be iterated for each of the cores for which the

binaries have to be built. Something like this:

make –C $(<app>_EXAMPLE_PATH) CORE=a15_0

make –C $(<app>_EXAMPLE_PATH) CORE=c66x

make –C $(<app>_EXAMPLE_PATH) CORE=ipu1_0

Each of the above lines would generate an executable for the core specified. This too, like

module makefile, includes “common.mk”, which specifies the targets required to build

the application. It goes about doing it in the following steps:

 It uses the value of COMP_LIST_<core> to get a list of dependent modules for

the application on <core>. It iterates a through a loop for each of these modules

Specification of Make files for Modules and Applications

14

and calls the module’s makefile (in the same fashion as described in section 4.a

and ensures that the libraries for the module is up-to-date.

 Builds the source files of the application

 Builds those source files of the modules that are marked to be compiled at

application stage (via <mod>_APP_STAGE_FILES).

 Links all the module’s libraries and the objects generated in the last two steps and

creates an executable

Specification of Make files for Modules and Applications

15

5. Appendix

List of common make files:

Common make files

common.mk This is the common make file that

defines rules that are common across

boards/cores/ISAs. This also includes

other common make files

rules_<ISA>.mk Rules make file for each of the

supported ISAs. Example: rules_m3.mk,

rules_a8.mk

platform.mk This make file has all the board specific

defines that are commonly used

build_config.mk This file has build options that are

typically changed during the build time

env.mk This file sets paths for various

components, modules and tools that are

used within the make files

The last two files – build_config.mk and env.mk are only required to be changed by the

end-user who wants to run make to build.

