www.ti.com SPRS868-MARCH 2015 # HEVC/H.265 Main Profile Decoder (v01.00.00) on ARM (66AK2X Platform) ### **FEATURES** - Supports decoding of HEVC Main, Main Still profile bitstreams up to level 5.0 - Supports arbitrary resolutions from 64x64 up to 4kx2k - Supports width and height as non multiple of 16 - Supports YUV 4:2:0 Planar Chroma format - Supports decoding progressive content - Supports SEI and VUI parameters decoding. - · Supports B frame decoding - Supports CTU sizes 64x64,32x32,16x16 - Supports multiple slice, multiple tile decoding - Supports decoding of streams with Wave front parallel processing - Supports bitstreams encoded with Low delay and Random access configurations - Supports Multiple reference frames - Supports decoding of streams with scaling matrices - Supports decoding of streams with Weighted Prediction - Supports decoding PCM encoded CTUs - Supports Deblocking and SAO features decoding - Supports dependent slice decoding - Supports IDR & CRA frame decoding - Supports IRAP frame decoding - Supports TSA,STSA feature decoding - Supports decoding frames with LTRP feature - Supports AMP feature decoding - Supports TMVP feature decoding - Supports constrained intra prediction - Supports transform skip and trans quant bypass mode - Supports unrestricted motion vectors which allows motion vectors to be outside frame boundary - Supports input and output call back API functions for Low Delay Interface - Shall accept video elementary stream in big endian format - Supports decode only header mode - Error resilient codec, supports error codes - Supports error concealment at slice level - Decoder library validated on XTCIEVMK2X platform ### DESCRIPTION HEVC/H265 is video compression standard from ITU-T Video Coding Experts Group and the ISO/IEC **Pictures** Moving **Experts** Group to H264/MPEG4 successor Higher Data compression ratio is achieved compared to H.264/MPEG-4 AVC at the same level of video quality. It can alternatively be used to provide substantially improved video quality at the same bit rate. It can support 8K UHD and resolutions up to 8192×4320 This project is developed and validated on XTCIEVMK2X platform using Linaro ARM GCC Toolchain Version 4.7-2013.03. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. www.ti.com SPRS868-MARCH 2015 # **Performance and Memory Summary** This section describes the performance and memory usage of the HEVC Main profile Decoder tested on XTCIEVMK2X platform. **Table 1 Configuration Table** | CONFIGURATION | ID | | |--|-----------------|--| | HEVC Main Profile, 1080p, IBBP, Multi core(4 Cores) | H265MP_DEC_001 | | | HEVC Main Profile, 1080p, IBBB, Random Access, Multi core(4 Cores) | H265MP_DEC_002 | | | HEVC Main Profile, 1080p, IPPP, Low Delay, Multi core(4 Cores) | H265MP_DEC_003 | | | HEVC Main Profile, 1080p, IBBP, Multi core(2 Cores) | H265MP_DEC_004 | | | HEVC Main Profile, 1080p, IBBB, Random Access, Multi core(2 Cores) | H265MP_DEC_005 | | | HEVC Main Profile, 1080p, IPPP, Low Delay, Multi core(2 Cores) | H265MP_DEC_006 | | | HEVC Main Profile, 720p, IBBP, Multi core(2 Cores) | H265MP_DEC_007 | | | HEVC Main Profile, 720p, IBBB, Random Access, Multi core(2 Cores) | H265MP_DEC_008 | | | HEVC Main Profile, 720p, IPPP, Low Delay, Multi core(2 Cores) | H265MP_DEC_009 | | | HEVC Main Profile, 720p, IBBP, Single core | H265MP_DEC_0010 | | | HEVC Main Profile, 720p, IBBB, Random Access, Single core | H265MP_DEC_0011 | | | HEVC Main Profile, 720p, IPPP, Low Delay, Single core | H265MP_DEC_0012 | | Table 2 Cycles Information - Profiled on XTCIEVMK2X with Linaro ARM GCC Toolchain Version 4.7-2013.03 | | PERFORMANCE STATISTICS (MEGA CYCLES PER SECOND) (1) | | | | | | |------------------|---|------------------------|---------------------|--|--|--| | CONFIGURATION ID | TEST DESCRIPTION | AVERAGE ⁽²⁾ | PEAK ⁽³⁾ | | | | | H265MP_DEC_001 | Airshow_p1920x1080_420p_4Mbps.265, YUV420,
IBBP @ 4Mbps @ 30 frames per second | 839 | 902 | | | | | H265MP_DEC_002 | Airshow_p1920x1080_420p_4Mbps_RA.265, YUV420, Random Access, IBBB @ 4Mbps @ 30 frames per second | 888 | 956 | | | | | H265MP_DEC_003 | Rich_p1920x1080_420p_2Mbps_VC.265, YUV420, Low Delay, IPPP @ 2Mbps @ 30 frames per second | 550 | 593 | | | | | H265MP_DEC_004 | Airshow_p1920x1080_420p_4Mbps.265, YUV420, 5MP_DEC_004 | | | | | | | H265MP_DEC_005 | Airshow_p1920x1080_420p_4Mbps_RA.265, YUV420, Random Access, IBBB @ 4Mbps @ 25 frames per second | 1219 | 1297 | | | | | H265MP_DEC_006 | Rich_p1920x1080_420p_2Mbps_VC.265, YUV420, Low Delay, IPPP @ 2Mbps @ 25 frames per second | 727 | 833 | | | | | H265MP_DEC_007 | Airshow_p1280x720_420p_2Mbps.265, YUV420,
IBBP @ 2Mbps @ 30 frames per second | 644 | 667 | | | | | H265MP_DEC_008 | Airshow_p1280x720_420p_2Mbps_RA.265, YUV420, Random Access, MP_DEC_008 Airshow_p1280x720_420p_2Mbps_RA.265, YUV420, Random Access, BBBB @ 2Mbps @ 30 frames per second | | 690 | | | | | H265MP_DEC_009 | FourPeople_p1280x720_420p_1Mbps_VC.265, YUV420, Low Delay, IPPP @ 1Mbps @ 30 frames per second | | 407 | | | | | H265MP_DEC_0010 | Airshow_p1280x720_420p_2Mbps.265, YUV420,
IBBP @ 2Mbps @ 30 frames per second | 1169 | 1253 | | | | | H265MP_DEC_0011 | Airshow_p1280x720_420p_2Mbps_RA.265, YUV420, Random Access, IBBB @ 2Mbps @ 30 frames per second | 1203 | 1310 | | | | | H265MP_DEC_0012 | FourPeople_p1280x720_420p_1Mbps_VC.265, YUV420, Low Delay, IPPP @ 1Mbps @ 30 frames per second | 675 | 726 | | | | ⁽¹⁾ Measured with ARM Cortex-A15, 1375 MHz clock, DDR3 1333MHZ clock, Program memory, I/0 buffers and Stack in external memory. ⁽²⁾ Average cycles are calculated as (Total cycles*30/number of frames). ⁽³⁾ Peak cycles are calculated as maximum of moving average of 30 frames, multiplied with 30 to get per second MHz. Table 3 Memory Statistics of HEVC Decoder with Linaro ARM GCC Toolchain Version 4.7-2013.03 | | MEMORY STATISTICS ⁽¹⁾⁽²⁾ | | | | | |---|-------------------------------------|---------------------|----------|---------|-------| | CONFIGURATION ID | PROGRAM | DATA MEMORY (3) (5) | | | TOTAL | | | MEMORY ⁽⁴⁾ | PERSISTENT | CONSTANT | SCRATCH | TOTAL | | H265MP_DEC_001
H265MP_DEC_002
H265MP_DEC_003 | 271 | 76265 | 7 | 8960 | 85503 | | H265MP_DEC_004
H265MP_DEC_005
H265MP_DEC_006 | 271 | 76215 | 7 | 8880 | 85373 | | H265MP_DEC_007
H265MP_DEC_008
H265MP_DEC_009 | 271 | 37622 | 7 | 7468 | 45368 | | H265MP_DEC_0010
H265MP_DEC_0011
H265MP_DEC_0012 | 271 | 37551 | 7 | 1321 | 39150 | ⁽¹⁾ All these memory requirements are for HEVC Main Profile Decoder library only. They do not include any memory requirements from application side. Stack, heap and code requirements for application are extra. Input Buffer: 3072 KB Output Buffer: 3060 KB ⁽²⁾ All memory requirements are expressed in kilobytes (1K bytes = 1024 bytes). ⁽³⁾ The memory requirements given in Table 3 are calculated for YUV 420 Chroma sub sampling. ⁽⁴⁾ Typical input and output buffers for 1920x1080 resolutions with YUV planar 4:2:0 formats are as follows. # Notes www.ti.com - I/O buffers: - Input buffer size = 3072 K-bytes (for 1920x1088 resolution, YUV420) - Output buffer size = 3060 K-bytes (for decode 1920x1088 resolution) ### References - ISO/IEC 23008-2:2013 Infrastructure of audiovisual services Coding of moving video: High efficiency video coding. - HEVC/H.265 Main Profile Decoder on ARM (66AK2X Platform) User's Guide (SPRUGH8). ## **Glossary** | Term | Description | |-----------|---| | Constants | Elements that go into .const memory section | | Scratch | Memory space that can be reused across different instances of the algorithm | | Instance | Persistent-memory that contains persistent information - allocated for each instance of the algorithm | ## **Acronyms** | Acronym | Description | |---------|--| | HEVC | High Efficiency Video Coding | | ISO | International Organization for Standardization | | EVM | Evaluation Module | #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Amplifiers amplifier.ti.com Data Converters DLP® Products DSP dsp.ti.com dsp.ti.com/audio amplifier.ti.com dataconverter.ti.com www.dlp.com dsp.ti.com Clocks and Timers Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com RFID www.ti-rfid.com OMAP Applications Processors Wireless Connectivity Automotive & Transportation Communications & Telecom Computers & Peripherals Consumer Electronics Www.ti.com/computers www.ti.com/consumer-apps www.ti.com/energyapps Energy and Lighting www.ti.com/energyapps www.ti.com/clocks Industrial www.ti.com/industrial www.ti.com/medical Security www.ti.com/security Space, Avionics & Defense www.ti.com/space-avionics-defense Video & Imaging <u>www.ti.com/video</u> www.ti.com/omap TI E2E Community e2e.ti.com www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright© 2015, Texas Instruments Incorporated