

HEVC/H.265 Main Profile Decoder on
ARM

User’s Guide

Literature Number: SPRUGH8
May 2015

 IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and
other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per
JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in
TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component
is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work
right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are
used. Information published by TI regarding third-party products or services does not constitute a license to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents
or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related
requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related
information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create
and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of
TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance
with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case
of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright© 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’ (TI) ARM
HEVC/H.265 Decoder implementation on ARM platform. It also provides a detailed
Application Programming Interface (API) reference and information on the sample
application that accompanies this component.

Intended Audience

This document is intended for system engineers who want to integrate TI’s codecs
with other software to build a multimedia system based on ARM platform and
Microsoft Visual Studio.

This document assumes that you are fluent in the C language, working knowledge
of Linux.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides an overview of the codec and
lists its supported features.

 Chapter 2 - Installation Overview, describes how to install, build
and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

 Chapter 5 - Frequently Asked Questions, provides answers to
few frequently asked questions related to using this decoder.

 Appendix A – Meta Data Support, provides information on writing
out the parsed SEI, VUI data into application provided buffers.

 Appendix B – Low Delay Interface, provides information on using
Call back API function usage for low latency applications.

Read This First

iv

Related Documentation

You can use the following documents to supplement this user guide:

 High Efficiency Video Coding (HEVC), Recommendation ITU-T
H.265 (10/2014), ISO/IEC 23008-2.

Abbreviations

The following abbreviations are used in this document.

Table 0-1 List of Abbreviations

Abbreviation Description

API Application Programming Interface

ARM Advanced RISC Machine

CABAC Context-based Adaptive Binary Arithmetic
Coding

CB Coding Block

CRA Clean Random Access

CTB Coding Tree Block

CTU Coding Tree Unit

CU Coding Unit

DPB Decoded Picture Buffer

DSP Digital Signal Processor

EVM Evaluation Module

GOP Group Of Pictures

HEVC High Efficiency Video Coding

ISO International Organization for
Standardization

ITU International Telecommunication Union

JCT-VC Joint Collaborative Team on Video Coding

MPEG Moving Picture Experts Group

PPS Picture Parameter Set

PU Prediction Unit

Read This First

 v

Abbreviation Description

SAO Sample Adaptive Offset

SEI Supplemental Enhancement Information

SPS Sequence Parameter Set

TB Transform Block

TU Transform Unit

VPS Video Parameter Set

VUI Video Usability Information

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters,

and command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name (ARM
HEVC/H.265 Decoder) and version number. The version number of the codec is
included in the Title of the Release Notes that accompanies this codec.

Trademarks

All trademarks are the property of their respective owners.

Read This First

vi

This page is intentionally left blank

vii

 Contents

HEVC/H.265 MAIN PROFILE DECODER ON ARM ... 1-1

READ THIS FIRST ... III

ABOUT THIS MANUAL .. III
INTENDED AUDIENCE ... III
HOW TO USE THIS MANUAL ... III
RELATED DOCUMENTATION .. IV
ABBREVIATIONS ... IV
TEXT CONVENTIONS .. V
PRODUCT SUPPORT .. V
TRADEMARKS .. V

CONTENTS ... VII

FIGURES ... IX

TABLES ... XI

INTRODUCTION .. 1-1

1.1 OVERVIEW OF HEVC/H.265 DECODER .. 1-2
1.2 SUPPORTED SERVICES AND FEATURES .. 1-5

INSTALLATION OVERVIEW .. 2-1

2.1 SYSTEM REQUIREMENTS ... 2-2
2.1.1 Hardware .. 2-2
2.1.2 Software.. 2-2

2.2 INSTALLING THE COMPONENT ... 2-2
2.2.1 Installing the Component – Compressed archive .. 2-2

2.3 BEFORE BUILDING THE ALGORITHM LIBRARY AND SAMPLE TEST APPLICATION 2-6
2.3.1 Installing Linaro ARM GCC toolchain ... 2-6

2.4 BUILDING THE ALGORITHM LIBRARY .. 2-6
2.4.1 Building Algorithm Library on Visual studio .. 2-6
2.4.2 Building Algorithm Library on Linux .. 2-6

2.5 BUILDING SAMPLE TEST APPLICATION .. 2-7
2.5.1 Building Sample Test Application on Visual Studio .. 2-7
2.5.2 Building the Sample Test Application on Linux .. 2-7

2.6 CONFIGURATION FILES .. 2-8
2.6.1 Decoder Configuration File ... 2-8

2.7 RUNNING SAMPLE TEST APPLICATION .. 2-9
2.7.1 Running the Sample Test Application on Visual Studio ... 2-9
2.7.2 Running the Sample Test Application on Linux.. 2-9

2.8 UNINSTALLING THE COMPONENT .. 2-10

SAMPLE USAGE ... 3-1

3.1 OVERVIEW OF THE TEST APPLICATION .. 3-2
3.1.1 Parameter Setup .. 3-3
3.1.2 Algorithm Instance Creation and Initialization .. 3-3

viii

3.1.3 Control and Decode Call .. 3-3
3.1.4 Algorithm Instance Deletion.. 3-4

3.2 FRAME BUFFER MANAGEMENT ... 3-4
3.2.1 Frame Buffer Input and Output ... 3-4
3.2.2 Frame Buffer Management by Application ... 3-5

API REFERENCE .. 4-1

4.1 SYMBOLIC CONSTANTS AND ENUMERATED DATA TYPES.. 4-2
4.1.1 Common Data types ... 4-2
4.1.2 Common Multi-Core Data types ... 4-4

4.2 DATA STRUCTURES ... 4-5
4.2.1 Common Data Structures ... 4-5
4.2.2 Common Multi-thread Data Structures ... 4-12

4.3 DEFAULT AND SUPPORTED VALUES OF PARAMETERS .. 4-13
4.4 INTERFACE FUNCTIONS .. 4-14

4.4.1 Creation APIs ... 4-15
4.4.2 Initialization API .. 4-17
4.4.3 Control API ... 4-18
4.4.4 Data Processing API .. 4-21
4.4.5 Termination API .. 4-23

FREQUENTLY ASKED QUESTIONS ... 5-1

5.1 CODE BUILD AND EXECUTION ... 5-1
5.2 TOOLS VERSION .. 5-1
5.3 ALGORITHM RELATED .. 5-1

META DATA SUPPORT ... A-1

LOW DELAY INTERFACE ... B-1

B.1 BRIEF DESCRIPTION .. B-1
B.2 DETAILS OF USING LOW DELAY INTERFACE AT OUTPUT SIDE .. B-1
B.3 DETAILS OF USING LOW DELAY INTERFACE AT INPUT SIDE ... B-3

ix

Figures

FIGURE 1-1 FLOW DIAGRAM OF THE HEVC/H.265 DECODER ..1-2
FIGURE 1-2 QUAD-TREE STRUCTURE ...1-4
FIGURE 2-1 COMPONENT DIRECTORY STRUCTURE IN CASE OF OBJECT RELEASE2-3
FIGURE 2-2 COMPONENT DIRECTORY STRUCTURE IN CASE OF SOURCE RELEASE2-5
FIGURE 3-1 TEST APPLICATION SAMPLE IMPLEMENTATION ...3-2
FIGURE 3-2 INTERACTION OF FRAME BUFFERS BETWEEN APPLICATION AND FRAMEWORK3-5

file:///C:/Users/Umm%20Kumar/Desktop/Backup1_ARM_HEVC_Decoder_UserGuide%20-%20Copy.doc%23_Toc413441658

x

This page is intentionally left blank

xi

Tables

TABLE 0-1 LIST OF ABBREVIATIONS ... IV
TABLE 2-1 COMPONENT DIRECTORIES IN CASE OF OBJECT RELEASE .. 2-3
TABLE 2-2 COMPONENT DIRECTORIES IN CASE OF SOURCE RELEASE ... 2-5
TABLE 4-1 LIST OF ENUMERATED DATA TYPES .. 4-2
TABLE 4-2 DECODER ERROR CODES ... 4-3
TABLE 4-3 DEFAULT AND SUPPORTED VALUES FOR TPP_H265_CREATEPARAMS 4-13
TABLE 4-4 DEFAULT AND SUPPORTED VALUES FOR TPP_H265_DYNAMICPARAMS 4-13

xii

This page is intentionally left blank

Introduction

1-1

Chapter 1

Introduction

This chapter provides an overview of TI’s implementation of the HEVC/H.265
Decoder on ARM and its supported features.

Topic Page

1.1 Overview of HEVC/H.265 Decoder 1-2

1.2 Supported Services and Features 1-5

Introduction

1-2

1.1 Overview of HEVC/H.265 Decoder

High Efficiency Video Coding (HEVC/H.265) is a video compression standard, a
successor to H.264/MPEG-4 AVC (Advanced Video Coding), which was jointly
developed by the ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video
Coding Experts Group (VCEG). The main goal of the HEVC standardization effort is to
enable significantly improved compression performance relative to existing standards
in the range of 50% bit rate reduction for equal perceptual video quality. The new
advancements and greater compression ratios available at a very low bit rate has
made devices ranging from mobile and consumer electronics to set-top boxes and
digital terrestrial broadcasting to use the H265 standard.

Figure 1-1 depicts the working of the H.265 Decoder algorithm.

Figure 1-1 Flow diagram of the HEVC/H.265 Decoder

The video coding layer of H265/HEVC employs the same “hybrid” approach
(inter/intra prediction and 2D transform coding) used in all video compression
standards. Figure 1-1 depicts the block diagram of HEVC video decoder.

In HEVC, coding efficiency is significantly improved by utilizing macroblock structures
with sizes larger than 16x16 pixels, especially at high resolutions. This is due to the
ability of large motion and transform blocks to more efficiently exploit the increased
spatial correlation that occurs at such high resolutions. At high resolutions there are
more likely to be large homogenous areas that can be efficiently represented by larger
block sizes.

Each picture is splitted into Coding Tree Units (CTUs). The CTU consists of a luma
coding tree block (CTB) and the corresponding chroma CTBs. The size LxL of a luma
CTB can vary as L = 16, 32, or 64 samples, with the larger sizes typically enabling
better compression. HEVC supports partitioning of the CTBs into smaller blocks using
a tree structure and quadtree-like signaling.

Introduction

1-3

The quadtree syntax of the CTU specifies the size and positions of its luma and
chroma coding blocks (CBs). The splitting of a CTU into luma and chroma CBs is
signaled jointly. One luma CB and ordinarily two chroma CBs, together with associated
syntax, form a Coding Unit (CU). A CTB may contain only one CU or may be split to
form multiple CUs, and each CU has an associated partitioning into prediction units
(PUs) and a tree of transform units (TUs) as shown in Figure 1-2.

The first picture of a video sequence (and the first picture at each “clean” random
access point into a video sequence) is coded using only intra-picture prediction (which
uses some prediction of data spatially from region-to-region within the same picture
but has no dependence on other pictures). For all remaining pictures of a sequence or
between random access points, inter-picture temporally-predictive coding modes are
typically used for most blocks.

In Spatial compensation process, decoded boundary pixels of adjacent blocks are
used as reference data for spatial prediction. Intra prediction supports 33 directional
modes (compared to 7 such modes in H.264/MPEG-4 AVC), plus planar (surface
fitting) and DC (flat) prediction modes. Prediction modes are derived from the bit-
stream and corresponding prediction block is formed.

In Motion compensation process, prediction is formed using motion vector information
signaled in the bitstream and advanced motion vector prediction derived from MVs of
neighbouring prediction blocks (PBs). Quarter-sample precision is used for the MVs,
and 7-tap or 8-tap filters are used for interpolation of fractional-sample positions.
Similar to H.264/MPEG-4 AVC, multiple reference pictures are used. For each PB,
either one or two motion vectors can be transmitted, resulting either in uni-predictive or
bi-predictive coding, respectively. Scaling and offset operation may be applied to the
prediction signal(s) in a manner known as weighted prediction.

The residual is decoded after applying inverse quantization and inverse transform
(using block transforms) on Quantized transform coefficients which are decoded from
bitstream. A transform unit (TU) tree structure has its root at the CU level. The luma
CB residual may be identical to the luma transform block (TB) or may be further split
into smaller luma TBs. The same applies to the chroma TBs. Integer basis functions
similar to those of a inverse discrete cosine transform (IDCT) are defined for the
square TB sizes 4×4, 8×8, 16×16, and 32×32. For the 4×4 transform of intra-picture
luma prediction residuals, an integer transform derived from a form of inverse discrete
sine transform (IDST) is alternatively specified.

The residual data is added to prediction data to form the reconstructed pixels.

To avoid blocking artifacts a de-blocking filter is applied on the reconstructed pixels.
After de-blocking process, Sample Adaptive offset (SAO) filter is applied on pixels. It is
a non-linear amplitude mapping process and its goal is to better reconstruct the
original amplitudes. Filtered frame is stored in a frame-store called DPB (decoded
picture buffer) and used as a reference for next frame decoding.

Introduction

1-4

Figure 1-2 Quad-tree structure

Introduction

1-5

1.2 Supported Services and Features

This user guide accompanies TI’s implementation of HEVC Decoder on ARM.

This version of the codec has the following supported features of the standard:

 Shall support main profile up to level 5.

 Shall support main still picture profile decoding.

 Shall support I, P, and B frames decoding.

 Shall support all intra/inter prediction modes and block sizes.

 Shall support constrained intra prediction.

 Shall support scaling matrix.

 Shall support weighted prediction.

 Shall support PCM decoding.

 Shall support video resolutions up to 4096x2176 which are multiple
of 2.

 Shall support progressive content decoding.

 Shall support multi-slice & multi-tile decoding.

 Shall support deblocking filter and SAO filtering.

 Shall support wavefront parallel processing.

 Shall support dependent slices.

 Shall support temporal layers.

 Shall support error robustness and error concealment.

 Shall support SEI and VUI parameter decoding.

 Shall support CRA (clean random access).

 Shall support long term reference frames.

 Shall support input and output low delay interface.

 Shall support decoder header only mode of operation.

 Shall support multi-core implementation.

 Shall support API at Frame level granularity.

 Shall support decoder data in YUV 4:2:0 planar format.

 Shall output decoded YUV compliant to ITU-T recommendation
HEVC/H265

Introduction

1-6

This page is intentionally left blank

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information on
building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-2

2.3 Before Building the Algorithm Library and Sample Test
Application

2-6

2.4 Building the Algorithm Library 2-6

2.5 Building Sample Test Application 2-7

2.6 Configuration Files 2-8

2.7 Running Sample Test Application 2-9

2.8 Uninstalling the Component 2-10

Installation Overview

2-2

2.1 System Requirements

This section describes the hardware and software requirements for the normal
functioning of the codec component.

2.1.1 Hardware

ARM based EVM is used for testing.

2.1.2 Software

This project is compiled, assembled, archived, and linked using Linaro GCC ARM
toolchain.

2.2 Installing the Component

The codec component is released as compressed archive. Following sub sections
details on installation along with directory structure.

2.2.1 Installing the Component – Compressed archive

The codec component is released as a compressed archive. To install the codec,
extract the contents of the zip file onto your local hard disk. The zip file extraction
creates a top-level directory called HEVC.D.ARM.01.00.00.xx (where “01.00.00.xx”
is the version of the codec), under which directory named ARM_001 is created.

Figure 2-1 shows the sub-directories created in the ARM_001 directory in case of
object release. Figure 2-2 will show directory structure in case of Source release.
Only “Src” is additional in source release compared to object only release package,
remaining folders being same.

Installation Overview

2-3

Figure 2-1 Component Directory Structure In case of Object Release

Table 2-1 provides a description of the sub-directories created in the ARM_001 directory.

Table 2-1 Component Directories in case of Object release

Sub-Directory Description

\Client\Build\ARM\Map Contains map file generated after building with Linaro ARM GCC toolchain

\Client\Build\ARM\Obj Contains intermediate Object files generated after building test application with
Linaro ARM GCC toolchain

\Client\Build\ARM\Out Contains the final application executable file generated by the sample test
application.

\Client\Build\VC\h265vdec
_pp_vc

Contains project files to build stand alone test application for decoder on
MSVC

\Client\Test\Inc Contains standalone test application header files

\Client\Test\Src Contains standalone test application source files

\Client
\Test\TestVecs\Config

Contains sample configuration files for H265 decoder

\Client
\Test\TestVecs\Input

Contains input test vectors

\Client
\Test\TestVecs\Output

Contains output generated by the codec. It is empty directory as part of release

Installation Overview

2-4

Sub-Directory Description

\Client
\Test\TestVecs\Reference

Contains read-only reference output to be used for cross-checking against
codec output

\Docs Contains user guide and release notes

\Inc Contains header files, which allow interface to the codec library.

\Lib Contains the library file named as h265vdec_pp_vc.lib, h265vdec_pp_lib.a for
decoding the compressed video data

Installation Overview

2-5

Figure 2-2 Component Directory Structure In case of Source Release

Table 2-2 below provides a description of the additional sub-directories, which are part of source
release package compared to Object release directories (as in Table 2-1)

Table 2-2 Component Directories in case of Source release

Sub-Directory Description

\Src\Build\ARM Contains project files needed to build codec with Linaro ARM GCC toolchain

\Src\Build\ARM\Obj Contains intermediate Object files generated for C files after building codec
with Linaro ARM GCC toolchain

\Src\Build\ARM\Obj\obj_as
m

Contains intermediate Object files generated for asm files after building codec
with Linaro ARM GCC toolchain

\Src\Build\VC\h265vdec_pp
_vc_lib

Contains project files needed to build codec with Microsoft Visual studio
compiler

\Src\Common Contains common source files needed to build codec

\Src\Inc Contains common header files needed to build codec

\Src\ISA\ARM\asm Contains hand written assembly files specific to ARM processor

\Src\OSAL\Inc Contains operating system specific header files.

\Src\OSAL\Src Contains operating system specific source files.

Installation Overview

2-6

2.3 Before Building the Algorithm Library and Sample Test Application

This codec is accompanied by a sample test application. To build the sample test
application, Linaro ARM GCC toolchain is required.

This version of the codec has been built with Linaro ARM GCC toolchain.

The version of the Linaro ARM GCC toolchain is 4.7-2013.03

2.3.1 Installing Linaro ARM GCC toolchain

Linaro ARM GCC toolchain version 4.7-2013.03 can be downloaded from the
following website:

https://releases.linaro.org/13.03/components/toolchain/binaries

Download and extract the below zip file to /home/user/ on Linux machine
gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux.tar.bz2

2.4 Building the Algorithm Library

Building algorithm library on Visual studio and Linux is specified in section 2.4.1
and 2.4.2 resepctively.

2.4.1 Building Algorithm Library on Visual studio

To build the algorithm library from source code in Visual Studio, follow these steps:

1) Verify that you have installed Microsoft Visual Studio 2008 Express
Edition development environment. Open the source project
“h265vdec_pp_vc_lib.vcproj” from
“ARM_001\Src\Build\VC\h265vdec_pp_vc_lib\”.

2) This project contains two build configurations “Debug” and “Release”.
“Debug” configuration will disable all the optimizations to debug the
code. “Release” configuration will enable all the optimizations without
exposing symbols. Please select “Debug” configuration.

3) Right click on the above project in Visual Studio IDE and select Build
Project to build the algorithm library.

4) The built library, h265vdec_pp_vc.lib is available in the ARM_001\Lib
sub-directory.

2.4.2 Building Algorithm Library on Linux

To build the algorithm library from source code on Linux, follow these steps:

1) Set the environment variable PATH to /bin path of ARM toolchain.

Example:

export PATH=$PATH:/home/user/gcc-linaro-arm-linux-gnueabihf-4.7-
2013.03-20130313_linux/bin

https://releases.linaro.org/13.03/components/toolchain/binaries

Installation Overview

2-7

2) Run the makefile to build the library.
ARM_001/Src/Build/ARM$ make

3) The built library, h265vdec_pp_lib.a is available in the ARM_001\Lib
sub-directory.

2.5 Building Sample Test Application

2.5.1 Building Sample Test Application on Visual Studio

The sample test application that accompanies this codec component will run in
Microsoft Visual Studio 2008 development environment. To build the sample test
application in Visual studio 2008 Express edition, follow these steps:

1) Verify that you have installed Microsoft Visual Studio 2008 Express
Edition development environment.

2) Verify that the following codec object libraries should exist in \Lib sub-
directory.

3) h265vdec_pp_vc.lib: H265 Decoder.

4) Start the Visual studio 2008 Express Edition.

5) Select File->Open->Project/Solution and open “h265vdec_pp_vc.sln”
located at “ARM_001\Client\Build\VC\h265vdec_pp_vc\”

6) Select Build->Build solution it builds the stand alone test application

2.5.2 Building the Sample Test Application on Linux

To build the sample test application on Linux, follow these steps:

1) Set the environment variable PATH to /bin path of ARM toolchain.

Example:

export PATH=$PATH:/home/user/gcc-linaro-arm-linux-gnueabihf-4.7-
2013.03-20130313_linux/bin

2) Ensure the codec library h265vdec_pp_lib.a is available in the sub
directory ARM_001/Lib

3) Run the makefile to generate the executable.
ARM_001/Client/Build/ARM$ make

4) The executable h265vdec_pp is generated in the
ARM_001/Client/Build/ARM/Out sub-directory.

Installation Overview

2-8

2.6 Configuration Files

This codec is shipped along with:

 Decoder configuration file (Testparams.cfg) – specifies the
configuration parameters used by the test application to configure
the Decoder.

2.6.1 Decoder Configuration File

The decoder configuration file, Testparams.cfg contains the configuration
parameters required for the decoder. The Testparams.cfg file is available in the
\Client\Test\TestVecs\Config sub-directory. A sample Testparams.cfg file is as
shown.

<ParameterName> = <ParameterValue> # Comment

Parameters

#################################### No. of threads ######################

NumThreads = 1

################################### Files ################################

InputFile = ..\..\..\Test\TestVecs\Input\airshow_352x288.265

OutputFile = ..\..\..\Test\TestVecs\Output\airshow_352x288.yuv

ReferenceFile = ..\..\..\Test\TestVecs\Reference\REF_airshow_352x288.yuv

ImageWidth = 352 # Image width in Pels

ImageHeight = 288 # Image height in Pels

FramesToDecode = 10 # Number of frames to be coded

InputLowDelayMode = 0 # 0->Entire frame, 1 ->Slice mode (Data sync

 mode)

OutputLowDelayMode = 0 # 0->Entire frame, 1 ->Number of CTU rows

 (Data sync mode)

NumCTURows = 0 # 0->Non-DataSync mode, Non-Zero positive when

 OutputLowDelayMode is set to Data sync mode

MetadataType = 0 # 0->No Metadata, 1-SEI, 2-VUI 3-SEI and VUI

Dynamic Parameters

DecodeHeader = 0 # 0-> Disable decode header mode, 1-> Enable

 decode header mode

Installation Overview

2-9

2.7 Running Sample Test Application

2.7.1 Running the Sample Test Application on Visual Studio

To run sample test application visual studio 2008 follow these steps:

1) Start the Visual studio 2008 Express Edition.

2) Select File->Open->Project/Solution and open “h265vdec_pp_vc.sln”
located at “ARM_001\Client\Build\VC\h265vdec_pp_vc\”

3) Make sure code is built as specified in section 2.5.1.

4) Select Debug->Debug solution (F5) to run test application.

5) The sample test application takes the input files stored in the
ARM_001\Client\Test\TestVecs\Input sub-directory, runs the codec,
and uses the reference files stored in the
ARM_001\Client\Test\TestVecs\Reference sub-directory to verify that
the codec is functioning as expected.

6) On successful completion, the application displays the following
messages for every display frame:

7) "Frame number <number> dumped"

8) The output is written to the specified file (this can then be manually
compared against the reference).

9) On failure, the application prints the error message and exits.

2.7.2 Running the Sample Test Application on Linux

To run the sample test application on Linux, follow these steps:

1) Verify that executable is created in “ARM_001/Client/Build/ARM/Out”
folder, after following steps in section 2.5.2.

2) Move the executable file h265vdec_pp from
ARM_001/Client/Build/ARM/Out folder to the device.

3) Move the configuration file Testparams.cfg from
ARM_001/Client/Test/TestVecs/Config folder to the device.

4) Move the input bit-stream file from
ARM_001/Client/Test/TestVecs/Input folder to the device.

5) Move the reference file from
ARM_001/Client/Test/TestVecs/Reference folder to the device.

6) Ensure configuration file Testparams.cfg and executable file
h265vdec_pp are in the same path of the device.

7) After moving the files to the device set the path of the InputFile,
OutputFile and ReferenceFile accordingly in the configuration file
Testparams.cfg.

Installation Overview

2-10

8) Run the sample test application that takes the input file and uses the
reference file to verify that the codec is functioning as expected. If the
reference file specified in the configuration file does not exist, it will not
compare with the reference, but just save the decoded output.

a) Command for running the sample test application:

./h265vdec_pp

9) On successful completion, the application displays the following
messages for every display frame:

" Frame number <number> dumped "

10) On failure, the application prints the error message and exits.

2.8 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application that
accompanies this codec component.

 Topic Page

3.1 Overview of the Test Application 3-2

3.2 Frame Buffer Management 3-4

Sample Usage

3-2

3.1 Overview of the Test Application

The source files for this application are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories.

Figure 3-1 Test Application Sample Implementation

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Control and Decode call

 Algorithm instance deletion

Sample Usage

 3-3

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to be set at
initialization. For example, a video codec requires parameters such as video height,
video width and so on. The test application obtains the required parameters from the
Decoder configuration files.

In this logical block, the test application does the following:

1) Opens Decoder configuration file (Testparams.cfg), input file, and
output/reference files.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm. For more
details on the configuration files, see section 2.7.

3) Sets the tPP_H265_CreateParams structure based on the values it

reads from the Testparams.cfg file.

4) Reads the input bit-stream into the application input buffer.

After successful completion of these steps, the test application does the algorithm
instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
implemented by the codec are called in sequence:

1) gPP_H265_QueryMemoryRequirements() - To query the algorithm

about the number of memory records it requires and their sizes.

2) MEMMGR_AllocMemoryRequirements() - To allocate the memory as

per the algorithm request. Memory is allocated by the test application.

3) gPP_H265_InitializeDecoder() - To initialize the algorithm with

the memory structures provided by the application.

3.1.3 Control and Decode Call

After algorithm instance creation and initialization, the test application does the
following:

1) Sets the dynamic parameters (if they change during run-time) by

calling the vSet() function.

2) Sets the input and output buffer descriptors required for the

vDecode() function call. The input and output buffer descriptors are

obtained by calling the vGet() function.

3) Calls the vDecode() function to decode a single frame of data. The

behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.6).

Sample Usage

3-4

Once the algorithm is initialized, there can be any ordering of control calls

(vGet(), vSet()) and decode call (vDecode()) functions. The following APIs

are called in sequence:

1) vGet() and vSet() (optional) - To query the algorithm on status or

setting of dynamic parameters.

2) vDecode() - To call the Decoder with appropriate input/output buffer

and arguments information.

vReset() is called to reset the algorithm. All the fields in the internal data

structures are reset and all internal buffers are flushed.

The do-while loop encapsulates frame level vDecode() call and updates the input

buffer pointer every time before the next call. The do-while loop breaks off either
when an error condition occurs or when the input buffer exhausts.

3.1.4 Algorithm Instance Deletion

Once decoding is complete, the test application must delete the current algorithm
instance. The following API is is called:

1) MEMMGR_DeAllocMemory() - To free up the memory allocated for the

algorithm.

3.2 Frame Buffer Management

3.2.1 Frame Buffer Input and Output

For each decode call, one frame buffer is provided with an unique buffer ID (bufId).

After decode call this buffer is filled with the decoded data and it is either locked or
given for display. When the codec gives the buffer(s) for display, its ID should be

updated in free buffer ID array (bufId[]) so that application release the buffer(s).

There is no distinction between DPB and display buffers. Application needs to ensure
that it does not overwrite the buffers that are locked by the codec.

Note :

 Application can take the information retured by the function

(vGet()) and change the size of the buffer passed in the next

process call.

 For the first decode call, nMaxHeight and nMaxWidth are

used for calculating buffer size. For subsequent decode calls
(That is, after the first decode call, when the decoder gets to
know the actual height and width from the headers) the actual
height and width are used. Hence, this can be optionally used
by the application to re allocate the buffer sizes, if required.

Sample Usage

 3-5

The frame buffer pointer given by the application and that returned by the algorithm

may be different. bufId provides the unique ID to keep a record of the buffer given

to the algorithm and released by the algorithm.

3.2.2 Frame Buffer Management by Application

The application framework can efficiently manage frame buffers by keeping a pool
of free frames from which it gives empty frames to the decoder on request.

The sample application also provides a prototype for managing frame buffers. It
implements the following functions, which are defined in file
h265vdec_pp_buffer_mngr.c provided along with test application.

 BUFFMGR_Init() - BUFFMGR_Init function is called by the test

application to initialize the global buffer element array to default
and to allocate the required number of memory data for reference
and output buffers. The maximum required DPB size is defined by
the supported profile and level.

 BUFFMGR_ReInit() - BUFFMGR_ReInit function allocates global

luma and chroma buffers and allocates entire space to the first
element. This element will be used in the first frame decode. After
the picture height and width and its luma and chroma buffer
requirements are obtained, the global luma and chroma buffers are
re-initialized to other elements in the buffer array.

 BUFFMGR_GetFreeBuffer() - BUFFMGR_GetFreeBuffer

function searches for a free buffer in the global buffer array and
returns the address of that element. Incase none of the elements

are free, then it returns NULL.

 BUFFMGR_ReleaseBuffer() - BUFFMGR_ReleaseBuffer

function takes an array of buffer-IDs which are released by the test
application. 0 is not a valid buffer ID, hence this function moves
until it encounters a buffer ID as zero or it hits the

MAX_BUFF_ELEMENTS.

Video Decode
 Thread Free

Frame
Buffers

Post
Processing or
Display

Subsystem

Video Decoder

API

GetFreeBuffer()

ReleaseBuffer()

Framework Algorithm

Figure 3-2 Interaction of Frame Buffers Between Application and Framework

Sample Usage

3-6

 BUFFMGR_DeInit()- BUFFMGR_DeInit function releases all

memory allocated by buffer manager.

 4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and interfaces
functions used in the codec component.

 Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-5

4.3 Default and Supported Values of Parameters 4-13

4.4 Interface Functions 4-14

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either macros
and/or enumerated C data types. For each symbolic constant, the semantics or
interpretation of the same is also provided.

4.1.1 Common Data types

This section includes common enumerated data types:

Table 4-1 List of Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant
Name

Description or Evaluation

tPP_DecodeMode PP_H265_DECODE_ACC

ESSUNIT

Decode entire access unit including all
the headers.

PP_H265_PARSE_HEAD

ER

Decode only header.

tPP_MetadataType PP_H265_METADATAPL

ANE_NONE

Used to indicate no metadata is
requested.

PP_H265_METADATA_S

EI_DATA

Used to indicate that SEI info metadata
is requested.

PP_H265_METADATA_V

UI_DATA

Used to indicate that VUI info metadata
is requested.

tPP_InputLowDelayMod

e

PP_H265_ENTIREINPU

TFRAME

Used to indicate input low delay mode
is in entire frame level mode.

PP_H265_SLICEMODE Used to indicate input low delay mode
is in slice level mode.

tPP_OutputLowDelayMo

de

PP_H265_ENTIREOUTP

UTFRAME

Used to indicate output low delay mode
is in entire frame level mode.

PP_H265_NUMCTUROWS Used to indicate output low delay mode
is in CTU rows level mode.

API Reference

 4-3

Table 4-2 Decoder Error Codes

Group or
Enumeration Class

Symbolic Constant
Name

Description or Evaluation

PP_H265VDEC_Err

ors

PP_H265_ERR_UNSU

PPORTED

This error is set when the decoder does not support a
specific parameter.

 PP_H265_ERR_NO_N

ALU_BEGIN_FOUND

This error is set when start code used to identify the
beginning of a NAL unit is not found.

 PP_H265_ERR_NO_N

ALU_END_FOUND

This error is set when start code used to identify the end
of a NAL unit is not found.

 PP_H265_ERR_INVA

LID_NAL_UNIT_TYP

E

This error is set when the NAL unit type is not a valid
type.

 PP_H265_ERR_INSU

FFICIENT_BUFFER

This error is set when the input data provided is not
sufficient to produce one frame of data.

 PP_H265_ERR_DATA

_SYNC

This error is set when the output data sync mode is
enabled and the picture is having different display and
decoding order.

 PP_H265_ERR_CRIT

ICAL

This error is set when the bit-stream has an error and
further decoding is not possible.

 PP_H265_ERR_NO_V

PS

This error is set when the bit-stream has no VPS
header.

 PP_H265_ERR_VPS

This error is set when the bit-stream has an error in
VPS header.

 PP_H265_ERR_NO_S

PS

This error is set when the bit-stream has no SPS
header.

 PP_H265_ERR_SPS

This error is set when the bit-stream has an error in
SPS header.

 PP_H265_ERR_NO_P

PS

This error is set when the bit-stream has no PPS
header.

 PP_H265_ERR_PPS

This error is set when the bit-stream has an error in
PPS header.

 PP_H265_ERR_SLIC

ELOSS

This error is set when a slice is missing in the bit-
stream.

API Reference

4-4

Group or
Enumeration Class

Symbolic Constant
Name

Description or Evaluation

 PP_H265_ERR_SLIC

EHDR

This error is set when the bit-stream has an error in
Slice header.

 PP_H265_ERR_SLIC

EDATA

This error is set when the bit-stream has an error in
Slice data.

 PP_H265_ERR_RAND

OM_ACCESS_SKIP

This error is set when the bit-stream has an error in poc
id around random access point.

 PP_H265_ERR_REFP

IC_NOT_FOUND

This error is set when the reference picture is not found
from the decoder picture buffer.

 PP_H265_ERR_META

_DATA

This error is set when the bit-stream has an error in SEI
or VUI header.

4.1.2 Common Multi-Core Data types

This section describes common data types used for Multithread operations.
Following data types are described in current section.

 eH265_multiThreadTask

Group or Enumeration
Class

Symbolic Constant Name Value Description or Evaluation

eH265_multiThreadTask kH265_TASK_MASTER 0 Master thread task ID.

kH265_TASK_SLAVE 1 Slave thread task ID.

API Reference

 4-5

4.2 Data Structures

This section describes the defined data structures that are common across codec
classes. These data structures can be extended to define any implementation
specific parameters for a codec component.

4.2.1 Common Data Structures

This section includes the following common data structures:

 tPPInFrame_Buff

 tPPOutFrame_Buff

 tPPInput_BitStream

 tPPBaseDecoder

 tPP_H265_CreateParams

 tPP_H265_DynamicParams

 tPPDecParam_Status

 tPPYUVPlanarDisplayFrame

 tPPBaseVideoFrame

API Reference

4-6

4.2.1.1 tPPInFrame_Buff

║ Description

This structure defines the input frame buffer details.
║ Fields

Field Data Type Input/
Output

Description

*buf[] tPPu8 Input Array of input buffer pointers

bufId tPPi32 Input Application passes this ID to algorithm and decoder
will attach this ID to the corresponding output frames.
This is useful in case of re-ordering (for example, B
frames). If there is no re-ordering, bufId field in the

tPPOutFrame_Buff data structure will be same as

this ID.

4.2.1.2 tPPOutFrame_Buff

║ Description

This structure defines the output frame buffer details.
║ Fields

Field Data Type Input/
Output

Description

bufId[PP_MAX_REF

_FRAME_COUNT]

tPPi32 Output This is an array of buffer IDs corresponding
to the frames that have been unlocked in the
current decode call.

4.2.1.3 tPPInput_BitStream

║ Description

This structure defines the input bitstream buffer details.
║ Fields

Field Data Type Input/
Output

Description

*nBitStream tPPu8 Input Pointer to input bitstream buffer.

nBufLength tPPi32 Input Length of the input bitstream buffer in bytes.

API Reference

 4-7

Note:

 For HEVC Decoder, the buffer details are:

 Number of input buffer required is 1.

 Number of output buffers required is 3 (one for Y plane, 1 for Cb
and 1 for Cr) , if no metadata is requested by the application.

 If metadata is requested by the application, then see the
Appendix A for buffer details.

 For frame mode of operation, there is no restriction on input
buffer size except that it should contain atleast one frame of
encoded data.

4.2.1.4 tPPBaseDecoder

║ Description

This structure contains pointers to all the decoder interface functions.
║ Fields

Field Data Type Input/
Output

Description

vDecode (*)() Input Pointer to the decode function. See section 4.4 for
more information.

vReset (*)() Input Pointer to the reset function. See section 4.4 for
more information

vSet (*)() Input Pointer to the set function which sets parameters.
See section 4.4 for more information

vGet (*)() Input Pointer to the get function which gets the parameters
information. See section 4.4 for more information

API Reference

4-8

4.2.1.5 tPP_H265_CreateParams

║ Description

This structure defines the creation parameters for an algorithm instance object. For
the default and supported values, see Table 4-3.

║ Fields

Field Data Type Input/
Output

Description

nMaxWidth tPPi32 Input Maximum video width to be supported in
pixels.

nMaxHeight tPPi32 Input Maximum video height to be supported in
pixels.

nNumThreads tPPi32 Input Total number of threads.

nInputLowDelayMode tPPi32 Input Input low delay interface mode. When it is
set, decoder takes input bitstream data at
slice level/fixed length through call back
function. In this version of codec, fixed
length mode is not supported.

nOutputLowDelayMode tPPi32 Input Output low delay interface mode. When it is
set, decoder gives output data at row level
through call back function.

nNumCTURows tPPi32 Input Number of output CTU rows. This parameter
is valid only when

nOutputLowDelayMode is set to

PP_H265_NUMCTUROWS

nMetadataType tPPi32 Input Type of metadata. See

eH265_MetadataType enumeration for

details.

API Reference

 4-9

4.2.1.6 tPP_H265_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance object. For
the default and supported values, see Table 4-4

║ Fields

Field Data Type Input/
Output

Description

nDecodeHeader tPPi32 Input If the field is set to:

 0 (PP_H265_DECODE_ACCESSUNIT) -

Decode entire frame including all the
headers

 1 (PP_H265_PARSE_HEADER) - Decode

only header

fOutputLowDelay

Fxn

gH265_Data

SyncPutFxn

Input Function pointer to produce output frame data at

sub frame level (Data sync call back function

pointer for OuputLowDelayFunction).

fInputLowDelayF

xn

gH265_Data

SyncGetFxn

Input Function pointer to receive partial bitstream data

at sub frame level (Data sync call back

function pointer for

InputLowDelayFunction).

4.2.1.7 tPPDecParam_Status

║ Description

This structure defines parameters that describe the status of an algorithm instance
object.

║ Fields

Field Data Type Input/
Output

Description

nTotalFrameSize tPPi32 Output Frame size in pixels.

nPicWidth tPPi32 Output Picture width in pixels.

nPicHeight tPPi32 Output Picture height in pixels.

nProfile tPPi32 Output Profile id.

nInputLowDelayMod

e

tPPi32 Output Input low delay interface mode. When it is
set, decoder takes input bitstream data at
slice level/fixed length through call back
function.

nOutputLowDelayMo

de

tPPi32 Output Output low delay interface mode. When it is
set, decoder gives output data at row level
through call back function.

API Reference

4-10

Field Data Type Input/
Output

Description

nNumCTURows tPPi32 Output Number of output CTU rows.

nMetadataType tPPi32 Output Type of metadata. See

eH265_MetadataType enumeration for

details.

nDecodeHeader tPPi32 Output If the field is set to:

 0 (PP_H265_DECODE_ACCESSUNIT)

- Decode entire frame including all the
headers.

 1 (PP_H265_PARSE_HEADER) -

Decode only header.

fOutputLowDelayFx

n

gH265_DataSync

PutFxn

Output Function pointer to produce output frame

data at sub frame level (Data sync call

back function pointer for

OuputLowDelayFunction).

fInputLowDelayFxn gH265_DataSync

GetFxn

Output Function pointer to receive partial bitstream

data at sub frame level (Data sync call

back function pointer for

InputLowDelayFunction).

nError tPPi32 Output Indicates the error type, if any.

4.2.1.8 tPP_H265_DataSyncDesc

║ Description

This structure provides the descriptor for the chunk of data being transferred in one

call to InputLowDelayFunction or OutputLowDelayFunction.

║ Fields

Field Data Type Input/
Output

Description

nNumBlocks tPPi32 Output Number of blocks given out by decoder in output
data sync call back function. Each block is
having 16 lines of video. nNumBlocks =

(k*tpp_H265_CreateParams::nNumCTURo

ws) where k = 1, 2, or 3 depending on CTU size

(16x16, 32x32, or 64x64) repectively.
Example: if nNumCTURows = 2
nNumBlocks = 2 (CTU size: 16x16)
nNumBlocks = 4 (CTU size: 32x32)
nNumBlocks = 8 (CTU size: 64x64)

nSize tPPi32 Input Size of the input bitstream data provided to
decoder in input data sync call back function.

API Reference

 4-11

4.2.1.9 tPPYUVPlanarDisplayFrame

║ Description

This structure gives the display frame information.

║ Fields

Field Data Type Input/
Output

Description

nBaseFrame tPPBaseVideo

Frame

Output Base video frame structure with frame size and
padding information.

*pLum tPPu8 Output Pointer to luma display buffer

*pCb tPPu8 Output Pointer to chroma display buffer (Cb)

*pCr tPPu8 Output Pointer to chroma display buffer (Cr).

4.2.1.10 tPPBaseVideoFrame

║ Description

This structure contains frame size and padding information.
║ Fields

Field Data Type Input/
Output

Description

nWidth tPPi32 Output Actual width of the video frame.

nHeight tPPi32 Output Actual height of the video frame.

nIsPadded tPPi32 Output Flag to indicate whether frame is padded or not.

nExWidth tPPi32 Output This field is used to indicate the padded width. It is
used as frame pitch to store the frame.

API Reference

4-12

4.2.2 Common Multi-thread Data Structures
This section descibes below data structures which are used for multicore
operations. These data structures are common across all codecs.

 tPPMultiThreadParams

4.2.2.1 tPPMultiThreadParams

║ Description

This structure contains control parameters that are used for multi-thread program
flow. All the fields must be set by the application before calling codec instance
creation.

║ Fields

Field Data Type Input/
Output

Description

nThreadID tPPi32 Input Thread identification variable.

nTaskID eH265_multiThreadTask Input Thread task identification variable. See

eH265_multiThreadTask enumeration

for more details.

nNumThreads tPPi32 Input Total number of threads.

API Reference

 4-13

4.3 Default and Supported Values of Parameters

This section provides the default and supported values for the following data
structures:

 tPP_H265_CreateParams

 tPP_H265_DynamicParams

Table 4-3 Default and Supported Values for tPP_H265_CreateParams

Field Default Value Supported Value

nMaxWidth 1920 64 < = nMaxWidth < = 4096

nMaxHeight 1088 64 < = nMaxHeight < = 2176

nNumThreads 1 1 to 4

nInputLowDelayMode PP_H265_ENTIREINP

UTFRAME

 PP_H265_ENTIREINPUTFRAME

 PP_H265_SLICEMODE

In this version of codec, fixed length mode is not
supproted

nOutputLowDelayMod

e

PP_H265_ENTIREOUT

PUTFRAME

 PP_H265_ENTIREOUTPUTFRAME

 PP_H265_NUMCTUROWS

nNumCTURows Don’t Care Any positive number when

nOutputLowDelayMode is set to

PP_H265_NUMCTUROWS

nMetadataType PP_H265_METADATAP

LANE_NONE

 PP_H265_METADATAPLANE_NONE

 PP_H265_METADATA_SEI_DATA

 PP_H265_METADATA_VUI_DATA

Note:

 During codec creation, maxHeight and maxWidth as specified in
above table are allowed. Note that maxHeight and maxWidth should
be always greater than or equal to image width and image height.

Table 4-4 Default and Supported Values for tPP_H265_DynamicParams

Field Default Value Supported Value

nDecodeHeader PP_H265_DECODE_AC

CESSUNIT

 PP_H265_DECODE_ACCESSUNIT

 PP_PARSE_HEADER

fOutputLowDelayFxn NULL Valid (Non-NULL) function pointer

fInputLowDelayFxn NULL Valid (Non-NULL) function pointer

API Reference

4-14

4.4 Interface Functions

This section describes the Application Programming Interfaces (APIs) used in the
H.265 Decoder. The APIs are logically grouped into the following categories:

 Creation – gPP_H265_QueryMemoryRequirements(),
MEMMGR_AllocMemoryRequirements()

 Initialization – gPP_H265_InitializeDecoder()

 Control – vGet(), vSet(), vReset()

 Data processing – vDecode()

 Termination – MEMMGR_DeAllocMemory()

You must call these APIs in the following sequence:

1) gPP_H265_QueryMemoryRequirements()

2) MEMMGR_AllocMemoryRequirements()

3) gPP_H265_InitializeDecoder()

4) vDecode()

5) MEMMGR_DeAllocMemory()

vGet() and vSet() can be called any time after calling the

gPP_H265_InitializeDecoder() API.

vReset() is called to reset the algorithm. All the fields in the internal data

structures are reset and all internal buffers are flushed.

API Reference

 4-15

4.4.1 Creation APIs

Creation APIs are used to create an instance of the component. The term creation
could mean allocating system resources, typically memory.

║ Name

gPP_H265_QueryMemoryRequirements() – determine the attributes of all buffers

that an algorithm requires
║ Synopsis

tPPResult gPP_H265_QueryMemoryRequirements(

tPPQueryMemRecords *apQueryMemRecords,

tPP_H265_CreateParams *apCreateParams,

tPPu32 *apNumMemEntries);

║ Arguments

tPPQueryMemRecords *apQueryMemRecords; /* output array of

memory records */

tPP_H265_CreateParams *apCreateParams; /* algorithm

specific attributes */

tPPu32 *apNumMemEntries; /* Number of buffers (memtab

entries) required */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

gPP_H265_QueryMemoryRequirements() returns a table of memory records that

describe the allotedHandle address and size of all buffers required by the algorithm.
After calling this function, size field of the memory records structure is filled up by the

algorithm. If successful, this function returns SC_PP_SUCCESS indicating the size of all

the required buffers are updated properly by the algorithim otherwise it returns
EC_PP_FAILURE.

The first argument to gPP_H265_QueryMemoryRequirements()is a pointer to a

memory space of size PP_H265DEC_MAX_MEMTAB * sizeof

(tPPQueryMemRecords) where PP_H265DEC_MAX_MEMTAB is the maximum

number of buffers and tPPQueryMemRecords is the buffer-descriptor structure.

The second argument to gPP_H265_QueryMemoryRequirements()is a pointer to

a structure that defines the creation parameters.

The third argument to gPP_H265_QueryMemoryRequirements()is a variable

which specifies the number of buffers required by the algorithm.
║ See Also

MEMMGR_AllocMemoryRequirements()

║ Name

API Reference

4-16

MEMMGR_AllocMemoryRequirements() – allocate memory as per the algorithm

request
║ Synopsis

tPPResult MEMMGR_AllocMemoryRequirements(

tPPQueryMemRecords *apQueryMemRecords,

tPPu32 aNumMemTabEntries);
║ Arguments

tPPQueryMemRecords *apQueryMemRecords; /* array of memory

records */

tPPu32 aNumMemTabEntries; /* Number of buffers (memtab

entries) requested by the algorithm */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_OUT_OF_MEMORY; /* status indicating insufficient

memory */

║ Description

MEMMGR_AllocMemoryRequirements() allocates memory as per the algorithm

request. If all the buffers are allocated as per the request, this function returns

SC_PP_SUCCESS otherwise it returns EC_PP_OUT_OF_MEMORY indicating buffer

allocation failure.

The first argument to MEMMGR_AllocMemoryRequirements()is a pointer to a

memory space of size PP_H265DEC_MAX_MEMTAB * sizeof

(tPPQueryMemRecords) where PP_H265DEC_MAX_MEMTAB is the maximum

number of buffers and tPPQueryMemRecords is the buffer-descriptor structure.

The second argument to gPP_H265_QueryMemoryRequirements()is a variable

which specifies the number of buffers requested by the algorithm.

After calling this function, all the buffers are allocated and the corresponding buffer
pointers are updated to memory records buffer descriptor structure.

║ See Also

gPP_H265_QueryMemoryRequirements(), MEMMGR_DeAllocMemroy()

API Reference

 4-17

4.4.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The initialization

parameters are defined in the tPP_H265_CreateParams structure (see section 4.2

for details).

║ Name

gPP_H265_InitializeDecoder() – initialize an algorithm instance

║ Synopsis
tPPResult gPP_H265_InitializeDecoder(

 tPPBaseDecoder **apBase,

tPPQueryMemRecords *apQueryMemRecords,

tPP_H265_CreateParams *apCreateParams);
║ Arguments

tPPBaseDecoder **apBase; /* pointer to algorithm instance

handle*/

tPPQueryMemRecords *apQueryMemRecords; /* pointer to

memory records buffer*/

tPP_H265_CreateParams *apCreateParams; /*algorithm init

parameters */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

gPP_H265_InitializeDecoder() performs all initializations necessary to complete

the run time creation of an algorithm instance object. After a successful return from

gPP_H265_InitializeDecoder(), the instance object is ready to be used to

process data. This function returns SC_PP_SUCCESS indicating the algorithm

initialization is done successfully otherwise it returns EC_PP_FAILURE.

The first argument to gPP_H265_InitializeDecoder() is a pointer to algorithm

instance handle. This value is initialized to the allotedHandle field of
apQueryMemRecords[0].

The second argument is a pointer to table of memory records that describe the
allotedHandle address and size of all buffers allocated for an algorithm instance. The
number of initialized records is identical to the number updated by the API
gPP_H265_QueryMemoryRequirements().

The last argument is a pointer to a structure that defines the algorithm initialization
parameters.

API Reference

4-18

4.4.3 Control API

Control API is used for controlling the functioning of the algorithm instance during
run-time. This is done by changing the status of the controllable parameters of the
algorithm during run-time.

║ Name

vSet() – change run time parameters and query the status

║ Synopsis

tPPResult (*vSet) (tPPBaseDecoder *apBase, tPPu32 anFlag,

tPPi32 anVal, tPP_H265_DynamicParams *apDynamicParams);

║ Arguments

tPPBaseDecoder *apBase; /* algorithm instance handle */

tPPu32 anFlag; /* specifies the parameter to be set */

tPPi32 anVal; /* specifies the value of the parameter */

tPP_H265_DynamicParams *apDynamicParams; /* pointer to dynamic

parameters structure */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

This function sets the run time parameters of an algorithm instance. vSet() must

only be called after a successful call to gPP_H265_InitializeDecoder(). When

the parameter is set successfully, this function returns SC_PP_SUCCESS otherwise it

returns EC_PP_FAILURE.

The first argument to vSet() is a handle to an algorithm instance.

The second argument specifies the control command for setting the corresponding
parameter.

When it is set to PP_SET_DPB_FLUSH, dpb flush flag is set.

When it is set to PP_SET_DECODE_HDR, decoder header parameter is set.

When it is set to PP_SET_RES_INV, width and height parameters are reset.

When it is set to PP_SET_DATASYNC, input or output or both low delay interface call

back function pointers are set.

The third argument is the value used for setting the parameter when anFlag is set

to PP_SET_DPB_FLUSH and PP_SET_DECODE_HDR. In other cases it is ignored.

The last argument is a pointer to dynamic parameters structure.
║ See Also

vGet()

API Reference

 4-19

║ Name

vGet() – query the status of the run time parameters

║ Synopsis

tPPResult (*vGet) (tPPBaseDecoder *apBase, tPPu32 anFlag,

void *apVal);

║ Arguments

tPPBaseDecoder *apBase; /* algorithm instance handle */

tPPu32 anFlag; /* specifies the parameter to be get */

void *apVal; /* pointer to the parameter value or

 pointer to the tPPDecParam_Status */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

This function queries the status of the algorithm’s parameters. vGet() must only

be called after a successful call to gPP_H265_InitializeDecoder(). When the

parameter is get successfully, this function returns SC_PP_SUCCESS otherwise it

returns EC_PP_FAILURE.

The first argument to vGet() is a handle to an algorithm instance.

The second argument is the parameter to be queried.

When it is set to PP_GET_PARAMSTATUS, all the tPP_H265_CreateParams and

tPP_H265_DynamicParams are updated to tPPDecParam_Status structure.

When it is set to PP_GET_BUFSTATUS, buffer status is updated.

When it is set to PP_GET_ERRORSTATUS, error status is updated.

The third argument is the variable to which status of the parameter is updated.
║ See Also

vSet()

API Reference

4-20

║ Name

vReset() – reset the algorithm

║ Synopsis

tPPResult (*vReset) (tPPBaseDecoder *apBase);

║ Arguments

tPPBaseDecoder *apBase; /* algorithm instance handle */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

This function resets the algorithm. All the field in the internal data structures are
reset and all internal buffers are flushed. When the algorithm is reset successfully,
this function returns SC_PP_SUCCESS otherwise it returns EC_PP_FAILURE.

The argument to vReset() is a handle to an algorithm instance.

API Reference

 4-21

4.4.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

vDecode() – basic decoding call

║ Synopsis

tPPResult (*vDecode)(tPPBaseDecoder *apBase,

tPPInput_BitStream *apInBitStream, tPPInFrame_Buff

*apH265_dec_InBuff, tPPOutFrame_Buff *apH265_dec_OutBuff,

tPPYUVPlanarDisplayFrame *apFrame, tPPMultiThreadParams

*nMTParam);

║ Arguments

tPPBaseDecoder *apBase; /* algorithm instance handle */

tPPInput_BitStream *apInBitStream; /* input bitstream

structure */

tPPInFrame_Buff *apH265_dec_InBuff; /* input buffer

structure */

tPPOutFrame_Buff *apH265_dec_OutBuff; /* output buffer ID

structure */

tPPYUVPlanarDisplayFrame *apFrame; /* output buffer

structure for display */

tPPMultiThreadParams *nMTParam; /* multithread param

structure */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

This function does the basic decoding.

The first argument to vDecode() is a handle to the algorithm instance.

The second argument is a pointer to the input bitstream structure. This structure has
information about bitstream buffer pointer and the buffer length (see

tPPInput_BitStream data structure for details).

The third argument is a pointer to the input buffer data structure. (see

tPPInFrame_Buff data structures for details). This structure has the pointer to the

buffer allocated by the buffer manager to the decoder. The decoder stores the current
decoded frame in this location.

The fourth argument is a pointer to the output buffer data structure (see

tPPOutFrame_Buff data structures for details). This structure has the pointer to the

buffer to be freed by the decoder. The application sets ‘0’ in these locations as
BuffIDs. The decoder sets the BuffID of the buffer which needs to be freed.

The fifth argument is a pointer to the display buffer data structure (see

tPPYUVPlanarDisplayFrame data structures for details). This structure has the

display buffer pointers for the Y, U, and V components, actual width and height of the
video frame, padding information, and width of the padded buffer.

API Reference

4-22

The last argument is a pointer to the multithread parameters structure (see

tPPMultiThreadParams data structures for details). This structure gives the

information about number of threads, thread ID and thread task ID (master or slave).

API Reference

 4-23

4.4.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

║ Name

MEMMGR_DeAllocMemory() – free up all the buffers allocated for the algorithm.

║ Synopsis
tPPResult MEMMGR_DeAllocMemory(

tPPQueryMemRecords *apQueryMemRecords);

║ Arguments

tPPQueryMemRecords *apQueryMemRecords; /* pointer to a

buffer having an array of memory records */

║ Return Value

SC_PP_SUCCESS; /* status indicating success */

EC_PP_FAILURE; /* status indicating failure */

║ Description

All the buffers allocated by the MEMMGR_AllocMemoryRequirements() are freed

by the MEMMGR_DeAllocMemory()function. If successful, it returns

SC_PP_SUCCESS indicating all the buffers are freed otherwise it returns
EC_PP_FAILURE.

The argument is a pointer to table of memory records that describe the
allotedHandle address and size of all buffers allocated for algorithm instance.

API Reference

4-24

This page is intentionally left blank

 5-1

Chapter 5

Frequently Asked Questions

This chapter provides answers to few frequently asked questions related to using
this decoder.

5.1 Code Build and Execution

5.2 Tools Version

Question Answer

What are the tools and versions
used to run the standalone
codec?

To run the codec on standalone setup, below tools are used
Linaro ARM GCC toolchain is 4.7-2013.03

5.3 Algorithm Related

Question Answer

 Does codec support
XDM/XDAIS interface?

Codec does not support XDM/XDAIS interface

What are the profiles supported
in this version of decoder?

This version of decoder supports Main Profile and Main Still Profile.

What is the maximum level
supported by this decoder?

The decoder supports the level up to 5.

What are the output frame
formats supported?

This version supports only YUV420 planar output buffer format.

What are the resolutions
supported?

This version supports video resolutions up to 4096x2176 which are
multiple of 2.

Question Answer

Application returns an error
saying “Unable to open
Input File” while running the
host test application

Ensure that input file (*.265) path provided is correct in decoder configuration
file. If the application is accessing input file from network, ensure that the
network connectivity is stable.

Frequently Asked Questions

5-2

Question Answer

Does this version of decoder
support decoding multiple slices
in a frame?

Yes.

Does this version of decoder
support decoding multiple tiles in
a frame?

Yes.

Does this version of decoder
support wavefront parapllel
processing?

Yes.

Does this version of decoder
support B frames decoding?

Yes.

Does this version of decoder
support SEI and VUI parmeters
decoding?

Yes.

Can the decoder be run on any
OS?

No. It runs on armv7 architecture based ARM platforms with Linux kernel.

Does this version of decoder
support 10-bitdepth?

No.

Does this version of decoder
support low delay interface
(Data sync)?

Yes. It supports low delay interface (data sync) at both input and output. In
input low delay interface slice mode is supported and fixed length mode is
not supported.

What is granularity of the
decode call?

The decoder supports only frame level decoding API.

The decode call returns error,
what are the possible reasons?

The following are few of reasons for the error:
The input or output pointers are null
The input or output buffer sizes are not sufficient or incorrect
Run time error occurred during decoding of the frame

 A-1

Appendix A

Meta Data Support

This version of the decoder supports writing out the parsed SEI and VUI data into
application provided buffers. If SEI and VUI is present in the stream for this frame,
the parsed data is given back to the application.

This feature can be enabled/disabled through create time parameters

tPP_H265_CreateParams::nMetadataType.

nMetadataType can take following values.

If user wants to get the SEI data, then

tPP_H265_CreateParams::nMetadataType should be set to

PP_H265_METADATA_SEI_DATA.

If user wants to get the VUI data, then

tPP_H265_CreateParams::nMetadataType should be set to

PP_H265_METADATA_VUI_DATA.

If both SEI and VUI data are needed, then

tPP_H265_CreateParams::nMetadataType should be set to
(PP_H265_METADATA_SEI_DATA | PP_H265_METADATA_VUI_DATA)

If user does not want to use any meta data then

tPP_H265_CreateParams::nMetadataType should be set to

PP_H265_METADATAPLANE_NONE.

Application provides the buffers required for metadata.

 If both SEI and VUI data is requested during create, then the number of
input buffers needed is 5 (3 for Y, U, and V data, one each for SEI and
VUI).

Enumeration Value

PP_H265_METADATAPLANE_NONE 0

PP_H265_METADATA_SEI_DATA 1

PP_H265_METADATA_VUI_DATA 2

Meta Data Support

A-2

 If only one of SEI or VUI data is requested, then the number of input
buffers needed is 4.

The buffer pointers for the metadata need to be supplied as below during decode
call:

 When the application calls the vDecode()function, the buffer pointers

where SEI and VUI data should be stored needs to be provided to the
codec through [tPP_InFrame_Buff H265_dec_InBuff]structure

members.

o H265_dec_InBuff.buf[3] -> Buffer allocated for SEI

o H265_dec_InBuff.buf[4] -> Buffer allocated for VUI

 Codec assumes the same fixed order as mentioned above and updates the

SEI/VUI metadata.

Decoder parses metadata in the current decode call and returns in the same decode
call. This means, effectively meta data will be given out in decode order [Not in Display
Order]. If application is interested in display order, it should have logic to track based
on input and output ID.

Appendix B

Low Delay Interface

B.1 Brief Description

Low delay interface (Sub frame level data synchronization) between decoder and
application is implemented in this release at both input and output level.

At decoder input level (Bit Stream), slice mode of operation is supported where in
individual NALs can be given.

At decoder output level, decoder can give out reconstructed rows of CTU, instead
of waiting until the entire frame is reconstructed.

B.2 Details of using Low Delay Interface at output side

This section explains the low delay interface details at the output side.

This feature can be enabled/disabled through create time parameters

tPP_H265_CreateParams:: nOutputLowDelayMode.

Creation time parameter related to low delay interface (sub frame level data
communication) for output data of video decoder:

Parameter
Name

Details Valid values

tpp_H265_Cr
eateParams::
nOutputLowD
elayMode

Defines the mode of
producing the output frame
data.

PP_H265_ENTIR
EOUTPUTFRAM
E

Entire frame data is
produced by decoder
for display

PP_H265_NUMC
TUROWS

Frame data is given in
unit of number of CTU
rows. Number of CTU
rows is converted to
number of 16 video
lines based on CTU
size and the values is
updated to the
parameter
tpp_H265_DataSync
Desc::nNumBlocks

tpp_H265_Cr
eateParams::
nNumCTURo
ws

Unit of output data Don’t care if
tpp_H265_CreateParams::nOutputLowDel
ayMode ==
PP_H265_ENTIREOUTPUTFRAME
If

Low Delay Interface

B-2

tpp_H265_CreateParams::nOutputLowDel
ayMode == PP_H265_NUMCTUROWS
then it defines the frequency at which
decoder should inform to application about
data availability. For example
nNumCTURows = 2 means that after
every 2 CTU rows (2*k*16 lines)
availability in display buffer, decoder
should inform to application. The value of k
can be 1,2, or 4 depending on CTU size
(16x16, 32x32, or 64x64) repectively.

Dynamic parameters related to low delay interface (sub frame level data
communication) for output data of video decoder:

Parameter
Name

Details Valid values

tpp_H265_D
ynamicPara
ms::
fOutputLow
DelayFxn

This function pointer is
provided by the
app/framework to the video
decoder. The decoder calls
this function when sub-frame
data has been put into an
output buffer and is available.

Any non-NULL value if
nOutputLowDelayMode !=
PP_H265_ENTIREOUTPUTFRAME

Handshake parameters related to low delay interface (sub frame level data
communication) for output data of video decoder:

Parameter
Name

Details Valid values

tpp_H265_D
ataSyncDes
c::nNumBloc
ks

Number of data blocks Number of CTU rows
given out by decoder in
this call of
fOutputLowDelayFxn.
Each data block is having
16 lines of video.
nNumBlocks =
(k*nNumCTURows)
where k = 1, 2, or 4
depending on CTU size
(16x16, 32x32, or 64x64)
repectively. Example: if
nNumCTURows = 2
nNumBlocks = 2 (CTU
size: 16x16)
nNumBlocks = 4 (CTU
size: 32x32)
nNumBlocks = 8 (CTU
size: 64x64)

Low Delay Interface

If application wants to use video decoder to operate with low delay interface (sub
frame) on output side

 It should create the video decoder with
tpp_H265_CreateParams::nOutputLowDelayMode =
PP_H265_NUMCTUROWS.

 It should set
tpp_H265_DynamicParams::fOutputLowDelayFxn = non-NULL; to
use low delay interface (sub frame level data communication).

 Address of the Luma and chroma output buffer will be present in
decoded/display buffs. It will not be communicated via
tpp_H265_DataSyncDesc structure.

 Constraint: display order not being same as decode order with
tpp_H265_CreateParams::nOutputLowDelayMode =
PP_H265_NUMCTUROWS, is an erroneous situation.

 tpp_H265_DynamicParams::fOutputLowDelayFxn == NULL &&
tpp_H265_CreateParams::nOutputLowDelayMode =
PP_H265_NUMCTUROWS is an erroneous situation and codec
returns error during vDecode() call.

B.3 Details of using Low Delay Interface at input side

This section explains the low delay interface details for input.

This feature can be enabled/disabled through create time parameters

tPP_H265_CreateParams:: nInputLowDelayMode.

Creation time parameter related to sub frame level data communication for input
data of video decoder:

Parameter
Name

Details Valid values

tpp_H265_C
reateParams
::nInputLow
DelayMode

Defines the mode of
accepting the input data.

PP_H265_ENTI
REINPUTFRAM
E

bit-stream provided
to decoder is having
entire frame

PP_H265_SLIC
EMODE

bit-stream is
provided to decoder
after having a
single(or more)
number of slice NAL
units

../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d

Low Delay Interface

B-4

Dynamic parameters related to low delay interface (sub frame level data
communication) for input data of video decoder:

Parameter
Name

Details Valid values

tpp_H265_D
ynamicPara
ms::
fInputLowDe
layFxn

This function is provided by
the app/framework to the
video decoder. The decoder
calls this function to get
partial compressed bit-
stream data from the
app/framework.
App/framework that doesn't
support datasync should set
this to NULL.

Any non-NULL value if
nInputLowDelayMode !=
PP_H265_ENTIREINPUTFRAME

Incase of nInputLow DelayMode = PP_H265_SLICEMODE, following points should
be noticed

 No data is assumed to be available during vDecode() call except
first vDecode() call, hence tPPInput_BitStream::nBufLength is don’t
care from second vDecode() call onwards. All the data has to be
provided via data sync calls.

Handshake parameters related to low delay interface (sub frame level data
communication) for input data of video decoder (nInputLowDelayMode =
PP_H265_SLICEMODE:

Parameter
Name

Details Valid values

tpp_H265_D
ataSyncDes
c::nSize

Size of the input data Size of single slice (or)
more number of slice NAL
units.

If application wants to use video decoder to operate with low delay interface (sub
frame on input side

 It should create the video decoder with
tpp_H265_CreateParams::nInputLowDelayMode =
PP_H265_SLICEMODE.

 It should set
tpp_H265_DynamicParams::fInputLowDelayFxn = non-NULL;
to use sub frame level data communication.

 tpp_H265_DynamicParams::fInputLowDelayFxn == NULL &&
tpp_H265_CreateParams::nInputLowDelayMode =
PP_H265_SLICEMODE is an erroneous situation and codec
returns error during vDecode() call

../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___in_args.html#a4dcd64725ed6e86c448d7c12590ffffd
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d
../../../Documents%20and%20Settings/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html#ada0dcc82ab146b034ecb7521e923226d

