/** * Copyright (C) ARM Limited 2010-2012. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* Disabling interrupts * Many of the functions below disable interrupts via local_irq_save(). This disabling of interrupts is done to prevent any race conditions * between multiple entities (e.g. hrtimer interrupts and event based interrupts) calling the same functions. As accessing the pmu involves * several steps (disable, select, read, enable), these steps must be performed atomically. Normal synchronization routines cannot be used * as these functions are being called from interrupt context. */ #include "gator.h" // gator_events_perf_pmu.c is used if perf is supported #if GATOR_NO_PERF_SUPPORT // Per-CPU PMNC: config reg #define PMNC_E (1 << 0) /* Enable all counters */ #define PMNC_P (1 << 1) /* Reset all counters */ #define PMNC_C (1 << 2) /* Cycle counter reset */ #define PMNC_MASK 0x3f /* Mask for writable bits */ // ccnt reg #define CCNT_REG (1 << 31) #define CCNT 0 #define CNT0 1 #define CNTMAX (6+1) static const char *pmnc_name; static int pmnc_counters; static unsigned long pmnc_enabled[CNTMAX]; static unsigned long pmnc_event[CNTMAX]; static unsigned long pmnc_key[CNTMAX]; static DEFINE_PER_CPU(int[CNTMAX * 2], perfCnt); inline void armv7_pmnc_write(u32 val) { val &= PMNC_MASK; asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r" (val)); } inline u32 armv7_pmnc_read(void) { u32 val; asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val)); return val; } inline u32 armv7_ccnt_read(u32 reset_value) { unsigned long flags; u32 newval = -reset_value; u32 den = CCNT_REG; u32 val; local_irq_save(flags); asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (den)); // disable asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val)); // read asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (newval));// new value asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (den)); // enable local_irq_restore(flags); return val; } inline u32 armv7_cntn_read(unsigned int cnt, u32 reset_value) { unsigned long flags; u32 newval = -reset_value; u32 sel = (cnt - CNT0); u32 den = 1 << sel; u32 oldval; local_irq_save(flags); asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (den)); // disable asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (sel)); // select asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (oldval)); // read asm volatile("mcr p15, 0, %0, c9, c13, 2" : : "r" (newval));// new value asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (den)); // enable local_irq_restore(flags); return oldval; } static inline void armv7_pmnc_disable_interrupt(unsigned int cnt) { u32 val = cnt ? (1 << (cnt - CNT0)) : (1 << 31); asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (val)); } inline u32 armv7_pmnc_reset_interrupt(void) { // Get and reset overflow status flags u32 flags; asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (flags)); flags &= 0x8000003f; asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (flags)); return flags; } static inline u32 armv7_pmnc_enable_counter(unsigned int cnt) { u32 val = cnt ? (1 << (cnt - CNT0)) : CCNT_REG; asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (val)); return cnt; } static inline u32 armv7_pmnc_disable_counter(unsigned int cnt) { u32 val = cnt ? (1 << (cnt - CNT0)) : CCNT_REG; asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (val)); return cnt; } static inline int armv7_pmnc_select_counter(unsigned int cnt) { u32 val = (cnt - CNT0); asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (val)); return cnt; } static inline void armv7_pmnc_write_evtsel(unsigned int cnt, u32 val) { if (armv7_pmnc_select_counter(cnt) == cnt) { asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val)); } } static int gator_events_armv7_create_files(struct super_block *sb, struct dentry *root) { struct dentry *dir; int i; for (i = 0; i < pmnc_counters; i++) { char buf[40]; if (i == 0) { snprintf(buf, sizeof buf, "ARM_%s_ccnt", pmnc_name); } else { snprintf(buf, sizeof buf, "ARM_%s_cnt%d", pmnc_name, i-1); } dir = gatorfs_mkdir(sb, root, buf); if (!dir) { return -1; } gatorfs_create_ulong(sb, dir, "enabled", &pmnc_enabled[i]); gatorfs_create_ro_ulong(sb, dir, "key", &pmnc_key[i]); if (i > 0) { gatorfs_create_ulong(sb, dir, "event", &pmnc_event[i]); } } return 0; } static int gator_events_armv7_online(int** buffer) { unsigned int cnt, len = 0, cpu = smp_processor_id(); if (armv7_pmnc_read() & PMNC_E) { armv7_pmnc_write(armv7_pmnc_read() & ~PMNC_E); } // Initialize & Reset PMNC: C bit and P bit armv7_pmnc_write(PMNC_P | PMNC_C); // Reset overflow flags armv7_pmnc_reset_interrupt(); for (cnt = CCNT; cnt < CNTMAX; cnt++) { unsigned long event; if (!pmnc_enabled[cnt]) continue; // Disable counter armv7_pmnc_disable_counter(cnt); event = pmnc_event[cnt] & 255; // Set event (if destined for PMNx counters), we don't need to set the event if it's a cycle count if (cnt != CCNT) armv7_pmnc_write_evtsel(cnt, event); armv7_pmnc_disable_interrupt(cnt); // Reset counter cnt ? armv7_cntn_read(cnt, 0) : armv7_ccnt_read(0); // Enable counter armv7_pmnc_enable_counter(cnt); } // enable armv7_pmnc_write(armv7_pmnc_read() | PMNC_E); // return zero values, no need to read as the counters were just reset for (cnt = 0; cnt < pmnc_counters; cnt++) { if (pmnc_enabled[cnt]) { per_cpu(perfCnt, cpu)[len++] = pmnc_key[cnt]; per_cpu(perfCnt, cpu)[len++] = 0; } } if (buffer) *buffer = per_cpu(perfCnt, cpu); return len; } static int gator_events_armv7_offline(int** buffer) { // disbale all counters, including PMCCNTR; overflow IRQs will not be signaled armv7_pmnc_write(armv7_pmnc_read() & ~PMNC_E); return 0; } static void gator_events_armv7_stop(void) { unsigned int cnt; for (cnt = CCNT; cnt < CNTMAX; cnt++) { pmnc_enabled[cnt] = 0; pmnc_event[cnt] = 0; } } static int gator_events_armv7_read(int **buffer) { int cnt, len = 0; int cpu = smp_processor_id(); // a context switch may occur before the online hotplug event, thus need to check that the pmu is enabled if (!(armv7_pmnc_read() & PMNC_E)) { return 0; } for (cnt = 0; cnt < pmnc_counters; cnt++) { if (pmnc_enabled[cnt]) { int value; if (cnt == CCNT) { value = armv7_ccnt_read(0); } else { value = armv7_cntn_read(cnt, 0); } per_cpu(perfCnt, cpu)[len++] = pmnc_key[cnt]; per_cpu(perfCnt, cpu)[len++] = value; } } if (buffer) *buffer = per_cpu(perfCnt, cpu); return len; } static struct gator_interface gator_events_armv7_interface = { .create_files = gator_events_armv7_create_files, .stop = gator_events_armv7_stop, .online = gator_events_armv7_online, .offline = gator_events_armv7_offline, .read = gator_events_armv7_read, }; int gator_events_armv7_init(void) { unsigned int cnt; switch (gator_cpuid()) { case CORTEX_A5: pmnc_name = "Cortex-A5"; pmnc_counters = 2; break; case CORTEX_A7: pmnc_name = "Cortex-A7"; pmnc_counters = 4; break; case CORTEX_A8: pmnc_name = "Cortex-A8"; pmnc_counters = 4; break; case CORTEX_A9: pmnc_name = "Cortex-A9"; pmnc_counters = 6; break; case CORTEX_A15: pmnc_name = "Cortex-A15"; pmnc_counters = 6; break; default: return -1; } pmnc_counters++; // CNT[n] + CCNT for (cnt = CCNT; cnt < CNTMAX; cnt++) { pmnc_enabled[cnt] = 0; pmnc_event[cnt] = 0; pmnc_key[cnt] = gator_events_get_key(); } return gator_events_install(&gator_events_armv7_interface); } gator_events_init(gator_events_armv7_init); #else int gator_events_armv7_init(void) { return -1; } #endif