]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - android-sdk/kernel-video.git/blob - arch/arm/kernel/smp.c
Merge branch 'android-3.8' of ti-android-kernel/kernel-common into p-ti-android-3.8.y
[android-sdk/kernel-video.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
62 enum ipi_msg_type {
63         IPI_WAKEUP,
64         IPI_TIMER,
65         IPI_RESCHEDULE,
66         IPI_CALL_FUNC,
67         IPI_CALL_FUNC_SINGLE,
68         IPI_CPU_STOP,
69         IPI_CPU_BACKTRACE,
70 };
72 static DECLARE_COMPLETION(cpu_running);
74 static struct smp_operations smp_ops;
76 void __init smp_set_ops(struct smp_operations *ops)
77 {
78         if (ops)
79                 smp_ops = *ops;
80 };
82 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
83 {
84         int ret;
86         /*
87          * We need to tell the secondary core where to find
88          * its stack and the page tables.
89          */
90         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91         secondary_data.pgdir = virt_to_phys(idmap_pgd);
92         secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93         __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
94         outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
96         /*
97          * Now bring the CPU into our world.
98          */
99         ret = boot_secondary(cpu, idle);
100         if (ret == 0) {
101                 /*
102                  * CPU was successfully started, wait for it
103                  * to come online or time out.
104                  */
105                 wait_for_completion_timeout(&cpu_running,
106                                                  msecs_to_jiffies(1000));
108                 if (!cpu_online(cpu)) {
109                         pr_crit("CPU%u: failed to come online\n", cpu);
110                         ret = -EIO;
111                 }
112         } else {
113                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
114         }
116         secondary_data.stack = NULL;
117         secondary_data.pgdir = 0;
119         return ret;
122 /* platform specific SMP operations */
123 void __init smp_init_cpus(void)
125         if (smp_ops.smp_init_cpus)
126                 smp_ops.smp_init_cpus();
129 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
131         if (smp_ops.smp_prepare_cpus)
132                 smp_ops.smp_prepare_cpus(max_cpus);
135 static void __cpuinit platform_secondary_init(unsigned int cpu)
137         if (smp_ops.smp_secondary_init)
138                 smp_ops.smp_secondary_init(cpu);
141 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
143         if (smp_ops.smp_boot_secondary)
144                 return smp_ops.smp_boot_secondary(cpu, idle);
145         return -ENOSYS;
148 #ifdef CONFIG_HOTPLUG_CPU
149 static void percpu_timer_stop(void);
151 static int platform_cpu_kill(unsigned int cpu)
153         if (smp_ops.cpu_kill)
154                 return smp_ops.cpu_kill(cpu);
155         return 1;
158 static void platform_cpu_die(unsigned int cpu)
160         if (smp_ops.cpu_die)
161                 smp_ops.cpu_die(cpu);
164 static int platform_cpu_disable(unsigned int cpu)
166         if (smp_ops.cpu_disable)
167                 return smp_ops.cpu_disable(cpu);
169         /*
170          * By default, allow disabling all CPUs except the first one,
171          * since this is special on a lot of platforms, e.g. because
172          * of clock tick interrupts.
173          */
174         return cpu == 0 ? -EPERM : 0;
176 /*
177  * __cpu_disable runs on the processor to be shutdown.
178  */
179 int __cpuinit __cpu_disable(void)
181         unsigned int cpu = smp_processor_id();
182         int ret;
184         ret = platform_cpu_disable(cpu);
185         if (ret)
186                 return ret;
188         /*
189          * Take this CPU offline.  Once we clear this, we can't return,
190          * and we must not schedule until we're ready to give up the cpu.
191          */
192         set_cpu_online(cpu, false);
194         /*
195          * OK - migrate IRQs away from this CPU
196          */
197         migrate_irqs();
199         /*
200          * Stop the local timer for this CPU.
201          */
202         percpu_timer_stop();
204         /*
205          * Flush user cache and TLB mappings, and then remove this CPU
206          * from the vm mask set of all processes.
207          *
208          * Caches are flushed to the Level of Unification Inner Shareable
209          * to write-back dirty lines to unified caches shared by all CPUs.
210          */
211         flush_cache_louis();
212         local_flush_tlb_all();
214         clear_tasks_mm_cpumask(cpu);
216         return 0;
219 static DECLARE_COMPLETION(cpu_died);
221 /*
222  * called on the thread which is asking for a CPU to be shutdown -
223  * waits until shutdown has completed, or it is timed out.
224  */
225 void __cpuinit __cpu_die(unsigned int cpu)
227         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
228                 pr_err("CPU%u: cpu didn't die\n", cpu);
229                 return;
230         }
231         printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
233         if (!platform_cpu_kill(cpu))
234                 printk("CPU%u: unable to kill\n", cpu);
237 /*
238  * Called from the idle thread for the CPU which has been shutdown.
239  *
240  * Note that we disable IRQs here, but do not re-enable them
241  * before returning to the caller. This is also the behaviour
242  * of the other hotplug-cpu capable cores, so presumably coming
243  * out of idle fixes this.
244  */
245 void __ref cpu_die(void)
247         unsigned int cpu = smp_processor_id();
249         idle_task_exit();
251         local_irq_disable();
252         mb();
254         /* Tell __cpu_die() that this CPU is now safe to dispose of */
255         RCU_NONIDLE(complete(&cpu_died));
257         /*
258          * actual CPU shutdown procedure is at least platform (if not
259          * CPU) specific.
260          */
261         platform_cpu_die(cpu);
263         /*
264          * Do not return to the idle loop - jump back to the secondary
265          * cpu initialisation.  There's some initialisation which needs
266          * to be repeated to undo the effects of taking the CPU offline.
267          */
268         __asm__("mov    sp, %0\n"
269         "       mov     fp, #0\n"
270         "       b       secondary_start_kernel"
271                 :
272                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
274 #endif /* CONFIG_HOTPLUG_CPU */
276 /*
277  * Called by both boot and secondaries to move global data into
278  * per-processor storage.
279  */
280 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
282         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
284         cpu_info->loops_per_jiffy = loops_per_jiffy;
285         cpu_info->cpuid = read_cpuid_id();
287         store_cpu_topology(cpuid);
290 static void percpu_timer_setup(void);
292 /*
293  * This is the secondary CPU boot entry.  We're using this CPUs
294  * idle thread stack, but a set of temporary page tables.
295  */
296 asmlinkage void __cpuinit secondary_start_kernel(void)
298         struct mm_struct *mm = &init_mm;
299         unsigned int cpu;
300         static bool booted;
302         /*
303          * The identity mapping is uncached (strongly ordered), so
304          * switch away from it before attempting any exclusive accesses.
305          */
306         cpu_switch_mm(mm->pgd, mm);
307         enter_lazy_tlb(mm, current);
308         local_flush_tlb_all();
310         /*
311          * All kernel threads share the same mm context; grab a
312          * reference and switch to it.
313          */
314         cpu = smp_processor_id();
315         atomic_inc(&mm->mm_count);
316         current->active_mm = mm;
317         cpumask_set_cpu(cpu, mm_cpumask(mm));
319         cpu_init();
321         printk("CPU%u: Booted secondary processor\n", cpu);
323         preempt_disable();
324         trace_hardirqs_off();
326         /*
327          * Give the platform a chance to do its own initialisation.
328          */
329         platform_secondary_init(cpu);
331         notify_cpu_starting(cpu);
333         if (!booted)
334                 calibrate_delay();
335         booted = true;
337         smp_store_cpu_info(cpu);
339         /*
340          * OK, now it's safe to let the boot CPU continue.  Wait for
341          * the CPU migration code to notice that the CPU is online
342          * before we continue - which happens after __cpu_up returns.
343          */
344         set_cpu_online(cpu, true);
345         complete(&cpu_running);
347         /*
348          * Setup the percpu timer for this CPU.
349          */
350         percpu_timer_setup();
352         local_irq_enable();
353         local_fiq_enable();
355         /*
356          * OK, it's off to the idle thread for us
357          */
358         cpu_idle();
361 void __init smp_cpus_done(unsigned int max_cpus)
363         int cpu;
364         unsigned long bogosum = 0;
366         for_each_online_cpu(cpu)
367                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
369         printk(KERN_INFO "SMP: Total of %d processors activated "
370                "(%lu.%02lu BogoMIPS).\n",
371                num_online_cpus(),
372                bogosum / (500000/HZ),
373                (bogosum / (5000/HZ)) % 100);
375         hyp_mode_check();
378 void __init smp_prepare_boot_cpu(void)
380         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
383 void __init smp_prepare_cpus(unsigned int max_cpus)
385         unsigned int ncores = num_possible_cpus();
387         init_cpu_topology();
389         smp_store_cpu_info(smp_processor_id());
391         /*
392          * are we trying to boot more cores than exist?
393          */
394         if (max_cpus > ncores)
395                 max_cpus = ncores;
396         if (ncores > 1 && max_cpus) {
397                 /*
398                  * Enable the local timer or broadcast device for the
399                  * boot CPU, but only if we have more than one CPU.
400                  */
401                 percpu_timer_setup();
403                 /*
404                  * Initialise the present map, which describes the set of CPUs
405                  * actually populated at the present time. A platform should
406                  * re-initialize the map in platform_smp_prepare_cpus() if
407                  * present != possible (e.g. physical hotplug).
408                  */
409                 init_cpu_present(cpu_possible_mask);
411                 /*
412                  * Initialise the SCU if there are more than one CPU
413                  * and let them know where to start.
414                  */
415                 platform_smp_prepare_cpus(max_cpus);
416         }
419 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
421 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
423         smp_cross_call = fn;
426 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
428         smp_cross_call(mask, IPI_CALL_FUNC);
431 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
433         smp_cross_call(mask, IPI_WAKEUP);
436 void arch_send_call_function_single_ipi(int cpu)
438         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
441 static const char *ipi_types[NR_IPI] = {
442 #define S(x,s)  [x] = s
443         S(IPI_WAKEUP, "CPU wakeup interrupts"),
444         S(IPI_TIMER, "Timer broadcast interrupts"),
445         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
446         S(IPI_CALL_FUNC, "Function call interrupts"),
447         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
448         S(IPI_CPU_STOP, "CPU stop interrupts"),
449         S(IPI_CPU_BACKTRACE, "CPU backtrace"),
450 };
452 void show_ipi_list(struct seq_file *p, int prec)
454         unsigned int cpu, i;
456         for (i = 0; i < NR_IPI; i++) {
457                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
459                 for_each_online_cpu(cpu)
460                         seq_printf(p, "%10u ",
461                                    __get_irq_stat(cpu, ipi_irqs[i]));
463                 seq_printf(p, " %s\n", ipi_types[i]);
464         }
467 u64 smp_irq_stat_cpu(unsigned int cpu)
469         u64 sum = 0;
470         int i;
472         for (i = 0; i < NR_IPI; i++)
473                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
475         return sum;
478 /*
479  * Timer (local or broadcast) support
480  */
481 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
483 static void ipi_timer(void)
485         struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
486         evt->event_handler(evt);
489 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
490 static void smp_timer_broadcast(const struct cpumask *mask)
492         smp_cross_call(mask, IPI_TIMER);
494 #else
495 #define smp_timer_broadcast     NULL
496 #endif
498 static void broadcast_timer_set_mode(enum clock_event_mode mode,
499         struct clock_event_device *evt)
503 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
505         evt->name       = "dummy_timer";
506         evt->features   = CLOCK_EVT_FEAT_ONESHOT |
507                           CLOCK_EVT_FEAT_PERIODIC |
508                           CLOCK_EVT_FEAT_DUMMY;
509         evt->rating     = 400;
510         evt->mult       = 1;
511         evt->set_mode   = broadcast_timer_set_mode;
513         clockevents_register_device(evt);
516 static struct local_timer_ops *lt_ops;
518 #ifdef CONFIG_LOCAL_TIMERS
519 int local_timer_register(struct local_timer_ops *ops)
521         if (!is_smp() || !setup_max_cpus)
522                 return -ENXIO;
524         if (lt_ops)
525                 return -EBUSY;
527         lt_ops = ops;
528         return 0;
530 #endif
532 static void __cpuinit percpu_timer_setup(void)
534         unsigned int cpu = smp_processor_id();
535         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
537         evt->cpumask = cpumask_of(cpu);
538         evt->broadcast = smp_timer_broadcast;
540         if (!lt_ops || lt_ops->setup(evt))
541                 broadcast_timer_setup(evt);
544 #ifdef CONFIG_HOTPLUG_CPU
545 /*
546  * The generic clock events code purposely does not stop the local timer
547  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
548  * manually here.
549  */
550 static void percpu_timer_stop(void)
552         unsigned int cpu = smp_processor_id();
553         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
555         if (lt_ops)
556                 lt_ops->stop(evt);
558 #endif
560 static DEFINE_RAW_SPINLOCK(stop_lock);
562 /*
563  * ipi_cpu_stop - handle IPI from smp_send_stop()
564  */
565 static void ipi_cpu_stop(unsigned int cpu)
567         if (system_state == SYSTEM_BOOTING ||
568             system_state == SYSTEM_RUNNING) {
569                 raw_spin_lock(&stop_lock);
570                 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
571                 dump_stack();
572                 raw_spin_unlock(&stop_lock);
573         }
575         set_cpu_online(cpu, false);
577         local_fiq_disable();
578         local_irq_disable();
580         while (1)
581                 cpu_relax();
584 static cpumask_t backtrace_mask;
585 static DEFINE_RAW_SPINLOCK(backtrace_lock);
587 /* "in progress" flag of arch_trigger_all_cpu_backtrace */
588 static unsigned long backtrace_flag;
590 void smp_send_all_cpu_backtrace(void)
592         unsigned int this_cpu = smp_processor_id();
593         int i;
595         if (test_and_set_bit(0, &backtrace_flag))
596                 /*
597                  * If there is already a trigger_all_cpu_backtrace() in progress
598                  * (backtrace_flag == 1), don't output double cpu dump infos.
599                  */
600                 return;
602         cpumask_copy(&backtrace_mask, cpu_online_mask);
603         cpu_clear(this_cpu, backtrace_mask);
605         pr_info("Backtrace for cpu %d (current):\n", this_cpu);
606         dump_stack();
608         pr_info("\nsending IPI to all other CPUs:\n");
609         smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
611         /* Wait for up to 10 seconds for all other CPUs to do the backtrace */
612         for (i = 0; i < 10 * 1000; i++) {
613                 if (cpumask_empty(&backtrace_mask))
614                         break;
615                 mdelay(1);
616         }
618         clear_bit(0, &backtrace_flag);
619         smp_mb__after_clear_bit();
622 /*
623  * ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
624  */
625 static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
627         if (cpu_isset(cpu, backtrace_mask)) {
628                 raw_spin_lock(&backtrace_lock);
629                 pr_warning("IPI backtrace for cpu %d\n", cpu);
630                 show_regs(regs);
631                 raw_spin_unlock(&backtrace_lock);
632                 cpu_clear(cpu, backtrace_mask);
633         }
636 /*
637  * Main handler for inter-processor interrupts
638  */
639 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
641         handle_IPI(ipinr, regs);
644 void handle_IPI(int ipinr, struct pt_regs *regs)
646         unsigned int cpu = smp_processor_id();
647         struct pt_regs *old_regs = set_irq_regs(regs);
649         if (ipinr < NR_IPI)
650                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
652         switch (ipinr) {
653         case IPI_WAKEUP:
654                 break;
656         case IPI_TIMER:
657                 irq_enter();
658                 ipi_timer();
659                 irq_exit();
660                 break;
662         case IPI_RESCHEDULE:
663                 scheduler_ipi();
664                 break;
666         case IPI_CALL_FUNC:
667                 irq_enter();
668                 generic_smp_call_function_interrupt();
669                 irq_exit();
670                 break;
672         case IPI_CALL_FUNC_SINGLE:
673                 irq_enter();
674                 generic_smp_call_function_single_interrupt();
675                 irq_exit();
676                 break;
678         case IPI_CPU_STOP:
679                 irq_enter();
680                 ipi_cpu_stop(cpu);
681                 irq_exit();
682                 break;
684         case IPI_CPU_BACKTRACE:
685                 ipi_cpu_backtrace(cpu, regs);
686                 break;
688         default:
689                 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
690                        cpu, ipinr);
691                 break;
692         }
693         set_irq_regs(old_regs);
696 void smp_send_reschedule(int cpu)
698         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
701 #ifdef CONFIG_HOTPLUG_CPU
702 static void smp_kill_cpus(cpumask_t *mask)
704         unsigned int cpu;
705         for_each_cpu(cpu, mask)
706                 platform_cpu_kill(cpu);
708 #else
709 static void smp_kill_cpus(cpumask_t *mask) { }
710 #endif
712 void smp_send_stop(void)
714         unsigned long timeout;
715         struct cpumask mask;
717         cpumask_copy(&mask, cpu_online_mask);
718         cpumask_clear_cpu(smp_processor_id(), &mask);
719         if (!cpumask_empty(&mask))
720                 smp_cross_call(&mask, IPI_CPU_STOP);
722         /* Wait up to one second for other CPUs to stop */
723         timeout = USEC_PER_SEC;
724         while (num_online_cpus() > 1 && timeout--)
725                 udelay(1);
727         if (num_online_cpus() > 1)
728                 pr_warning("SMP: failed to stop secondary CPUs\n");
730         smp_kill_cpus(&mask);
733 /*
734  * not supported here
735  */
736 int setup_profiling_timer(unsigned int multiplier)
738         return -EINVAL;
741 #ifdef CONFIG_CPU_FREQ
743 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
744 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
745 static unsigned long global_l_p_j_ref;
746 static unsigned long global_l_p_j_ref_freq;
748 static int cpufreq_callback(struct notifier_block *nb,
749                                         unsigned long val, void *data)
751         struct cpufreq_freqs *freq = data;
752         int cpu = freq->cpu;
754         if (freq->flags & CPUFREQ_CONST_LOOPS)
755                 return NOTIFY_OK;
757         if (arm_delay_ops.const_clock)
758                 return NOTIFY_OK;
760         if (!per_cpu(l_p_j_ref, cpu)) {
761                 per_cpu(l_p_j_ref, cpu) =
762                         per_cpu(cpu_data, cpu).loops_per_jiffy;
763                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
764                 if (!global_l_p_j_ref) {
765                         global_l_p_j_ref = loops_per_jiffy;
766                         global_l_p_j_ref_freq = freq->old;
767                 }
768         }
770         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
771             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
772             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
773                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
774                                                 global_l_p_j_ref_freq,
775                                                 freq->new);
776                 per_cpu(cpu_data, cpu).loops_per_jiffy =
777                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
778                                         per_cpu(l_p_j_ref_freq, cpu),
779                                         freq->new);
780         }
781         return NOTIFY_OK;
784 static struct notifier_block cpufreq_notifier = {
785         .notifier_call  = cpufreq_callback,
786 };
788 static int __init register_cpufreq_notifier(void)
790         return cpufreq_register_notifier(&cpufreq_notifier,
791                                                 CPUFREQ_TRANSITION_NOTIFIER);
793 core_initcall(register_cpufreq_notifier);
795 #endif