]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - android-sdk/kernel-video.git/blob - drivers/dma/ppc4xx/adma.c
Merge branch 'drm-nouveau-fixes-3.8' of git://anongit.freedesktop.org/git/nouveau...
[android-sdk/kernel-video.git] / drivers / dma / ppc4xx / adma.c
1 /*
2  * Copyright (C) 2006-2009 DENX Software Engineering.
3  *
4  * Author: Yuri Tikhonov <yur@emcraft.com>
5  *
6  * Further porting to arch/powerpc by
7  *      Anatolij Gustschin <agust@denx.de>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  */
27 /*
28  * This driver supports the asynchrounous DMA copy and RAID engines available
29  * on the AMCC PPC440SPe Processors.
30  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31  * ADMA driver written by D.Williams.
32  */
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
49 #include "../dmaengine.h"
51 enum ppc_adma_init_code {
52         PPC_ADMA_INIT_OK = 0,
53         PPC_ADMA_INIT_MEMRES,
54         PPC_ADMA_INIT_MEMREG,
55         PPC_ADMA_INIT_ALLOC,
56         PPC_ADMA_INIT_COHERENT,
57         PPC_ADMA_INIT_CHANNEL,
58         PPC_ADMA_INIT_IRQ1,
59         PPC_ADMA_INIT_IRQ2,
60         PPC_ADMA_INIT_REGISTER
61 };
63 static char *ppc_adma_errors[] = {
64         [PPC_ADMA_INIT_OK] = "ok",
65         [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
66         [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
67         [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
68                                 "structure",
69         [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
70                                    "hardware descriptors",
71         [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
72         [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
73         [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
74         [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
75 };
77 static enum ppc_adma_init_code
78 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
80 struct ppc_dma_chan_ref {
81         struct dma_chan *chan;
82         struct list_head node;
83 };
85 /* The list of channels exported by ppc440spe ADMA */
86 struct list_head
87 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
89 /* This flag is set when want to refetch the xor chain in the interrupt
90  * handler
91  */
92 static u32 do_xor_refetch;
94 /* Pointer to DMA0, DMA1 CP/CS FIFO */
95 static void *ppc440spe_dma_fifo_buf;
97 /* Pointers to last submitted to DMA0, DMA1 CDBs */
98 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
99 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
101 /* Pointer to last linked and submitted xor CB */
102 static struct ppc440spe_adma_desc_slot *xor_last_linked;
103 static struct ppc440spe_adma_desc_slot *xor_last_submit;
105 /* This array is used in data-check operations for storing a pattern */
106 static char ppc440spe_qword[16];
108 static atomic_t ppc440spe_adma_err_irq_ref;
109 static dcr_host_t ppc440spe_mq_dcr_host;
110 static unsigned int ppc440spe_mq_dcr_len;
112 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
113  * the block size in transactions, then we do not allow to activate more than
114  * only one RXOR transactions simultaneously. So use this var to store
115  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
116  * set) or not (PPC440SPE_RXOR_RUN is clear).
117  */
118 static unsigned long ppc440spe_rxor_state;
120 /* These are used in enable & check routines
121  */
122 static u32 ppc440spe_r6_enabled;
123 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
124 static struct completion ppc440spe_r6_test_comp;
126 static int ppc440spe_adma_dma2rxor_prep_src(
127                 struct ppc440spe_adma_desc_slot *desc,
128                 struct ppc440spe_rxor *cursor, int index,
129                 int src_cnt, u32 addr);
130 static void ppc440spe_adma_dma2rxor_set_src(
131                 struct ppc440spe_adma_desc_slot *desc,
132                 int index, dma_addr_t addr);
133 static void ppc440spe_adma_dma2rxor_set_mult(
134                 struct ppc440spe_adma_desc_slot *desc,
135                 int index, u8 mult);
137 #ifdef ADMA_LL_DEBUG
138 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
139 #else
140 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 #endif
143 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
145         struct dma_cdb *cdb;
146         struct xor_cb *cb;
147         int i;
149         switch (chan->device->id) {
150         case 0:
151         case 1:
152                 cdb = block;
154                 pr_debug("CDB at %p [%d]:\n"
155                         "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
156                         "\t sg1u 0x%08x sg1l 0x%08x\n"
157                         "\t sg2u 0x%08x sg2l 0x%08x\n"
158                         "\t sg3u 0x%08x sg3l 0x%08x\n",
159                         cdb, chan->device->id,
160                         cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
161                         le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
162                         le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
163                         le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
164                 );
165                 break;
166         case 2:
167                 cb = block;
169                 pr_debug("CB at %p [%d]:\n"
170                         "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
171                         "\t cbtah 0x%08x cbtal 0x%08x\n"
172                         "\t cblah 0x%08x cblal 0x%08x\n",
173                         cb, chan->device->id,
174                         cb->cbc, cb->cbbc, cb->cbs,
175                         cb->cbtah, cb->cbtal,
176                         cb->cblah, cb->cblal);
177                 for (i = 0; i < 16; i++) {
178                         if (i && !cb->ops[i].h && !cb->ops[i].l)
179                                 continue;
180                         pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
181                                 i, cb->ops[i].h, cb->ops[i].l);
182                 }
183                 break;
184         }
187 static void print_cb_list(struct ppc440spe_adma_chan *chan,
188                           struct ppc440spe_adma_desc_slot *iter)
190         for (; iter; iter = iter->hw_next)
191                 print_cb(chan, iter->hw_desc);
194 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
195                              unsigned int src_cnt)
197         int i;
199         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
200         for (i = 0; i < src_cnt; i++)
201                 pr_debug("\t0x%016llx ", src[i]);
202         pr_debug("dst:\n\t0x%016llx\n", dst);
205 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
206                             unsigned int src_cnt)
208         int i;
210         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
211         for (i = 0; i < src_cnt; i++)
212                 pr_debug("\t0x%016llx ", src[i]);
213         pr_debug("dst: ");
214         for (i = 0; i < 2; i++)
215                 pr_debug("\t0x%016llx ", dst[i]);
218 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
219                                     unsigned int src_cnt,
220                                     const unsigned char *scf)
222         int i;
224         pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
225         if (scf) {
226                 for (i = 0; i < src_cnt; i++)
227                         pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
228         } else {
229                 for (i = 0; i < src_cnt; i++)
230                         pr_debug("\t0x%016llx(no) ", src[i]);
231         }
233         pr_debug("dst: ");
234         for (i = 0; i < 2; i++)
235                 pr_debug("\t0x%016llx ", src[src_cnt + i]);
238 /******************************************************************************
239  * Command (Descriptor) Blocks low-level routines
240  ******************************************************************************/
241 /**
242  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243  * pseudo operation
244  */
245 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
246                                           struct ppc440spe_adma_chan *chan)
248         struct xor_cb *p;
250         switch (chan->device->id) {
251         case PPC440SPE_XOR_ID:
252                 p = desc->hw_desc;
253                 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
254                 /* NOP with Command Block Complete Enable */
255                 p->cbc = XOR_CBCR_CBCE_BIT;
256                 break;
257         case PPC440SPE_DMA0_ID:
258         case PPC440SPE_DMA1_ID:
259                 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
260                 /* NOP with interrupt */
261                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
262                 break;
263         default:
264                 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
265                                 __func__);
266                 break;
267         }
270 /**
271  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272  * pseudo operation
273  */
274 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
276         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277         desc->hw_next = NULL;
278         desc->src_cnt = 0;
279         desc->dst_cnt = 1;
282 /**
283  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
284  */
285 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
286                                          int src_cnt, unsigned long flags)
288         struct xor_cb *hw_desc = desc->hw_desc;
290         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
291         desc->hw_next = NULL;
292         desc->src_cnt = src_cnt;
293         desc->dst_cnt = 1;
295         hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
296         if (flags & DMA_PREP_INTERRUPT)
297                 /* Enable interrupt on completion */
298                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
301 /**
302  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
303  * operation in DMA2 controller
304  */
305 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
306                 int dst_cnt, int src_cnt, unsigned long flags)
308         struct xor_cb *hw_desc = desc->hw_desc;
310         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
311         desc->hw_next = NULL;
312         desc->src_cnt = src_cnt;
313         desc->dst_cnt = dst_cnt;
314         memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
315         desc->descs_per_op = 0;
317         hw_desc->cbc = XOR_CBCR_TGT_BIT;
318         if (flags & DMA_PREP_INTERRUPT)
319                 /* Enable interrupt on completion */
320                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
323 #define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
324 #define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
325 #define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
327 /**
328  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329  * with DMA0/1
330  */
331 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
332                                 int dst_cnt, int src_cnt, unsigned long flags,
333                                 unsigned long op)
335         struct dma_cdb *hw_desc;
336         struct ppc440spe_adma_desc_slot *iter;
337         u8 dopc;
339         /* Common initialization of a PQ descriptors chain */
340         set_bits(op, &desc->flags);
341         desc->src_cnt = src_cnt;
342         desc->dst_cnt = dst_cnt;
344         /* WXOR MULTICAST if both P and Q are being computed
345          * MV_SG1_SG2 if Q only
346          */
347         dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
348                 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
350         list_for_each_entry(iter, &desc->group_list, chain_node) {
351                 hw_desc = iter->hw_desc;
352                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
354                 if (likely(!list_is_last(&iter->chain_node,
355                                 &desc->group_list))) {
356                         /* set 'next' pointer */
357                         iter->hw_next = list_entry(iter->chain_node.next,
358                                 struct ppc440spe_adma_desc_slot, chain_node);
359                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
360                 } else {
361                         /* this is the last descriptor.
362                          * this slot will be pasted from ADMA level
363                          * each time it wants to configure parameters
364                          * of the transaction (src, dst, ...)
365                          */
366                         iter->hw_next = NULL;
367                         if (flags & DMA_PREP_INTERRUPT)
368                                 set_bit(PPC440SPE_DESC_INT, &iter->flags);
369                         else
370                                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
371                 }
372         }
374         /* Set OPS depending on WXOR/RXOR type of operation */
375         if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
376                 /* This is a WXOR only chain:
377                  * - first descriptors are for zeroing destinations
378                  *   if PPC440SPE_ZERO_P/Q set;
379                  * - descriptors remained are for GF-XOR operations.
380                  */
381                 iter = list_first_entry(&desc->group_list,
382                                         struct ppc440spe_adma_desc_slot,
383                                         chain_node);
385                 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
386                         hw_desc = iter->hw_desc;
387                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
388                         iter = list_first_entry(&iter->chain_node,
389                                         struct ppc440spe_adma_desc_slot,
390                                         chain_node);
391                 }
393                 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
394                         hw_desc = iter->hw_desc;
395                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
396                         iter = list_first_entry(&iter->chain_node,
397                                         struct ppc440spe_adma_desc_slot,
398                                         chain_node);
399                 }
401                 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
402                         hw_desc = iter->hw_desc;
403                         hw_desc->opc = dopc;
404                 }
405         } else {
406                 /* This is either RXOR-only or mixed RXOR/WXOR */
408                 /* The first 1 or 2 slots in chain are always RXOR,
409                  * if need to calculate P & Q, then there are two
410                  * RXOR slots; if only P or only Q, then there is one
411                  */
412                 iter = list_first_entry(&desc->group_list,
413                                         struct ppc440spe_adma_desc_slot,
414                                         chain_node);
415                 hw_desc = iter->hw_desc;
416                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
418                 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
419                         iter = list_first_entry(&iter->chain_node,
420                                                 struct ppc440spe_adma_desc_slot,
421                                                 chain_node);
422                         hw_desc = iter->hw_desc;
423                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
424                 }
426                 /* The remaining descs (if any) are WXORs */
427                 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
428                         iter = list_first_entry(&iter->chain_node,
429                                                 struct ppc440spe_adma_desc_slot,
430                                                 chain_node);
431                         list_for_each_entry_from(iter, &desc->group_list,
432                                                 chain_node) {
433                                 hw_desc = iter->hw_desc;
434                                 hw_desc->opc = dopc;
435                         }
436                 }
437         }
440 /**
441  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
442  * for PQ_ZERO_SUM operation
443  */
444 static void ppc440spe_desc_init_dma01pqzero_sum(
445                                 struct ppc440spe_adma_desc_slot *desc,
446                                 int dst_cnt, int src_cnt)
448         struct dma_cdb *hw_desc;
449         struct ppc440spe_adma_desc_slot *iter;
450         int i = 0;
451         u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
452                                    DMA_CDB_OPC_MV_SG1_SG2;
453         /*
454          * Initialize starting from 2nd or 3rd descriptor dependent
455          * on dst_cnt. First one or two slots are for cloning P
456          * and/or Q to chan->pdest and/or chan->qdest as we have
457          * to preserve original P/Q.
458          */
459         iter = list_first_entry(&desc->group_list,
460                                 struct ppc440spe_adma_desc_slot, chain_node);
461         iter = list_entry(iter->chain_node.next,
462                           struct ppc440spe_adma_desc_slot, chain_node);
464         if (dst_cnt > 1) {
465                 iter = list_entry(iter->chain_node.next,
466                                   struct ppc440spe_adma_desc_slot, chain_node);
467         }
468         /* initialize each source descriptor in chain */
469         list_for_each_entry_from(iter, &desc->group_list, chain_node) {
470                 hw_desc = iter->hw_desc;
471                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
472                 iter->src_cnt = 0;
473                 iter->dst_cnt = 0;
475                 /* This is a ZERO_SUM operation:
476                  * - <src_cnt> descriptors starting from 2nd or 3rd
477                  *   descriptor are for GF-XOR operations;
478                  * - remaining <dst_cnt> descriptors are for checking the result
479                  */
480                 if (i++ < src_cnt)
481                         /* MV_SG1_SG2 if only Q is being verified
482                          * MULTICAST if both P and Q are being verified
483                          */
484                         hw_desc->opc = dopc;
485                 else
486                         /* DMA_CDB_OPC_DCHECK128 operation */
487                         hw_desc->opc = DMA_CDB_OPC_DCHECK128;
489                 if (likely(!list_is_last(&iter->chain_node,
490                                          &desc->group_list))) {
491                         /* set 'next' pointer */
492                         iter->hw_next = list_entry(iter->chain_node.next,
493                                                 struct ppc440spe_adma_desc_slot,
494                                                 chain_node);
495                 } else {
496                         /* this is the last descriptor.
497                          * this slot will be pasted from ADMA level
498                          * each time it wants to configure parameters
499                          * of the transaction (src, dst, ...)
500                          */
501                         iter->hw_next = NULL;
502                         /* always enable interrupt generation since we get
503                          * the status of pqzero from the handler
504                          */
505                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
506                 }
507         }
508         desc->src_cnt = src_cnt;
509         desc->dst_cnt = dst_cnt;
512 /**
513  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
514  */
515 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
516                                         unsigned long flags)
518         struct dma_cdb *hw_desc = desc->hw_desc;
520         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
521         desc->hw_next = NULL;
522         desc->src_cnt = 1;
523         desc->dst_cnt = 1;
525         if (flags & DMA_PREP_INTERRUPT)
526                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
527         else
528                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
530         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
533 /**
534  * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
535  */
536 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
537                                         int value, unsigned long flags)
539         struct dma_cdb *hw_desc = desc->hw_desc;
541         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
542         desc->hw_next = NULL;
543         desc->src_cnt = 1;
544         desc->dst_cnt = 1;
546         if (flags & DMA_PREP_INTERRUPT)
547                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
548         else
549                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
551         hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
552         hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
553         hw_desc->opc = DMA_CDB_OPC_DFILL128;
556 /**
557  * ppc440spe_desc_set_src_addr - set source address into the descriptor
558  */
559 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
560                                         struct ppc440spe_adma_chan *chan,
561                                         int src_idx, dma_addr_t addrh,
562                                         dma_addr_t addrl)
564         struct dma_cdb *dma_hw_desc;
565         struct xor_cb *xor_hw_desc;
566         phys_addr_t addr64, tmplow, tmphi;
568         switch (chan->device->id) {
569         case PPC440SPE_DMA0_ID:
570         case PPC440SPE_DMA1_ID:
571                 if (!addrh) {
572                         addr64 = addrl;
573                         tmphi = (addr64 >> 32);
574                         tmplow = (addr64 & 0xFFFFFFFF);
575                 } else {
576                         tmphi = addrh;
577                         tmplow = addrl;
578                 }
579                 dma_hw_desc = desc->hw_desc;
580                 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
581                 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
582                 break;
583         case PPC440SPE_XOR_ID:
584                 xor_hw_desc = desc->hw_desc;
585                 xor_hw_desc->ops[src_idx].l = addrl;
586                 xor_hw_desc->ops[src_idx].h |= addrh;
587                 break;
588         }
591 /**
592  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
593  */
594 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
595                         struct ppc440spe_adma_chan *chan, u32 mult_index,
596                         int sg_index, unsigned char mult_value)
598         struct dma_cdb *dma_hw_desc;
599         struct xor_cb *xor_hw_desc;
600         u32 *psgu;
602         switch (chan->device->id) {
603         case PPC440SPE_DMA0_ID:
604         case PPC440SPE_DMA1_ID:
605                 dma_hw_desc = desc->hw_desc;
607                 switch (sg_index) {
608                 /* for RXOR operations set multiplier
609                  * into source cued address
610                  */
611                 case DMA_CDB_SG_SRC:
612                         psgu = &dma_hw_desc->sg1u;
613                         break;
614                 /* for WXOR operations set multiplier
615                  * into destination cued address(es)
616                  */
617                 case DMA_CDB_SG_DST1:
618                         psgu = &dma_hw_desc->sg2u;
619                         break;
620                 case DMA_CDB_SG_DST2:
621                         psgu = &dma_hw_desc->sg3u;
622                         break;
623                 default:
624                         BUG();
625                 }
627                 *psgu |= cpu_to_le32(mult_value << mult_index);
628                 break;
629         case PPC440SPE_XOR_ID:
630                 xor_hw_desc = desc->hw_desc;
631                 break;
632         default:
633                 BUG();
634         }
637 /**
638  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
639  */
640 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
641                                 struct ppc440spe_adma_chan *chan,
642                                 dma_addr_t addrh, dma_addr_t addrl,
643                                 u32 dst_idx)
645         struct dma_cdb *dma_hw_desc;
646         struct xor_cb *xor_hw_desc;
647         phys_addr_t addr64, tmphi, tmplow;
648         u32 *psgu, *psgl;
650         switch (chan->device->id) {
651         case PPC440SPE_DMA0_ID:
652         case PPC440SPE_DMA1_ID:
653                 if (!addrh) {
654                         addr64 = addrl;
655                         tmphi = (addr64 >> 32);
656                         tmplow = (addr64 & 0xFFFFFFFF);
657                 } else {
658                         tmphi = addrh;
659                         tmplow = addrl;
660                 }
661                 dma_hw_desc = desc->hw_desc;
663                 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
664                 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
666                 *psgl = cpu_to_le32((u32)tmplow);
667                 *psgu |= cpu_to_le32((u32)tmphi);
668                 break;
669         case PPC440SPE_XOR_ID:
670                 xor_hw_desc = desc->hw_desc;
671                 xor_hw_desc->cbtal = addrl;
672                 xor_hw_desc->cbtah |= addrh;
673                 break;
674         }
677 /**
678  * ppc440spe_desc_set_byte_count - set number of data bytes involved
679  * into the operation
680  */
681 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
682                                 struct ppc440spe_adma_chan *chan,
683                                 u32 byte_count)
685         struct dma_cdb *dma_hw_desc;
686         struct xor_cb *xor_hw_desc;
688         switch (chan->device->id) {
689         case PPC440SPE_DMA0_ID:
690         case PPC440SPE_DMA1_ID:
691                 dma_hw_desc = desc->hw_desc;
692                 dma_hw_desc->cnt = cpu_to_le32(byte_count);
693                 break;
694         case PPC440SPE_XOR_ID:
695                 xor_hw_desc = desc->hw_desc;
696                 xor_hw_desc->cbbc = byte_count;
697                 break;
698         }
701 /**
702  * ppc440spe_desc_set_rxor_block_size - set RXOR block size
703  */
704 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
706         /* assume that byte_count is aligned on the 512-boundary;
707          * thus write it directly to the register (bits 23:31 are
708          * reserved there).
709          */
710         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
713 /**
714  * ppc440spe_desc_set_dcheck - set CHECK pattern
715  */
716 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
717                                 struct ppc440spe_adma_chan *chan, u8 *qword)
719         struct dma_cdb *dma_hw_desc;
721         switch (chan->device->id) {
722         case PPC440SPE_DMA0_ID:
723         case PPC440SPE_DMA1_ID:
724                 dma_hw_desc = desc->hw_desc;
725                 iowrite32(qword[0], &dma_hw_desc->sg3l);
726                 iowrite32(qword[4], &dma_hw_desc->sg3u);
727                 iowrite32(qword[8], &dma_hw_desc->sg2l);
728                 iowrite32(qword[12], &dma_hw_desc->sg2u);
729                 break;
730         default:
731                 BUG();
732         }
735 /**
736  * ppc440spe_xor_set_link - set link address in xor CB
737  */
738 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
739                                 struct ppc440spe_adma_desc_slot *next_desc)
741         struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
743         if (unlikely(!next_desc || !(next_desc->phys))) {
744                 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
745                         __func__, next_desc,
746                         next_desc ? next_desc->phys : 0);
747                 BUG();
748         }
750         xor_hw_desc->cbs = 0;
751         xor_hw_desc->cblal = next_desc->phys;
752         xor_hw_desc->cblah = 0;
753         xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
756 /**
757  * ppc440spe_desc_set_link - set the address of descriptor following this
758  * descriptor in chain
759  */
760 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
761                                 struct ppc440spe_adma_desc_slot *prev_desc,
762                                 struct ppc440spe_adma_desc_slot *next_desc)
764         unsigned long flags;
765         struct ppc440spe_adma_desc_slot *tail = next_desc;
767         if (unlikely(!prev_desc || !next_desc ||
768                 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
769                 /* If previous next is overwritten something is wrong.
770                  * though we may refetch from append to initiate list
771                  * processing; in this case - it's ok.
772                  */
773                 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
774                         "prev->hw_next=0x%p\n", __func__, prev_desc,
775                         next_desc, prev_desc ? prev_desc->hw_next : 0);
776                 BUG();
777         }
779         local_irq_save(flags);
781         /* do s/w chaining both for DMA and XOR descriptors */
782         prev_desc->hw_next = next_desc;
784         switch (chan->device->id) {
785         case PPC440SPE_DMA0_ID:
786         case PPC440SPE_DMA1_ID:
787                 break;
788         case PPC440SPE_XOR_ID:
789                 /* bind descriptor to the chain */
790                 while (tail->hw_next)
791                         tail = tail->hw_next;
792                 xor_last_linked = tail;
794                 if (prev_desc == xor_last_submit)
795                         /* do not link to the last submitted CB */
796                         break;
797                 ppc440spe_xor_set_link(prev_desc, next_desc);
798                 break;
799         }
801         local_irq_restore(flags);
804 /**
805  * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
806  */
807 static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
808                                 struct ppc440spe_adma_chan *chan, int src_idx)
810         struct dma_cdb *dma_hw_desc;
811         struct xor_cb *xor_hw_desc;
813         switch (chan->device->id) {
814         case PPC440SPE_DMA0_ID:
815         case PPC440SPE_DMA1_ID:
816                 dma_hw_desc = desc->hw_desc;
817                 /* May have 0, 1, 2, or 3 sources */
818                 switch (dma_hw_desc->opc) {
819                 case DMA_CDB_OPC_NO_OP:
820                 case DMA_CDB_OPC_DFILL128:
821                         return 0;
822                 case DMA_CDB_OPC_DCHECK128:
823                         if (unlikely(src_idx)) {
824                                 printk(KERN_ERR "%s: try to get %d source for"
825                                     " DCHECK128\n", __func__, src_idx);
826                                 BUG();
827                         }
828                         return le32_to_cpu(dma_hw_desc->sg1l);
829                 case DMA_CDB_OPC_MULTICAST:
830                 case DMA_CDB_OPC_MV_SG1_SG2:
831                         if (unlikely(src_idx > 2)) {
832                                 printk(KERN_ERR "%s: try to get %d source from"
833                                     " DMA descr\n", __func__, src_idx);
834                                 BUG();
835                         }
836                         if (src_idx) {
837                                 if (le32_to_cpu(dma_hw_desc->sg1u) &
838                                     DMA_CUED_XOR_WIN_MSK) {
839                                         u8 region;
841                                         if (src_idx == 1)
842                                                 return le32_to_cpu(
843                                                     dma_hw_desc->sg1l) +
844                                                         desc->unmap_len;
846                                         region = (le32_to_cpu(
847                                             dma_hw_desc->sg1u)) >>
848                                                 DMA_CUED_REGION_OFF;
850                                         region &= DMA_CUED_REGION_MSK;
851                                         switch (region) {
852                                         case DMA_RXOR123:
853                                                 return le32_to_cpu(
854                                                     dma_hw_desc->sg1l) +
855                                                         (desc->unmap_len << 1);
856                                         case DMA_RXOR124:
857                                                 return le32_to_cpu(
858                                                     dma_hw_desc->sg1l) +
859                                                         (desc->unmap_len * 3);
860                                         case DMA_RXOR125:
861                                                 return le32_to_cpu(
862                                                     dma_hw_desc->sg1l) +
863                                                         (desc->unmap_len << 2);
864                                         default:
865                                                 printk(KERN_ERR
866                                                     "%s: try to"
867                                                     " get src3 for region %02x"
868                                                     "PPC440SPE_DESC_RXOR12?\n",
869                                                     __func__, region);
870                                                 BUG();
871                                         }
872                                 } else {
873                                         printk(KERN_ERR
874                                                 "%s: try to get %d"
875                                                 " source for non-cued descr\n",
876                                                 __func__, src_idx);
877                                         BUG();
878                                 }
879                         }
880                         return le32_to_cpu(dma_hw_desc->sg1l);
881                 default:
882                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
883                                 __func__, dma_hw_desc->opc);
884                         BUG();
885                 }
886                 return le32_to_cpu(dma_hw_desc->sg1l);
887         case PPC440SPE_XOR_ID:
888                 /* May have up to 16 sources */
889                 xor_hw_desc = desc->hw_desc;
890                 return xor_hw_desc->ops[src_idx].l;
891         }
892         return 0;
895 /**
896  * ppc440spe_desc_get_dest_addr - extract the destination address from the
897  * descriptor
898  */
899 static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
900                                 struct ppc440spe_adma_chan *chan, int idx)
902         struct dma_cdb *dma_hw_desc;
903         struct xor_cb *xor_hw_desc;
905         switch (chan->device->id) {
906         case PPC440SPE_DMA0_ID:
907         case PPC440SPE_DMA1_ID:
908                 dma_hw_desc = desc->hw_desc;
910                 if (likely(!idx))
911                         return le32_to_cpu(dma_hw_desc->sg2l);
912                 return le32_to_cpu(dma_hw_desc->sg3l);
913         case PPC440SPE_XOR_ID:
914                 xor_hw_desc = desc->hw_desc;
915                 return xor_hw_desc->cbtal;
916         }
917         return 0;
920 /**
921  * ppc440spe_desc_get_src_num - extract the number of source addresses from
922  * the descriptor
923  */
924 static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
925                                 struct ppc440spe_adma_chan *chan)
927         struct dma_cdb *dma_hw_desc;
928         struct xor_cb *xor_hw_desc;
930         switch (chan->device->id) {
931         case PPC440SPE_DMA0_ID:
932         case PPC440SPE_DMA1_ID:
933                 dma_hw_desc = desc->hw_desc;
935                 switch (dma_hw_desc->opc) {
936                 case DMA_CDB_OPC_NO_OP:
937                 case DMA_CDB_OPC_DFILL128:
938                         return 0;
939                 case DMA_CDB_OPC_DCHECK128:
940                         return 1;
941                 case DMA_CDB_OPC_MV_SG1_SG2:
942                 case DMA_CDB_OPC_MULTICAST:
943                         /*
944                          * Only for RXOR operations we have more than
945                          * one source
946                          */
947                         if (le32_to_cpu(dma_hw_desc->sg1u) &
948                             DMA_CUED_XOR_WIN_MSK) {
949                                 /* RXOR op, there are 2 or 3 sources */
950                                 if (((le32_to_cpu(dma_hw_desc->sg1u) >>
951                                     DMA_CUED_REGION_OFF) &
952                                       DMA_CUED_REGION_MSK) == DMA_RXOR12) {
953                                         /* RXOR 1-2 */
954                                         return 2;
955                                 } else {
956                                         /* RXOR 1-2-3/1-2-4/1-2-5 */
957                                         return 3;
958                                 }
959                         }
960                         return 1;
961                 default:
962                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
963                                 __func__, dma_hw_desc->opc);
964                         BUG();
965                 }
966         case PPC440SPE_XOR_ID:
967                 /* up to 16 sources */
968                 xor_hw_desc = desc->hw_desc;
969                 return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
970         default:
971                 BUG();
972         }
973         return 0;
976 /**
977  * ppc440spe_desc_get_dst_num - get the number of destination addresses in
978  * this descriptor
979  */
980 static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
981                                 struct ppc440spe_adma_chan *chan)
983         struct dma_cdb *dma_hw_desc;
985         switch (chan->device->id) {
986         case PPC440SPE_DMA0_ID:
987         case PPC440SPE_DMA1_ID:
988                 /* May be 1 or 2 destinations */
989                 dma_hw_desc = desc->hw_desc;
990                 switch (dma_hw_desc->opc) {
991                 case DMA_CDB_OPC_NO_OP:
992                 case DMA_CDB_OPC_DCHECK128:
993                         return 0;
994                 case DMA_CDB_OPC_MV_SG1_SG2:
995                 case DMA_CDB_OPC_DFILL128:
996                         return 1;
997                 case DMA_CDB_OPC_MULTICAST:
998                         if (desc->dst_cnt == 2)
999                                 return 2;
1000                         else
1001                                 return 1;
1002                 default:
1003                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1004                                 __func__, dma_hw_desc->opc);
1005                         BUG();
1006                 }
1007         case PPC440SPE_XOR_ID:
1008                 /* Always only 1 destination */
1009                 return 1;
1010         default:
1011                 BUG();
1012         }
1013         return 0;
1016 /**
1017  * ppc440spe_desc_get_link - get the address of the descriptor that
1018  * follows this one
1019  */
1020 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1021                                         struct ppc440spe_adma_chan *chan)
1023         if (!desc->hw_next)
1024                 return 0;
1026         return desc->hw_next->phys;
1029 /**
1030  * ppc440spe_desc_is_aligned - check alignment
1031  */
1032 static inline int ppc440spe_desc_is_aligned(
1033         struct ppc440spe_adma_desc_slot *desc, int num_slots)
1035         return (desc->idx & (num_slots - 1)) ? 0 : 1;
1038 /**
1039  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1040  * XOR operation
1041  */
1042 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1043                         int *slots_per_op)
1045         int slot_cnt;
1047         /* each XOR descriptor provides up to 16 source operands */
1048         slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1050         if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1051                 return slot_cnt;
1053         printk(KERN_ERR "%s: len %d > max %d !!\n",
1054                 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1055         BUG();
1056         return slot_cnt;
1059 /**
1060  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1061  * DMA2 PQ operation
1062  */
1063 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1064                 int src_cnt, size_t len)
1066         signed long long order = 0;
1067         int state = 0;
1068         int addr_count = 0;
1069         int i;
1070         for (i = 1; i < src_cnt; i++) {
1071                 dma_addr_t cur_addr = srcs[i];
1072                 dma_addr_t old_addr = srcs[i-1];
1073                 switch (state) {
1074                 case 0:
1075                         if (cur_addr == old_addr + len) {
1076                                 /* direct RXOR */
1077                                 order = 1;
1078                                 state = 1;
1079                                 if (i == src_cnt-1)
1080                                         addr_count++;
1081                         } else if (old_addr == cur_addr + len) {
1082                                 /* reverse RXOR */
1083                                 order = -1;
1084                                 state = 1;
1085                                 if (i == src_cnt-1)
1086                                         addr_count++;
1087                         } else {
1088                                 state = 3;
1089                         }
1090                         break;
1091                 case 1:
1092                         if (i == src_cnt-2 || (order == -1
1093                                 && cur_addr != old_addr - len)) {
1094                                 order = 0;
1095                                 state = 0;
1096                                 addr_count++;
1097                         } else if (cur_addr == old_addr + len*order) {
1098                                 state = 2;
1099                                 if (i == src_cnt-1)
1100                                         addr_count++;
1101                         } else if (cur_addr == old_addr + 2*len) {
1102                                 state = 2;
1103                                 if (i == src_cnt-1)
1104                                         addr_count++;
1105                         } else if (cur_addr == old_addr + 3*len) {
1106                                 state = 2;
1107                                 if (i == src_cnt-1)
1108                                         addr_count++;
1109                         } else {
1110                                 order = 0;
1111                                 state = 0;
1112                                 addr_count++;
1113                         }
1114                         break;
1115                 case 2:
1116                         order = 0;
1117                         state = 0;
1118                         addr_count++;
1119                                 break;
1120                 }
1121                 if (state == 3)
1122                         break;
1123         }
1124         if (src_cnt <= 1 || (state != 1 && state != 2)) {
1125                 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1126                         __func__, src_cnt, state, addr_count, order);
1127                 for (i = 0; i < src_cnt; i++)
1128                         pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1129                 BUG();
1130         }
1132         return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1136 /******************************************************************************
1137  * ADMA channel low-level routines
1138  ******************************************************************************/
1140 static u32
1141 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1142 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1144 /**
1145  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1146  */
1147 static void ppc440spe_adma_device_clear_eot_status(
1148                                         struct ppc440spe_adma_chan *chan)
1150         struct dma_regs *dma_reg;
1151         struct xor_regs *xor_reg;
1152         u8 *p = chan->device->dma_desc_pool_virt;
1153         struct dma_cdb *cdb;
1154         u32 rv, i;
1156         switch (chan->device->id) {
1157         case PPC440SPE_DMA0_ID:
1158         case PPC440SPE_DMA1_ID:
1159                 /* read FIFO to ack */
1160                 dma_reg = chan->device->dma_reg;
1161                 while ((rv = ioread32(&dma_reg->csfpl))) {
1162                         i = rv & DMA_CDB_ADDR_MSK;
1163                         cdb = (struct dma_cdb *)&p[i -
1164                             (u32)chan->device->dma_desc_pool];
1166                         /* Clear opcode to ack. This is necessary for
1167                          * ZeroSum operations only
1168                          */
1169                         cdb->opc = 0;
1171                         if (test_bit(PPC440SPE_RXOR_RUN,
1172                             &ppc440spe_rxor_state)) {
1173                                 /* probably this is a completed RXOR op,
1174                                  * get pointer to CDB using the fact that
1175                                  * physical and virtual addresses of CDB
1176                                  * in pools have the same offsets
1177                                  */
1178                                 if (le32_to_cpu(cdb->sg1u) &
1179                                     DMA_CUED_XOR_BASE) {
1180                                         /* this is a RXOR */
1181                                         clear_bit(PPC440SPE_RXOR_RUN,
1182                                                   &ppc440spe_rxor_state);
1183                                 }
1184                         }
1186                         if (rv & DMA_CDB_STATUS_MSK) {
1187                                 /* ZeroSum check failed
1188                                  */
1189                                 struct ppc440spe_adma_desc_slot *iter;
1190                                 dma_addr_t phys = rv & ~DMA_CDB_MSK;
1192                                 /*
1193                                  * Update the status of corresponding
1194                                  * descriptor.
1195                                  */
1196                                 list_for_each_entry(iter, &chan->chain,
1197                                     chain_node) {
1198                                         if (iter->phys == phys)
1199                                                 break;
1200                                 }
1201                                 /*
1202                                  * if cannot find the corresponding
1203                                  * slot it's a bug
1204                                  */
1205                                 BUG_ON(&iter->chain_node == &chan->chain);
1207                                 if (iter->xor_check_result) {
1208                                         if (test_bit(PPC440SPE_DESC_PCHECK,
1209                                                      &iter->flags)) {
1210                                                 *iter->xor_check_result |=
1211                                                         SUM_CHECK_P_RESULT;
1212                                         } else
1213                                         if (test_bit(PPC440SPE_DESC_QCHECK,
1214                                                      &iter->flags)) {
1215                                                 *iter->xor_check_result |=
1216                                                         SUM_CHECK_Q_RESULT;
1217                                         } else
1218                                                 BUG();
1219                                 }
1220                         }
1221                 }
1223                 rv = ioread32(&dma_reg->dsts);
1224                 if (rv) {
1225                         pr_err("DMA%d err status: 0x%x\n",
1226                                chan->device->id, rv);
1227                         /* write back to clear */
1228                         iowrite32(rv, &dma_reg->dsts);
1229                 }
1230                 break;
1231         case PPC440SPE_XOR_ID:
1232                 /* reset status bits to ack */
1233                 xor_reg = chan->device->xor_reg;
1234                 rv = ioread32be(&xor_reg->sr);
1235                 iowrite32be(rv, &xor_reg->sr);
1237                 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1238                         if (rv & XOR_IE_RPTIE_BIT) {
1239                                 /* Read PLB Timeout Error.
1240                                  * Try to resubmit the CB
1241                                  */
1242                                 u32 val = ioread32be(&xor_reg->ccbalr);
1244                                 iowrite32be(val, &xor_reg->cblalr);
1246                                 val = ioread32be(&xor_reg->crsr);
1247                                 iowrite32be(val | XOR_CRSR_XAE_BIT,
1248                                             &xor_reg->crsr);
1249                         } else
1250                                 pr_err("XOR ERR 0x%x status\n", rv);
1251                         break;
1252                 }
1254                 /*  if the XORcore is idle, but there are unprocessed CBs
1255                  * then refetch the s/w chain here
1256                  */
1257                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1258                     do_xor_refetch)
1259                         ppc440spe_chan_append(chan);
1260                 break;
1261         }
1264 /**
1265  * ppc440spe_chan_is_busy - get the channel status
1266  */
1267 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1269         struct dma_regs *dma_reg;
1270         struct xor_regs *xor_reg;
1271         int busy = 0;
1273         switch (chan->device->id) {
1274         case PPC440SPE_DMA0_ID:
1275         case PPC440SPE_DMA1_ID:
1276                 dma_reg = chan->device->dma_reg;
1277                 /*  if command FIFO's head and tail pointers are equal and
1278                  * status tail is the same as command, then channel is free
1279                  */
1280                 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1281                     ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1282                         busy = 1;
1283                 break;
1284         case PPC440SPE_XOR_ID:
1285                 /* use the special status bit for the XORcore
1286                  */
1287                 xor_reg = chan->device->xor_reg;
1288                 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1289                 break;
1290         }
1292         return busy;
1295 /**
1296  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1297  */
1298 static void ppc440spe_chan_set_first_xor_descriptor(
1299                                 struct ppc440spe_adma_chan *chan,
1300                                 struct ppc440spe_adma_desc_slot *next_desc)
1302         struct xor_regs *xor_reg = chan->device->xor_reg;
1304         if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1305                 printk(KERN_INFO "%s: Warn: XORcore is running "
1306                         "when try to set the first CDB!\n",
1307                         __func__);
1309         xor_last_submit = xor_last_linked = next_desc;
1311         iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1313         iowrite32be(next_desc->phys, &xor_reg->cblalr);
1314         iowrite32be(0, &xor_reg->cblahr);
1315         iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1316                     &xor_reg->cbcr);
1318         chan->hw_chain_inited = 1;
1321 /**
1322  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1323  * called with irqs disabled
1324  */
1325 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1326                 struct ppc440spe_adma_desc_slot *desc)
1328         u32 pcdb;
1329         struct dma_regs *dma_reg = chan->device->dma_reg;
1331         pcdb = desc->phys;
1332         if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1333                 pcdb |= DMA_CDB_NO_INT;
1335         chan_last_sub[chan->device->id] = desc;
1337         ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1339         iowrite32(pcdb, &dma_reg->cpfpl);
1342 /**
1343  * ppc440spe_chan_append - update the h/w chain in the channel
1344  */
1345 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1347         struct xor_regs *xor_reg;
1348         struct ppc440spe_adma_desc_slot *iter;
1349         struct xor_cb *xcb;
1350         u32 cur_desc;
1351         unsigned long flags;
1353         local_irq_save(flags);
1355         switch (chan->device->id) {
1356         case PPC440SPE_DMA0_ID:
1357         case PPC440SPE_DMA1_ID:
1358                 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1360                 if (likely(cur_desc)) {
1361                         iter = chan_last_sub[chan->device->id];
1362                         BUG_ON(!iter);
1363                 } else {
1364                         /* first peer */
1365                         iter = chan_first_cdb[chan->device->id];
1366                         BUG_ON(!iter);
1367                         ppc440spe_dma_put_desc(chan, iter);
1368                         chan->hw_chain_inited = 1;
1369                 }
1371                 /* is there something new to append */
1372                 if (!iter->hw_next)
1373                         break;
1375                 /* flush descriptors from the s/w queue to fifo */
1376                 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1377                         ppc440spe_dma_put_desc(chan, iter);
1378                         if (!iter->hw_next)
1379                                 break;
1380                 }
1381                 break;
1382         case PPC440SPE_XOR_ID:
1383                 /* update h/w links and refetch */
1384                 if (!xor_last_submit->hw_next)
1385                         break;
1387                 xor_reg = chan->device->xor_reg;
1388                 /* the last linked CDB has to generate an interrupt
1389                  * that we'd be able to append the next lists to h/w
1390                  * regardless of the XOR engine state at the moment of
1391                  * appending of these next lists
1392                  */
1393                 xcb = xor_last_linked->hw_desc;
1394                 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1396                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1397                         /* XORcore is idle. Refetch now */
1398                         do_xor_refetch = 0;
1399                         ppc440spe_xor_set_link(xor_last_submit,
1400                                 xor_last_submit->hw_next);
1402                         ADMA_LL_DBG(print_cb_list(chan,
1403                                 xor_last_submit->hw_next));
1405                         xor_last_submit = xor_last_linked;
1406                         iowrite32be(ioread32be(&xor_reg->crsr) |
1407                                     XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1408                                     &xor_reg->crsr);
1409                 } else {
1410                         /* XORcore is running. Refetch later in the handler */
1411                         do_xor_refetch = 1;
1412                 }
1414                 break;
1415         }
1417         local_irq_restore(flags);
1420 /**
1421  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1422  */
1423 static u32
1424 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1426         struct dma_regs *dma_reg;
1427         struct xor_regs *xor_reg;
1429         if (unlikely(!chan->hw_chain_inited))
1430                 /* h/w descriptor chain is not initialized yet */
1431                 return 0;
1433         switch (chan->device->id) {
1434         case PPC440SPE_DMA0_ID:
1435         case PPC440SPE_DMA1_ID:
1436                 dma_reg = chan->device->dma_reg;
1437                 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1438         case PPC440SPE_XOR_ID:
1439                 xor_reg = chan->device->xor_reg;
1440                 return ioread32be(&xor_reg->ccbalr);
1441         }
1442         return 0;
1445 /**
1446  * ppc440spe_chan_run - enable the channel
1447  */
1448 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1450         struct xor_regs *xor_reg;
1452         switch (chan->device->id) {
1453         case PPC440SPE_DMA0_ID:
1454         case PPC440SPE_DMA1_ID:
1455                 /* DMAs are always enabled, do nothing */
1456                 break;
1457         case PPC440SPE_XOR_ID:
1458                 /* drain write buffer */
1459                 xor_reg = chan->device->xor_reg;
1461                 /* fetch descriptor pointed to in <link> */
1462                 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1463                             &xor_reg->crsr);
1464                 break;
1465         }
1468 /******************************************************************************
1469  * ADMA device level
1470  ******************************************************************************/
1472 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1473 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1475 static dma_cookie_t
1476 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1478 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1479                                     dma_addr_t addr, int index);
1480 static void
1481 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1482                                   dma_addr_t addr, int index);
1484 static void
1485 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1486                            dma_addr_t *paddr, unsigned long flags);
1487 static void
1488 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1489                           dma_addr_t addr, int index);
1490 static void
1491 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1492                                unsigned char mult, int index, int dst_pos);
1493 static void
1494 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1495                                    dma_addr_t paddr, dma_addr_t qaddr);
1497 static struct page *ppc440spe_rxor_srcs[32];
1499 /**
1500  * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1501  */
1502 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1504         int i, order = 0, state = 0;
1505         int idx = 0;
1507         if (unlikely(!(src_cnt > 1)))
1508                 return 0;
1510         BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1512         /* Skip holes in the source list before checking */
1513         for (i = 0; i < src_cnt; i++) {
1514                 if (!srcs[i])
1515                         continue;
1516                 ppc440spe_rxor_srcs[idx++] = srcs[i];
1517         }
1518         src_cnt = idx;
1520         for (i = 1; i < src_cnt; i++) {
1521                 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1522                 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1524                 switch (state) {
1525                 case 0:
1526                         if (cur_addr == old_addr + len) {
1527                                 /* direct RXOR */
1528                                 order = 1;
1529                                 state = 1;
1530                         } else if (old_addr == cur_addr + len) {
1531                                 /* reverse RXOR */
1532                                 order = -1;
1533                                 state = 1;
1534                         } else
1535                                 goto out;
1536                         break;
1537                 case 1:
1538                         if ((i == src_cnt - 2) ||
1539                             (order == -1 && cur_addr != old_addr - len)) {
1540                                 order = 0;
1541                                 state = 0;
1542                         } else if ((cur_addr == old_addr + len * order) ||
1543                                    (cur_addr == old_addr + 2 * len) ||
1544                                    (cur_addr == old_addr + 3 * len)) {
1545                                 state = 2;
1546                         } else {
1547                                 order = 0;
1548                                 state = 0;
1549                         }
1550                         break;
1551                 case 2:
1552                         order = 0;
1553                         state = 0;
1554                         break;
1555                 }
1556         }
1558 out:
1559         if (state == 1 || state == 2)
1560                 return 1;
1562         return 0;
1565 /**
1566  * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1567  *      the operation given on this channel. It's assumed that 'chan' is
1568  *      capable to process 'cap' type of operation.
1569  * @chan: channel to use
1570  * @cap: type of transaction
1571  * @dst_lst: array of destination pointers
1572  * @dst_cnt: number of destination operands
1573  * @src_lst: array of source pointers
1574  * @src_cnt: number of source operands
1575  * @src_sz: size of each source operand
1576  */
1577 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1578         enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1579         struct page **src_lst, int src_cnt, size_t src_sz)
1581         int ef = 1;
1583         if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1584                 /* If RAID-6 capabilities were not activated don't try
1585                  * to use them
1586                  */
1587                 if (unlikely(!ppc440spe_r6_enabled))
1588                         return -1;
1589         }
1590         /*  In the current implementation of ppc440spe ADMA driver it
1591          * makes sense to pick out only pq case, because it may be
1592          * processed:
1593          * (1) either using Biskup method on DMA2;
1594          * (2) or on DMA0/1.
1595          *  Thus we give a favour to (1) if the sources are suitable;
1596          * else let it be processed on one of the DMA0/1 engines.
1597          *  In the sum_product case where destination is also the
1598          * source process it on DMA0/1 only.
1599          */
1600         if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1602                 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1603                         ef = 0; /* sum_product case, process on DMA0/1 */
1604                 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1605                         ef = 3; /* override (DMA0/1 + idle) */
1606                 else
1607                         ef = 0; /* can't process on DMA2 if !rxor */
1608         }
1610         /* channel idleness increases the priority */
1611         if (likely(ef) &&
1612             !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1613                 ef++;
1615         return ef;
1618 struct dma_chan *
1619 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1620         struct page **dst_lst, int dst_cnt, struct page **src_lst,
1621         int src_cnt, size_t src_sz)
1623         struct dma_chan *best_chan = NULL;
1624         struct ppc_dma_chan_ref *ref;
1625         int best_rank = -1;
1627         if (unlikely(!src_sz))
1628                 return NULL;
1629         if (src_sz > PAGE_SIZE) {
1630                 /*
1631                  * should a user of the api ever pass > PAGE_SIZE requests
1632                  * we sort out cases where temporary page-sized buffers
1633                  * are used.
1634                  */
1635                 switch (cap) {
1636                 case DMA_PQ:
1637                         if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1638                                 return NULL;
1639                         if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1640                                 return NULL;
1641                         break;
1642                 case DMA_PQ_VAL:
1643                 case DMA_XOR_VAL:
1644                         return NULL;
1645                 default:
1646                         break;
1647                 }
1648         }
1650         list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1651                 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1652                         int rank;
1654                         rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1655                                         dst_cnt, src_lst, src_cnt, src_sz);
1656                         if (rank > best_rank) {
1657                                 best_rank = rank;
1658                                 best_chan = ref->chan;
1659                         }
1660                 }
1661         }
1663         return best_chan;
1665 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1667 /**
1668  * ppc440spe_get_group_entry - get group entry with index idx
1669  * @tdesc: is the last allocated slot in the group.
1670  */
1671 static struct ppc440spe_adma_desc_slot *
1672 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1674         struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1675         int i = 0;
1677         if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1678                 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1679                         __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1680                 BUG();
1681         }
1683         list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1684                 if (i++ == entry_idx)
1685                         break;
1686         }
1687         return iter;
1690 /**
1691  * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1692  * @slot: Slot to free
1693  * Caller must hold &ppc440spe_chan->lock while calling this function
1694  */
1695 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1696                                       struct ppc440spe_adma_chan *chan)
1698         int stride = slot->slots_per_op;
1700         while (stride--) {
1701                 slot->slots_per_op = 0;
1702                 slot = list_entry(slot->slot_node.next,
1703                                 struct ppc440spe_adma_desc_slot,
1704                                 slot_node);
1705         }
1708 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1709                                  struct ppc440spe_adma_desc_slot *desc)
1711         u32 src_cnt, dst_cnt;
1712         dma_addr_t addr;
1714         /*
1715          * get the number of sources & destination
1716          * included in this descriptor and unmap
1717          * them all
1718          */
1719         src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1720         dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1722         /* unmap destinations */
1723         if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1724                 while (dst_cnt--) {
1725                         addr = ppc440spe_desc_get_dest_addr(
1726                                 desc, chan, dst_cnt);
1727                         dma_unmap_page(chan->device->dev,
1728                                         addr, desc->unmap_len,
1729                                         DMA_FROM_DEVICE);
1730                 }
1731         }
1733         /* unmap sources */
1734         if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1735                 while (src_cnt--) {
1736                         addr = ppc440spe_desc_get_src_addr(
1737                                 desc, chan, src_cnt);
1738                         dma_unmap_page(chan->device->dev,
1739                                         addr, desc->unmap_len,
1740                                         DMA_TO_DEVICE);
1741                 }
1742         }
1745 /**
1746  * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1747  * upon completion
1748  */
1749 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1750                 struct ppc440spe_adma_desc_slot *desc,
1751                 struct ppc440spe_adma_chan *chan,
1752                 dma_cookie_t cookie)
1754         int i;
1756         BUG_ON(desc->async_tx.cookie < 0);
1757         if (desc->async_tx.cookie > 0) {
1758                 cookie = desc->async_tx.cookie;
1759                 desc->async_tx.cookie = 0;
1761                 /* call the callback (must not sleep or submit new
1762                  * operations to this channel)
1763                  */
1764                 if (desc->async_tx.callback)
1765                         desc->async_tx.callback(
1766                                 desc->async_tx.callback_param);
1768                 /* unmap dma addresses
1769                  * (unmap_single vs unmap_page?)
1770                  *
1771                  * actually, ppc's dma_unmap_page() functions are empty, so
1772                  * the following code is just for the sake of completeness
1773                  */
1774                 if (chan && chan->needs_unmap && desc->group_head &&
1775                      desc->unmap_len) {
1776                         struct ppc440spe_adma_desc_slot *unmap =
1777                                                         desc->group_head;
1778                         /* assume 1 slot per op always */
1779                         u32 slot_count = unmap->slot_cnt;
1781                         /* Run through the group list and unmap addresses */
1782                         for (i = 0; i < slot_count; i++) {
1783                                 BUG_ON(!unmap);
1784                                 ppc440spe_adma_unmap(chan, unmap);
1785                                 unmap = unmap->hw_next;
1786                         }
1787                 }
1788         }
1790         /* run dependent operations */
1791         dma_run_dependencies(&desc->async_tx);
1793         return cookie;
1796 /**
1797  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1798  */
1799 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1800                 struct ppc440spe_adma_chan *chan)
1802         /* the client is allowed to attach dependent operations
1803          * until 'ack' is set
1804          */
1805         if (!async_tx_test_ack(&desc->async_tx))
1806                 return 0;
1808         /* leave the last descriptor in the chain
1809          * so we can append to it
1810          */
1811         if (list_is_last(&desc->chain_node, &chan->chain) ||
1812             desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1813                 return 1;
1815         if (chan->device->id != PPC440SPE_XOR_ID) {
1816                 /* our DMA interrupt handler clears opc field of
1817                  * each processed descriptor. For all types of
1818                  * operations except for ZeroSum we do not actually
1819                  * need ack from the interrupt handler. ZeroSum is a
1820                  * special case since the result of this operation
1821                  * is available from the handler only, so if we see
1822                  * such type of descriptor (which is unprocessed yet)
1823                  * then leave it in chain.
1824                  */
1825                 struct dma_cdb *cdb = desc->hw_desc;
1826                 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1827                         return 1;
1828         }
1830         dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1831                 desc->phys, desc->idx, desc->slots_per_op);
1833         list_del(&desc->chain_node);
1834         ppc440spe_adma_free_slots(desc, chan);
1835         return 0;
1838 /**
1839  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1840  *      which runs through the channel CDBs list until reach the descriptor
1841  *      currently processed. When routine determines that all CDBs of group
1842  *      are completed then corresponding callbacks (if any) are called and slots
1843  *      are freed.
1844  */
1845 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1847         struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1848         dma_cookie_t cookie = 0;
1849         u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1850         int busy = ppc440spe_chan_is_busy(chan);
1851         int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1853         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1854                 chan->device->id, __func__);
1856         if (!current_desc) {
1857                 /*  There were no transactions yet, so
1858                  * nothing to clean
1859                  */
1860                 return;
1861         }
1863         /* free completed slots from the chain starting with
1864          * the oldest descriptor
1865          */
1866         list_for_each_entry_safe(iter, _iter, &chan->chain,
1867                                         chain_node) {
1868                 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1869                     "busy: %d this_desc: %#llx next_desc: %#x "
1870                     "cur: %#x ack: %d\n",
1871                     iter->async_tx.cookie, iter->idx, busy, iter->phys,
1872                     ppc440spe_desc_get_link(iter, chan), current_desc,
1873                     async_tx_test_ack(&iter->async_tx));
1874                 prefetch(_iter);
1875                 prefetch(&_iter->async_tx);
1877                 /* do not advance past the current descriptor loaded into the
1878                  * hardware channel,subsequent descriptors are either in process
1879                  * or have not been submitted
1880                  */
1881                 if (seen_current)
1882                         break;
1884                 /* stop the search if we reach the current descriptor and the
1885                  * channel is busy, or if it appears that the current descriptor
1886                  * needs to be re-read (i.e. has been appended to)
1887                  */
1888                 if (iter->phys == current_desc) {
1889                         BUG_ON(seen_current++);
1890                         if (busy || ppc440spe_desc_get_link(iter, chan)) {
1891                                 /* not all descriptors of the group have
1892                                  * been completed; exit.
1893                                  */
1894                                 break;
1895                         }
1896                 }
1898                 /* detect the start of a group transaction */
1899                 if (!slot_cnt && !slots_per_op) {
1900                         slot_cnt = iter->slot_cnt;
1901                         slots_per_op = iter->slots_per_op;
1902                         if (slot_cnt <= slots_per_op) {
1903                                 slot_cnt = 0;
1904                                 slots_per_op = 0;
1905                         }
1906                 }
1908                 if (slot_cnt) {
1909                         if (!group_start)
1910                                 group_start = iter;
1911                         slot_cnt -= slots_per_op;
1912                 }
1914                 /* all the members of a group are complete */
1915                 if (slots_per_op != 0 && slot_cnt == 0) {
1916                         struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1917                         int end_of_chain = 0;
1919                         /* clean up the group */
1920                         slot_cnt = group_start->slot_cnt;
1921                         grp_iter = group_start;
1922                         list_for_each_entry_safe_from(grp_iter, _grp_iter,
1923                                 &chan->chain, chain_node) {
1925                                 cookie = ppc440spe_adma_run_tx_complete_actions(
1926                                         grp_iter, chan, cookie);
1928                                 slot_cnt -= slots_per_op;
1929                                 end_of_chain = ppc440spe_adma_clean_slot(
1930                                     grp_iter, chan);
1931                                 if (end_of_chain && slot_cnt) {
1932                                         /* Should wait for ZeroSum completion */
1933                                         if (cookie > 0)
1934                                                 chan->common.completed_cookie = cookie;
1935                                         return;
1936                                 }
1938                                 if (slot_cnt == 0 || end_of_chain)
1939                                         break;
1940                         }
1942                         /* the group should be complete at this point */
1943                         BUG_ON(slot_cnt);
1945                         slots_per_op = 0;
1946                         group_start = NULL;
1947                         if (end_of_chain)
1948                                 break;
1949                         else
1950                                 continue;
1951                 } else if (slots_per_op) /* wait for group completion */
1952                         continue;
1954                 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1955                     cookie);
1957                 if (ppc440spe_adma_clean_slot(iter, chan))
1958                         break;
1959         }
1961         BUG_ON(!seen_current);
1963         if (cookie > 0) {
1964                 chan->common.completed_cookie = cookie;
1965                 pr_debug("\tcompleted cookie %d\n", cookie);
1966         }
1970 /**
1971  * ppc440spe_adma_tasklet - clean up watch-dog initiator
1972  */
1973 static void ppc440spe_adma_tasklet(unsigned long data)
1975         struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1977         spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1978         __ppc440spe_adma_slot_cleanup(chan);
1979         spin_unlock(&chan->lock);
1982 /**
1983  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1984  */
1985 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1987         spin_lock_bh(&chan->lock);
1988         __ppc440spe_adma_slot_cleanup(chan);
1989         spin_unlock_bh(&chan->lock);
1992 /**
1993  * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1994  */
1995 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1996                 struct ppc440spe_adma_chan *chan, int num_slots,
1997                 int slots_per_op)
1999         struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
2000         struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2001         struct list_head chain = LIST_HEAD_INIT(chain);
2002         int slots_found, retry = 0;
2005         BUG_ON(!num_slots || !slots_per_op);
2006         /* start search from the last allocated descrtiptor
2007          * if a contiguous allocation can not be found start searching
2008          * from the beginning of the list
2009          */
2010 retry:
2011         slots_found = 0;
2012         if (retry == 0)
2013                 iter = chan->last_used;
2014         else
2015                 iter = list_entry(&chan->all_slots,
2016                                   struct ppc440spe_adma_desc_slot,
2017                                   slot_node);
2018         list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2019             slot_node) {
2020                 prefetch(_iter);
2021                 prefetch(&_iter->async_tx);
2022                 if (iter->slots_per_op) {
2023                         slots_found = 0;
2024                         continue;
2025                 }
2027                 /* start the allocation if the slot is correctly aligned */
2028                 if (!slots_found++)
2029                         alloc_start = iter;
2031                 if (slots_found == num_slots) {
2032                         struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2033                         struct ppc440spe_adma_desc_slot *last_used = NULL;
2035                         iter = alloc_start;
2036                         while (num_slots) {
2037                                 int i;
2038                                 /* pre-ack all but the last descriptor */
2039                                 if (num_slots != slots_per_op)
2040                                         async_tx_ack(&iter->async_tx);
2042                                 list_add_tail(&iter->chain_node, &chain);
2043                                 alloc_tail = iter;
2044                                 iter->async_tx.cookie = 0;
2045                                 iter->hw_next = NULL;
2046                                 iter->flags = 0;
2047                                 iter->slot_cnt = num_slots;
2048                                 iter->xor_check_result = NULL;
2049                                 for (i = 0; i < slots_per_op; i++) {
2050                                         iter->slots_per_op = slots_per_op - i;
2051                                         last_used = iter;
2052                                         iter = list_entry(iter->slot_node.next,
2053                                                 struct ppc440spe_adma_desc_slot,
2054                                                 slot_node);
2055                                 }
2056                                 num_slots -= slots_per_op;
2057                         }
2058                         alloc_tail->group_head = alloc_start;
2059                         alloc_tail->async_tx.cookie = -EBUSY;
2060                         list_splice(&chain, &alloc_tail->group_list);
2061                         chan->last_used = last_used;
2062                         return alloc_tail;
2063                 }
2064         }
2065         if (!retry++)
2066                 goto retry;
2068         /* try to free some slots if the allocation fails */
2069         tasklet_schedule(&chan->irq_tasklet);
2070         return NULL;
2073 /**
2074  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
2075  */
2076 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2078         struct ppc440spe_adma_chan *ppc440spe_chan;
2079         struct ppc440spe_adma_desc_slot *slot = NULL;
2080         char *hw_desc;
2081         int i, db_sz;
2082         int init;
2084         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2085         init = ppc440spe_chan->slots_allocated ? 0 : 1;
2086         chan->chan_id = ppc440spe_chan->device->id;
2088         /* Allocate descriptor slots */
2089         i = ppc440spe_chan->slots_allocated;
2090         if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2091                 db_sz = sizeof(struct dma_cdb);
2092         else
2093                 db_sz = sizeof(struct xor_cb);
2095         for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2096                 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2097                                GFP_KERNEL);
2098                 if (!slot) {
2099                         printk(KERN_INFO "SPE ADMA Channel only initialized"
2100                                 " %d descriptor slots", i--);
2101                         break;
2102                 }
2104                 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2105                 slot->hw_desc = (void *) &hw_desc[i * db_sz];
2106                 dma_async_tx_descriptor_init(&slot->async_tx, chan);
2107                 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2108                 INIT_LIST_HEAD(&slot->chain_node);
2109                 INIT_LIST_HEAD(&slot->slot_node);
2110                 INIT_LIST_HEAD(&slot->group_list);
2111                 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2112                 slot->idx = i;
2114                 spin_lock_bh(&ppc440spe_chan->lock);
2115                 ppc440spe_chan->slots_allocated++;
2116                 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2117                 spin_unlock_bh(&ppc440spe_chan->lock);
2118         }
2120         if (i && !ppc440spe_chan->last_used) {
2121                 ppc440spe_chan->last_used =
2122                         list_entry(ppc440spe_chan->all_slots.next,
2123                                 struct ppc440spe_adma_desc_slot,
2124                                 slot_node);
2125         }
2127         dev_dbg(ppc440spe_chan->device->common.dev,
2128                 "ppc440spe adma%d: allocated %d descriptor slots\n",
2129                 ppc440spe_chan->device->id, i);
2131         /* initialize the channel and the chain with a null operation */
2132         if (init) {
2133                 switch (ppc440spe_chan->device->id) {
2134                 case PPC440SPE_DMA0_ID:
2135                 case PPC440SPE_DMA1_ID:
2136                         ppc440spe_chan->hw_chain_inited = 0;
2137                         /* Use WXOR for self-testing */
2138                         if (!ppc440spe_r6_tchan)
2139                                 ppc440spe_r6_tchan = ppc440spe_chan;
2140                         break;
2141                 case PPC440SPE_XOR_ID:
2142                         ppc440spe_chan_start_null_xor(ppc440spe_chan);
2143                         break;
2144                 default:
2145                         BUG();
2146                 }
2147                 ppc440spe_chan->needs_unmap = 1;
2148         }
2150         return (i > 0) ? i : -ENOMEM;
2153 /**
2154  * ppc440spe_rxor_set_region_data -
2155  */
2156 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2157         u8 xor_arg_no, u32 mask)
2159         struct xor_cb *xcb = desc->hw_desc;
2161         xcb->ops[xor_arg_no].h |= mask;
2164 /**
2165  * ppc440spe_rxor_set_src -
2166  */
2167 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2168         u8 xor_arg_no, dma_addr_t addr)
2170         struct xor_cb *xcb = desc->hw_desc;
2172         xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2173         xcb->ops[xor_arg_no].l = addr;
2176 /**
2177  * ppc440spe_rxor_set_mult -
2178  */
2179 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2180         u8 xor_arg_no, u8 idx, u8 mult)
2182         struct xor_cb *xcb = desc->hw_desc;
2184         xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2187 /**
2188  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2189  *      has been achieved
2190  */
2191 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2193         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2194                 chan->device->id, chan->pending);
2196         if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2197                 chan->pending = 0;
2198                 ppc440spe_chan_append(chan);
2199         }
2202 /**
2203  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2204  *      (it's not necessary that descriptors will be submitted to the h/w
2205  *      chains too right now)
2206  */
2207 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2209         struct ppc440spe_adma_desc_slot *sw_desc;
2210         struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2211         struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2212         int slot_cnt;
2213         int slots_per_op;
2214         dma_cookie_t cookie;
2216         sw_desc = tx_to_ppc440spe_adma_slot(tx);
2218         group_start = sw_desc->group_head;
2219         slot_cnt = group_start->slot_cnt;
2220         slots_per_op = group_start->slots_per_op;
2222         spin_lock_bh(&chan->lock);
2223         cookie = dma_cookie_assign(tx);
2225         if (unlikely(list_empty(&chan->chain))) {
2226                 /* first peer */
2227                 list_splice_init(&sw_desc->group_list, &chan->chain);
2228                 chan_first_cdb[chan->device->id] = group_start;
2229         } else {
2230                 /* isn't first peer, bind CDBs to chain */
2231                 old_chain_tail = list_entry(chan->chain.prev,
2232                                         struct ppc440spe_adma_desc_slot,
2233                                         chain_node);
2234                 list_splice_init(&sw_desc->group_list,
2235                     &old_chain_tail->chain_node);
2236                 /* fix up the hardware chain */
2237                 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2238         }
2240         /* increment the pending count by the number of operations */
2241         chan->pending += slot_cnt / slots_per_op;
2242         ppc440spe_adma_check_threshold(chan);
2243         spin_unlock_bh(&chan->lock);
2245         dev_dbg(chan->device->common.dev,
2246                 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2247                 chan->device->id, __func__,
2248                 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2250         return cookie;
2253 /**
2254  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2255  */
2256 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2257                 struct dma_chan *chan, unsigned long flags)
2259         struct ppc440spe_adma_chan *ppc440spe_chan;
2260         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2261         int slot_cnt, slots_per_op;
2263         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2265         dev_dbg(ppc440spe_chan->device->common.dev,
2266                 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2267                 __func__);
2269         spin_lock_bh(&ppc440spe_chan->lock);
2270         slot_cnt = slots_per_op = 1;
2271         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2272                         slots_per_op);
2273         if (sw_desc) {
2274                 group_start = sw_desc->group_head;
2275                 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2276                 group_start->unmap_len = 0;
2277                 sw_desc->async_tx.flags = flags;
2278         }
2279         spin_unlock_bh(&ppc440spe_chan->lock);
2281         return sw_desc ? &sw_desc->async_tx : NULL;
2284 /**
2285  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2286  */
2287 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2288                 struct dma_chan *chan, dma_addr_t dma_dest,
2289                 dma_addr_t dma_src, size_t len, unsigned long flags)
2291         struct ppc440spe_adma_chan *ppc440spe_chan;
2292         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2293         int slot_cnt, slots_per_op;
2295         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2297         if (unlikely(!len))
2298                 return NULL;
2300         BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2302         spin_lock_bh(&ppc440spe_chan->lock);
2304         dev_dbg(ppc440spe_chan->device->common.dev,
2305                 "ppc440spe adma%d: %s len: %u int_en %d\n",
2306                 ppc440spe_chan->device->id, __func__, len,
2307                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2308         slot_cnt = slots_per_op = 1;
2309         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2310                 slots_per_op);
2311         if (sw_desc) {
2312                 group_start = sw_desc->group_head;
2313                 ppc440spe_desc_init_memcpy(group_start, flags);
2314                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2315                 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2316                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2317                 sw_desc->unmap_len = len;
2318                 sw_desc->async_tx.flags = flags;
2319         }
2320         spin_unlock_bh(&ppc440spe_chan->lock);
2322         return sw_desc ? &sw_desc->async_tx : NULL;
2325 /**
2326  * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
2327  */
2328 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
2329                 struct dma_chan *chan, dma_addr_t dma_dest, int value,
2330                 size_t len, unsigned long flags)
2332         struct ppc440spe_adma_chan *ppc440spe_chan;
2333         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2334         int slot_cnt, slots_per_op;
2336         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2338         if (unlikely(!len))
2339                 return NULL;
2341         BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2343         spin_lock_bh(&ppc440spe_chan->lock);
2345         dev_dbg(ppc440spe_chan->device->common.dev,
2346                 "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
2347                 ppc440spe_chan->device->id, __func__, value, len,
2348                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2350         slot_cnt = slots_per_op = 1;
2351         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2352                 slots_per_op);
2353         if (sw_desc) {
2354                 group_start = sw_desc->group_head;
2355                 ppc440spe_desc_init_memset(group_start, value, flags);
2356                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2357                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2358                 sw_desc->unmap_len = len;
2359                 sw_desc->async_tx.flags = flags;
2360         }
2361         spin_unlock_bh(&ppc440spe_chan->lock);
2363         return sw_desc ? &sw_desc->async_tx : NULL;
2366 /**
2367  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2368  */
2369 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2370                 struct dma_chan *chan, dma_addr_t dma_dest,
2371                 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2372                 unsigned long flags)
2374         struct ppc440spe_adma_chan *ppc440spe_chan;
2375         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2376         int slot_cnt, slots_per_op;
2378         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2380         ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2381                                      dma_dest, dma_src, src_cnt));
2382         if (unlikely(!len))
2383                 return NULL;
2384         BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2386         dev_dbg(ppc440spe_chan->device->common.dev,
2387                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2388                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2389                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2391         spin_lock_bh(&ppc440spe_chan->lock);
2392         slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2393         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2394                         slots_per_op);
2395         if (sw_desc) {
2396                 group_start = sw_desc->group_head;
2397                 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2398                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2399                 while (src_cnt--)
2400                         ppc440spe_adma_memcpy_xor_set_src(group_start,
2401                                 dma_src[src_cnt], src_cnt);
2402                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2403                 sw_desc->unmap_len = len;
2404                 sw_desc->async_tx.flags = flags;
2405         }
2406         spin_unlock_bh(&ppc440spe_chan->lock);
2408         return sw_desc ? &sw_desc->async_tx : NULL;
2411 static inline void
2412 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2413                                 int src_cnt);
2414 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2416 /**
2417  * ppc440spe_adma_init_dma2rxor_slot -
2418  */
2419 static void ppc440spe_adma_init_dma2rxor_slot(
2420                 struct ppc440spe_adma_desc_slot *desc,
2421                 dma_addr_t *src, int src_cnt)
2423         int i;
2425         /* initialize CDB */
2426         for (i = 0; i < src_cnt; i++) {
2427                 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2428                                                  desc->src_cnt, (u32)src[i]);
2429         }
2432 /**
2433  * ppc440spe_dma01_prep_mult -
2434  * for Q operation where destination is also the source
2435  */
2436 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2437                 struct ppc440spe_adma_chan *ppc440spe_chan,
2438                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2439                 const unsigned char *scf, size_t len, unsigned long flags)
2441         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2442         unsigned long op = 0;
2443         int slot_cnt;
2445         set_bit(PPC440SPE_DESC_WXOR, &op);
2446         slot_cnt = 2;
2448         spin_lock_bh(&ppc440spe_chan->lock);
2450         /* use WXOR, each descriptor occupies one slot */
2451         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2452         if (sw_desc) {
2453                 struct ppc440spe_adma_chan *chan;
2454                 struct ppc440spe_adma_desc_slot *iter;
2455                 struct dma_cdb *hw_desc;
2457                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2458                 set_bits(op, &sw_desc->flags);
2459                 sw_desc->src_cnt = src_cnt;
2460                 sw_desc->dst_cnt = dst_cnt;
2461                 /* First descriptor, zero data in the destination and copy it
2462                  * to q page using MULTICAST transfer.
2463                  */
2464                 iter = list_first_entry(&sw_desc->group_list,
2465                                         struct ppc440spe_adma_desc_slot,
2466                                         chain_node);
2467                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2468                 /* set 'next' pointer */
2469                 iter->hw_next = list_entry(iter->chain_node.next,
2470                                            struct ppc440spe_adma_desc_slot,
2471                                            chain_node);
2472                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2473                 hw_desc = iter->hw_desc;
2474                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2476                 ppc440spe_desc_set_dest_addr(iter, chan,
2477                                              DMA_CUED_XOR_BASE, dst[0], 0);
2478                 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2479                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2480                                             src[0]);
2481                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2482                 iter->unmap_len = len;
2484                 /*
2485                  * Second descriptor, multiply data from the q page
2486                  * and store the result in real destination.
2487                  */
2488                 iter = list_first_entry(&iter->chain_node,
2489                                         struct ppc440spe_adma_desc_slot,
2490                                         chain_node);
2491                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2492                 iter->hw_next = NULL;
2493                 if (flags & DMA_PREP_INTERRUPT)
2494                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2495                 else
2496                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2498                 hw_desc = iter->hw_desc;
2499                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2500                 ppc440spe_desc_set_src_addr(iter, chan, 0,
2501                                             DMA_CUED_XOR_HB, dst[1]);
2502                 ppc440spe_desc_set_dest_addr(iter, chan,
2503                                              DMA_CUED_XOR_BASE, dst[0], 0);
2505                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2506                                             DMA_CDB_SG_DST1, scf[0]);
2507                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2508                 iter->unmap_len = len;
2509                 sw_desc->async_tx.flags = flags;
2510         }
2512         spin_unlock_bh(&ppc440spe_chan->lock);
2514         return sw_desc;
2517 /**
2518  * ppc440spe_dma01_prep_sum_product -
2519  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2520  * the source.
2521  */
2522 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2523                 struct ppc440spe_adma_chan *ppc440spe_chan,
2524                 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2525                 const unsigned char *scf, size_t len, unsigned long flags)
2527         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2528         unsigned long op = 0;
2529         int slot_cnt;
2531         set_bit(PPC440SPE_DESC_WXOR, &op);
2532         slot_cnt = 3;
2534         spin_lock_bh(&ppc440spe_chan->lock);
2536         /* WXOR, each descriptor occupies one slot */
2537         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2538         if (sw_desc) {
2539                 struct ppc440spe_adma_chan *chan;
2540                 struct ppc440spe_adma_desc_slot *iter;
2541                 struct dma_cdb *hw_desc;
2543                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2544                 set_bits(op, &sw_desc->flags);
2545                 sw_desc->src_cnt = src_cnt;
2546                 sw_desc->dst_cnt = 1;
2547                 /* 1st descriptor, src[1] data to q page and zero destination */
2548                 iter = list_first_entry(&sw_desc->group_list,
2549                                         struct ppc440spe_adma_desc_slot,
2550                                         chain_node);
2551                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2552                 iter->hw_next = list_entry(iter->chain_node.next,
2553                                            struct ppc440spe_adma_desc_slot,
2554                                            chain_node);
2555                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2556                 hw_desc = iter->hw_desc;
2557                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2559                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2560                                              *dst, 0);
2561                 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2562                                              ppc440spe_chan->qdest, 1);
2563                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2564                                             src[1]);
2565                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2566                 iter->unmap_len = len;
2568                 /* 2nd descriptor, multiply src[1] data and store the
2569                  * result in destination */
2570                 iter = list_first_entry(&iter->chain_node,
2571                                         struct ppc440spe_adma_desc_slot,
2572                                         chain_node);
2573                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2574                 /* set 'next' pointer */
2575                 iter->hw_next = list_entry(iter->chain_node.next,
2576                                            struct ppc440spe_adma_desc_slot,
2577                                            chain_node);
2578                 if (flags & DMA_PREP_INTERRUPT)
2579                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2580                 else
2581                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2583                 hw_desc = iter->hw_desc;
2584                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2585                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2586                                             ppc440spe_chan->qdest);
2587                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2588                                              *dst, 0);
2589                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2590                                             DMA_CDB_SG_DST1, scf[1]);
2591                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2592                 iter->unmap_len = len;
2594                 /*
2595                  * 3rd descriptor, multiply src[0] data and xor it
2596                  * with destination
2597                  */
2598                 iter = list_first_entry(&iter->chain_node,
2599                                         struct ppc440spe_adma_desc_slot,
2600                                         chain_node);
2601                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2602                 iter->hw_next = NULL;
2603                 if (flags & DMA_PREP_INTERRUPT)
2604                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2605                 else
2606                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2608                 hw_desc = iter->hw_desc;
2609                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2610                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2611                                             src[0]);
2612                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2613                                              *dst, 0);
2614                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2615                                             DMA_CDB_SG_DST1, scf[0]);
2616                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2617                 iter->unmap_len = len;
2618                 sw_desc->async_tx.flags = flags;
2619         }
2621         spin_unlock_bh(&ppc440spe_chan->lock);
2623         return sw_desc;
2626 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2627                 struct ppc440spe_adma_chan *ppc440spe_chan,
2628                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2629                 const unsigned char *scf, size_t len, unsigned long flags)
2631         int slot_cnt;
2632         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2633         unsigned long op = 0;
2634         unsigned char mult = 1;
2636         pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2637                  __func__, dst_cnt, src_cnt, len);
2638         /*  select operations WXOR/RXOR depending on the
2639          * source addresses of operators and the number
2640          * of destinations (RXOR support only Q-parity calculations)
2641          */
2642         set_bit(PPC440SPE_DESC_WXOR, &op);
2643         if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2644                 /* no active RXOR;
2645                  * do RXOR if:
2646                  * - there are more than 1 source,
2647                  * - len is aligned on 512-byte boundary,
2648                  * - source addresses fit to one of 4 possible regions.
2649                  */
2650                 if (src_cnt > 1 &&
2651                     !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2652                     (src[0] + len) == src[1]) {
2653                         /* may do RXOR R1 R2 */
2654                         set_bit(PPC440SPE_DESC_RXOR, &op);
2655                         if (src_cnt != 2) {
2656                                 /* may try to enhance region of RXOR */
2657                                 if ((src[1] + len) == src[2]) {
2658                                         /* do RXOR R1 R2 R3 */
2659                                         set_bit(PPC440SPE_DESC_RXOR123,
2660                                                 &op);
2661                                 } else if ((src[1] + len * 2) == src[2]) {
2662                                         /* do RXOR R1 R2 R4 */
2663                                         set_bit(PPC440SPE_DESC_RXOR124, &op);
2664                                 } else if ((src[1] + len * 3) == src[2]) {
2665                                         /* do RXOR R1 R2 R5 */
2666                                         set_bit(PPC440SPE_DESC_RXOR125,
2667                                                 &op);
2668                                 } else {
2669                                         /* do RXOR R1 R2 */
2670                                         set_bit(PPC440SPE_DESC_RXOR12,
2671                                                 &op);
2672                                 }
2673                         } else {
2674                                 /* do RXOR R1 R2 */
2675                                 set_bit(PPC440SPE_DESC_RXOR12, &op);
2676                         }
2677                 }
2679                 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2680                         /* can not do this operation with RXOR */
2681                         clear_bit(PPC440SPE_RXOR_RUN,
2682                                 &ppc440spe_rxor_state);
2683                 } else {
2684                         /* can do; set block size right now */
2685                         ppc440spe_desc_set_rxor_block_size(len);
2686                 }
2687         }
2689         /* Number of necessary slots depends on operation type selected */
2690         if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2691                 /*  This is a WXOR only chain. Need descriptors for each
2692                  * source to GF-XOR them with WXOR, and need descriptors
2693                  * for each destination to zero them with WXOR
2694                  */
2695                 slot_cnt = src_cnt;
2697                 if (flags & DMA_PREP_ZERO_P) {
2698                         slot_cnt++;
2699                         set_bit(PPC440SPE_ZERO_P, &op);
2700                 }
2701                 if (flags & DMA_PREP_ZERO_Q) {
2702                         slot_cnt++;
2703                         set_bit(PPC440SPE_ZERO_Q, &op);
2704                 }
2705         } else {
2706                 /*  Need 1/2 descriptor for RXOR operation, and
2707                  * need (src_cnt - (2 or 3)) for WXOR of sources
2708                  * remained (if any)
2709                  */
2710                 slot_cnt = dst_cnt;
2712                 if (flags & DMA_PREP_ZERO_P)
2713                         set_bit(PPC440SPE_ZERO_P, &op);
2714                 if (flags & DMA_PREP_ZERO_Q)
2715                         set_bit(PPC440SPE_ZERO_Q, &op);
2717                 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2718                         slot_cnt += src_cnt - 2;
2719                 else
2720                         slot_cnt += src_cnt - 3;
2722                 /*  Thus we have either RXOR only chain or
2723                  * mixed RXOR/WXOR
2724                  */
2725                 if (slot_cnt == dst_cnt)
2726                         /* RXOR only chain */
2727                         clear_bit(PPC440SPE_DESC_WXOR, &op);
2728         }
2730         spin_lock_bh(&ppc440spe_chan->lock);
2731         /* for both RXOR/WXOR each descriptor occupies one slot */
2732         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2733         if (sw_desc) {
2734                 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2735                                 flags, op);
2737                 /* setup dst/src/mult */
2738                 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2739                          __func__, dst[0], dst[1]);
2740                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2741                 while (src_cnt--) {
2742                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2743                                                   src_cnt);
2745                         /* NOTE: "Multi = 0 is equivalent to = 1" as it
2746                          * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2747                          * doesn't work for RXOR with DMA0/1! Instead, multi=0
2748                          * leads to zeroing source data after RXOR.
2749                          * So, for P case set-up mult=1 explicitly.
2750                          */
2751                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2752                                 mult = scf[src_cnt];
2753                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2754                                 mult, src_cnt,  dst_cnt - 1);
2755                 }
2757                 /* Setup byte count foreach slot just allocated */
2758                 sw_desc->async_tx.flags = flags;
2759                 list_for_each_entry(iter, &sw_desc->group_list,
2760                                 chain_node) {
2761                         ppc440spe_desc_set_byte_count(iter,
2762                                 ppc440spe_chan, len);
2763                         iter->unmap_len = len;
2764                 }
2765         }
2766         spin_unlock_bh(&ppc440spe_chan->lock);
2768         return sw_desc;
2771 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2772                 struct ppc440spe_adma_chan *ppc440spe_chan,
2773                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2774                 const unsigned char *scf, size_t len, unsigned long flags)
2776         int slot_cnt, descs_per_op;
2777         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2778         unsigned long op = 0;
2779         unsigned char mult = 1;
2781         BUG_ON(!dst_cnt);
2782         /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2783                  __func__, dst_cnt, src_cnt, len);*/
2785         spin_lock_bh(&ppc440spe_chan->lock);
2786         descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2787         if (descs_per_op < 0) {
2788                 spin_unlock_bh(&ppc440spe_chan->lock);
2789                 return NULL;
2790         }
2792         /* depending on number of sources we have 1 or 2 RXOR chains */
2793         slot_cnt = descs_per_op * dst_cnt;
2795         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2796         if (sw_desc) {
2797                 op = slot_cnt;
2798                 sw_desc->async_tx.flags = flags;
2799                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2800                         ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2801                                 --op ? 0 : flags);
2802                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2803                                 len);
2804                         iter->unmap_len = len;
2806                         ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2807                         iter->rxor_cursor.len = len;
2808                         iter->descs_per_op = descs_per_op;
2809                 }
2810                 op = 0;
2811                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2812                         op++;
2813                         if (op % descs_per_op == 0)
2814                                 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2815                                                                   src_cnt);
2816                         if (likely(!list_is_last(&iter->chain_node,
2817                                                  &sw_desc->group_list))) {
2818                                 /* set 'next' pointer */
2819                                 iter->hw_next =
2820                                         list_entry(iter->chain_node.next,
2821                                                 struct ppc440spe_adma_desc_slot,
2822                                                 chain_node);
2823                                 ppc440spe_xor_set_link(iter, iter->hw_next);
2824                         } else {
2825                                 /* this is the last descriptor. */
2826                                 iter->hw_next = NULL;
2827                         }
2828                 }
2830                 /* fixup head descriptor */
2831                 sw_desc->dst_cnt = dst_cnt;
2832                 if (flags & DMA_PREP_ZERO_P)
2833                         set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2834                 if (flags & DMA_PREP_ZERO_Q)
2835                         set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2837                 /* setup dst/src/mult */
2838                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2840                 while (src_cnt--) {
2841                         /* handle descriptors (if dst_cnt == 2) inside
2842                          * the ppc440spe_adma_pq_set_srcxxx() functions
2843                          */
2844                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2845                                                   src_cnt);
2846                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2847                                 mult = scf[src_cnt];
2848                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2849                                         mult, src_cnt, dst_cnt - 1);
2850                 }
2851         }
2852         spin_unlock_bh(&ppc440spe_chan->lock);
2853         ppc440spe_desc_set_rxor_block_size(len);
2854         return sw_desc;
2857 /**
2858  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2859  */
2860 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2861                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2862                 unsigned int src_cnt, const unsigned char *scf,
2863                 size_t len, unsigned long flags)
2865         struct ppc440spe_adma_chan *ppc440spe_chan;
2866         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2867         int dst_cnt = 0;
2869         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2871         ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2872                                     dst, src, src_cnt));
2873         BUG_ON(!len);
2874         BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2875         BUG_ON(!src_cnt);
2877         if (src_cnt == 1 && dst[1] == src[0]) {
2878                 dma_addr_t dest[2];
2880                 /* dst[1] is real destination (Q) */
2881                 dest[0] = dst[1];
2882                 /* this is the page to multicast source data to */
2883                 dest[1] = ppc440spe_chan->qdest;
2884                 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2885                                 dest, 2, src, src_cnt, scf, len, flags);
2886                 return sw_desc ? &sw_desc->async_tx : NULL;
2887         }
2889         if (src_cnt == 2 && dst[1] == src[1]) {
2890                 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2891                                         &dst[1], src, 2, scf, len, flags);
2892                 return sw_desc ? &sw_desc->async_tx : NULL;
2893         }
2895         if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2896                 BUG_ON(!dst[0]);
2897                 dst_cnt++;
2898                 flags |= DMA_PREP_ZERO_P;
2899         }
2901         if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2902                 BUG_ON(!dst[1]);
2903                 dst_cnt++;
2904                 flags |= DMA_PREP_ZERO_Q;
2905         }
2907         BUG_ON(!dst_cnt);
2909         dev_dbg(ppc440spe_chan->device->common.dev,
2910                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2911                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2912                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2914         switch (ppc440spe_chan->device->id) {
2915         case PPC440SPE_DMA0_ID:
2916         case PPC440SPE_DMA1_ID:
2917                 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2918                                 dst, dst_cnt, src, src_cnt, scf,
2919                                 len, flags);
2920                 break;
2922         case PPC440SPE_XOR_ID:
2923                 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2924                                 dst, dst_cnt, src, src_cnt, scf,
2925                                 len, flags);
2926                 break;
2927         }
2929         return sw_desc ? &sw_desc->async_tx : NULL;
2932 /**
2933  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2934  * a PQ_ZERO_SUM operation
2935  */
2936 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2937                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2938                 unsigned int src_cnt, const unsigned char *scf, size_t len,
2939                 enum sum_check_flags *pqres, unsigned long flags)
2941         struct ppc440spe_adma_chan *ppc440spe_chan;
2942         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2943         dma_addr_t pdest, qdest;
2944         int slot_cnt, slots_per_op, idst, dst_cnt;
2946         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2948         if (flags & DMA_PREP_PQ_DISABLE_P)
2949                 pdest = 0;
2950         else
2951                 pdest = pq[0];
2953         if (flags & DMA_PREP_PQ_DISABLE_Q)
2954                 qdest = 0;
2955         else
2956                 qdest = pq[1];
2958         ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2959                                             src, src_cnt, scf));
2961         /* Always use WXOR for P/Q calculations (two destinations).
2962          * Need 1 or 2 extra slots to verify results are zero.
2963          */
2964         idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2966         /* One additional slot per destination to clone P/Q
2967          * before calculation (we have to preserve destinations).
2968          */
2969         slot_cnt = src_cnt + dst_cnt * 2;
2970         slots_per_op = 1;
2972         spin_lock_bh(&ppc440spe_chan->lock);
2973         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2974                                              slots_per_op);
2975         if (sw_desc) {
2976                 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2978                 /* Setup byte count for each slot just allocated */
2979                 sw_desc->async_tx.flags = flags;
2980                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2981                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2982                                                       len);
2983                         iter->unmap_len = len;
2984                 }
2986                 if (pdest) {
2987                         struct dma_cdb *hw_desc;
2988                         struct ppc440spe_adma_chan *chan;
2990                         iter = sw_desc->group_head;
2991                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2992                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2993                         iter->hw_next = list_entry(iter->chain_node.next,
2994                                                 struct ppc440spe_adma_desc_slot,
2995                                                 chain_node);
2996                         hw_desc = iter->hw_desc;
2997                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2998                         iter->src_cnt = 0;
2999                         iter->dst_cnt = 0;
3000                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
3001                                                      ppc440spe_chan->pdest, 0);
3002                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
3003                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3004                                                       len);
3005                         iter->unmap_len = 0;
3006                         /* override pdest to preserve original P */
3007                         pdest = ppc440spe_chan->pdest;
3008                 }
3009                 if (qdest) {
3010                         struct dma_cdb *hw_desc;
3011                         struct ppc440spe_adma_chan *chan;
3013                         iter = list_first_entry(&sw_desc->group_list,
3014                                                 struct ppc440spe_adma_desc_slot,
3015                                                 chain_node);
3016                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3018                         if (pdest) {
3019                                 iter = list_entry(iter->chain_node.next,
3020                                                 struct ppc440spe_adma_desc_slot,
3021                                                 chain_node);
3022                         }
3024                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3025                         iter->hw_next = list_entry(iter->chain_node.next,
3026                                                 struct ppc440spe_adma_desc_slot,
3027                                                 chain_node);
3028                         hw_desc = iter->hw_desc;
3029                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3030                         iter->src_cnt = 0;
3031                         iter->dst_cnt = 0;
3032                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
3033                                                      ppc440spe_chan->qdest, 0);
3034                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
3035                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3036                                                       len);
3037                         iter->unmap_len = 0;
3038                         /* override qdest to preserve original Q */
3039                         qdest = ppc440spe_chan->qdest;
3040                 }
3042                 /* Setup destinations for P/Q ops */
3043                 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3045                 /* Setup zero QWORDs into DCHECK CDBs */
3046                 idst = dst_cnt;
3047                 list_for_each_entry_reverse(iter, &sw_desc->group_list,
3048                                             chain_node) {
3049                         /*
3050                          * The last CDB corresponds to Q-parity check,
3051                          * the one before last CDB corresponds
3052                          * P-parity check
3053                          */
3054                         if (idst == DMA_DEST_MAX_NUM) {
3055                                 if (idst == dst_cnt) {
3056                                         set_bit(PPC440SPE_DESC_QCHECK,
3057                                                 &iter->flags);
3058                                 } else {
3059                                         set_bit(PPC440SPE_DESC_PCHECK,
3060                                                 &iter->flags);
3061                                 }
3062                         } else {
3063                                 if (qdest) {
3064                                         set_bit(PPC440SPE_DESC_QCHECK,
3065                                                 &iter->flags);
3066                                 } else {
3067                                         set_bit(PPC440SPE_DESC_PCHECK,
3068                                                 &iter->flags);
3069                                 }
3070                         }
3071                         iter->xor_check_result = pqres;
3073                         /*
3074                          * set it to zero, if check fail then result will
3075                          * be updated
3076                          */
3077                         *iter->xor_check_result = 0;
3078                         ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3079                                 ppc440spe_qword);
3081                         if (!(--dst_cnt))
3082                                 break;
3083                 }
3085                 /* Setup sources and mults for P/Q ops */
3086                 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3087                                                      chain_node) {
3088                         struct ppc440spe_adma_chan *chan;
3089                         u32 mult_dst;
3091                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3092                         ppc440spe_desc_set_src_addr(iter, chan, 0,
3093                                                     DMA_CUED_XOR_HB,
3094                                                     src[src_cnt - 1]);
3095                         if (qdest) {
3096                                 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3097                                                            DMA_CDB_SG_DST1;
3098                                 ppc440spe_desc_set_src_mult(iter, chan,
3099                                                             DMA_CUED_MULT1_OFF,
3100                                                             mult_dst,
3101                                                             scf[src_cnt - 1]);
3102                         }
3103                         if (!(--src_cnt))
3104                                 break;
3105                 }
3106         }
3107         spin_unlock_bh(&ppc440spe_chan->lock);
3108         return sw_desc ? &sw_desc->async_tx : NULL;
3111 /**
3112  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3113  * XOR ZERO_SUM operation
3114  */
3115 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3116                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3117                 size_t len, enum sum_check_flags *result, unsigned long flags)
3119         struct dma_async_tx_descriptor *tx;
3120         dma_addr_t pq[2];
3122         /* validate P, disable Q */
3123         pq[0] = src[0];
3124         pq[1] = 0;
3125         flags |= DMA_PREP_PQ_DISABLE_Q;
3127         tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3128                                                 src_cnt - 1, 0, len,
3129                                                 result, flags);
3130         return tx;
3133 /**
3134  * ppc440spe_adma_set_dest - set destination address into descriptor
3135  */
3136 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3137                 dma_addr_t addr, int index)
3139         struct ppc440spe_adma_chan *chan;
3141         BUG_ON(index >= sw_desc->dst_cnt);
3143         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3145         switch (chan->device->id) {
3146         case PPC440SPE_DMA0_ID:
3147         case PPC440SPE_DMA1_ID:
3148                 /* to do: support transfers lengths >
3149                  * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3150                  */
3151                 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3152                         chan, 0, addr, index);
3153                 break;
3154         case PPC440SPE_XOR_ID:
3155                 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3156                 ppc440spe_desc_set_dest_addr(sw_desc,
3157                         chan, 0, addr, index);
3158                 break;
3159         }
3162 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3163                 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3165         /*  To clear destinations update the descriptor
3166          * (P or Q depending on index) as follows:
3167          * addr is destination (0 corresponds to SG2):
3168          */
3169         ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3171         /* ... and the addr is source: */
3172         ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3174         /* addr is always SG2 then the mult is always DST1 */
3175         ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3176                                     DMA_CDB_SG_DST1, 1);
3179 /**
3180  * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3181  * for the PQXOR operation
3182  */
3183 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3184                 dma_addr_t *addrs, unsigned long flags)
3186         struct ppc440spe_adma_desc_slot *iter;
3187         struct ppc440spe_adma_chan *chan;
3188         dma_addr_t paddr, qaddr;
3189         dma_addr_t addr = 0, ppath, qpath;
3190         int index = 0, i;
3192         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3194         if (flags & DMA_PREP_PQ_DISABLE_P)
3195                 paddr = 0;
3196         else
3197                 paddr = addrs[0];
3199         if (flags & DMA_PREP_PQ_DISABLE_Q)
3200                 qaddr = 0;
3201         else
3202                 qaddr = addrs[1];
3204         if (!paddr || !qaddr)
3205                 addr = paddr ? paddr : qaddr;
3207         switch (chan->device->id) {
3208         case PPC440SPE_DMA0_ID:
3209         case PPC440SPE_DMA1_ID:
3210                 /* walk through the WXOR source list and set P/Q-destinations
3211                  * for each slot:
3212                  */
3213                 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3214                         /* This is WXOR-only chain; may have 1/2 zero descs */
3215                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3216                                 index++;
3217                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3218                                 index++;
3220                         iter = ppc440spe_get_group_entry(sw_desc, index);
3221                         if (addr) {
3222                                 /* one destination */
3223                                 list_for_each_entry_from(iter,
3224                                         &sw_desc->group_list, chain_node)
3225                                         ppc440spe_desc_set_dest_addr(iter, chan,
3226                                                 DMA_CUED_XOR_BASE, addr, 0);
3227                         } else {
3228                                 /* two destinations */
3229                                 list_for_each_entry_from(iter,
3230                                         &sw_desc->group_list, chain_node) {
3231                                         ppc440spe_desc_set_dest_addr(iter, chan,
3232                                                 DMA_CUED_XOR_BASE, paddr, 0);
3233                                         ppc440spe_desc_set_dest_addr(iter, chan,
3234                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3235                                 }
3236                         }
3238                         if (index) {
3239                                 /*  To clear destinations update the descriptor
3240                                  * (1st,2nd, or both depending on flags)
3241                                  */
3242                                 index = 0;
3243                                 if (test_bit(PPC440SPE_ZERO_P,
3244                                                 &sw_desc->flags)) {
3245                                         iter = ppc440spe_get_group_entry(
3246                                                         sw_desc, index++);
3247                                         ppc440spe_adma_pq_zero_op(iter, chan,
3248                                                         paddr);
3249                                 }
3251                                 if (test_bit(PPC440SPE_ZERO_Q,
3252                                                 &sw_desc->flags)) {
3253                                         iter = ppc440spe_get_group_entry(
3254                                                         sw_desc, index++);
3255                                         ppc440spe_adma_pq_zero_op(iter, chan,
3256                                                         qaddr);
3257                                 }
3259                                 return;
3260                         }
3261                 } else {
3262                         /* This is RXOR-only or RXOR/WXOR mixed chain */
3264                         /* If we want to include destination into calculations,
3265                          * then make dest addresses cued with mult=1 (XOR).
3266                          */
3267                         ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3268                                         DMA_CUED_XOR_HB :
3269                                         DMA_CUED_XOR_BASE |
3270                                                 (1 << DMA_CUED_MULT1_OFF);
3271                         qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3272                                         DMA_CUED_XOR_HB :
3273                                         DMA_CUED_XOR_BASE |
3274                                                 (1 << DMA_CUED_MULT1_OFF);
3276                         /* Setup destination(s) in RXOR slot(s) */
3277                         iter = ppc440spe_get_group_entry(sw_desc, index++);
3278                         ppc440spe_desc_set_dest_addr(iter, chan,
3279                                                 paddr ? ppath : qpath,
3280                                                 paddr ? paddr : qaddr, 0);
3281                         if (!addr) {
3282                                 /* two destinations */
3283                                 iter = ppc440spe_get_group_entry(sw_desc,
3284                                                                  index++);
3285                                 ppc440spe_desc_set_dest_addr(iter, chan,
3286                                                 qpath, qaddr, 0);
3287                         }
3289                         if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3290                                 /* Setup destination(s) in remaining WXOR
3291                                  * slots
3292                                  */
3293                                 iter = ppc440spe_get_group_entry(sw_desc,
3294                                                                  index);
3295                                 if (addr) {
3296                                         /* one destination */
3297                                         list_for_each_entry_from(iter,
3298                                             &sw_desc->group_list,
3299                                             chain_node)
3300                                                 ppc440spe_desc_set_dest_addr(
3301                                                         iter, chan,
3302                                                         DMA_CUED_XOR_BASE,
3303                                                         addr, 0);
3305                                 } else {
3306                                         /* two destinations */
3307                                         list_for_each_entry_from(iter,
3308                                             &sw_desc->group_list,
3309                                             chain_node) {
3310                                                 ppc440spe_desc_set_dest_addr(
3311                                                         iter, chan,
3312                                                         DMA_CUED_XOR_BASE,
3313                                                         paddr, 0);
3314                                                 ppc440spe_desc_set_dest_addr(
3315                                                         iter, chan,
3316                                                         DMA_CUED_XOR_BASE,
3317                                                         qaddr, 1);
3318                                         }
3319                                 }
3320                         }
3322                 }
3323                 break;
3325         case PPC440SPE_XOR_ID:
3326                 /* DMA2 descriptors have only 1 destination, so there are
3327                  * two chains - one for each dest.
3328                  * If we want to include destination into calculations,
3329                  * then make dest addresses cued with mult=1 (XOR).
3330                  */
3331                 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3332                                 DMA_CUED_XOR_HB :
3333                                 DMA_CUED_XOR_BASE |
3334                                         (1 << DMA_CUED_MULT1_OFF);
3336                 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3337                                 DMA_CUED_XOR_HB :
3338                                 DMA_CUED_XOR_BASE |
3339                                         (1 << DMA_CUED_MULT1_OFF);
3341                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3342                 for (i = 0; i < sw_desc->descs_per_op; i++) {
3343                         ppc440spe_desc_set_dest_addr(iter, chan,
3344                                 paddr ? ppath : qpath,
3345                                 paddr ? paddr : qaddr, 0);
3346                         iter = list_entry(iter->chain_node.next,
3347                                           struct ppc440spe_adma_desc_slot,
3348                                           chain_node);
3349                 }
3351                 if (!addr) {
3352                         /* Two destinations; setup Q here */
3353                         iter = ppc440spe_get_group_entry(sw_desc,
3354                                 sw_desc->descs_per_op);
3355                         for (i = 0; i < sw_desc->descs_per_op; i++) {
3356                                 ppc440spe_desc_set_dest_addr(iter,
3357                                         chan, qpath, qaddr, 0);
3358                                 iter = list_entry(iter->chain_node.next,
3359                                                 struct ppc440spe_adma_desc_slot,
3360                                                 chain_node);
3361                         }
3362                 }
3364                 break;
3365         }
3368 /**
3369  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3370  * for the PQ_ZERO_SUM operation
3371  */
3372 static void ppc440spe_adma_pqzero_sum_set_dest(
3373                 struct ppc440spe_adma_desc_slot *sw_desc,
3374                 dma_addr_t paddr, dma_addr_t qaddr)
3376         struct ppc440spe_adma_desc_slot *iter, *end;
3377         struct ppc440spe_adma_chan *chan;
3378         dma_addr_t addr = 0;
3379         int idx;
3381         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3383         /* walk through the WXOR source list and set P/Q-destinations
3384          * for each slot
3385          */
3386         idx = (paddr && qaddr) ? 2 : 1;
3387         /* set end */
3388         list_for_each_entry_reverse(end, &sw_desc->group_list,
3389                                     chain_node) {
3390                 if (!(--idx))
3391                         break;
3392         }
3393         /* set start */
3394         idx = (paddr && qaddr) ? 2 : 1;
3395         iter = ppc440spe_get_group_entry(sw_desc, idx);
3397         if (paddr && qaddr) {
3398                 /* two destinations */
3399                 list_for_each_entry_from(iter, &sw_desc->group_list,
3400                                          chain_node) {
3401                         if (unlikely(iter == end))
3402                                 break;
3403                         ppc440spe_desc_set_dest_addr(iter, chan,
3404                                                 DMA_CUED_XOR_BASE, paddr, 0);
3405                         ppc440spe_desc_set_dest_addr(iter, chan,
3406                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3407                 }
3408         } else {
3409                 /* one destination */
3410                 addr = paddr ? paddr : qaddr;
3411                 list_for_each_entry_from(iter, &sw_desc->group_list,
3412                                          chain_node) {
3413                         if (unlikely(iter == end))
3414                                 break;
3415                         ppc440spe_desc_set_dest_addr(iter, chan,
3416                                                 DMA_CUED_XOR_BASE, addr, 0);
3417                 }
3418         }
3420         /*  The remaining descriptors are DATACHECK. These have no need in
3421          * destination. Actually, these destinations are used there
3422          * as sources for check operation. So, set addr as source.
3423          */
3424         ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3426         if (!addr) {
3427                 end = list_entry(end->chain_node.next,
3428                                  struct ppc440spe_adma_desc_slot, chain_node);
3429                 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3430         }
3433 /**
3434  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3435  */
3436 static inline void ppc440spe_desc_set_xor_src_cnt(
3437                         struct ppc440spe_adma_desc_slot *desc,
3438                         int src_cnt)
3440         struct xor_cb *hw_desc = desc->hw_desc;
3442         hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3443         hw_desc->cbc |= src_cnt;
3446 /**
3447  * ppc440spe_adma_pq_set_src - set source address into descriptor
3448  */
3449 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3450                 dma_addr_t addr, int index)
3452         struct ppc440spe_adma_chan *chan;
3453         dma_addr_t haddr = 0;
3454         struct ppc440spe_adma_desc_slot *iter = NULL;
3456         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3458         switch (chan->device->id) {
3459         case PPC440SPE_DMA0_ID:
3460         case PPC440SPE_DMA1_ID:
3461                 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3462                  */
3463                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3464                         /* RXOR-only or RXOR/WXOR operation */
3465                         int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3466                                 &sw_desc->flags) ?  2 : 3;
3468                         if (index == 0) {
3469                                 /* 1st slot (RXOR) */
3470                                 /* setup sources region (R1-2-3, R1-2-4,
3471                                  * or R1-2-5)
3472                                  */
3473                                 if (test_bit(PPC440SPE_DESC_RXOR12,
3474                                                 &sw_desc->flags))
3475                                         haddr = DMA_RXOR12 <<
3476                                                 DMA_CUED_REGION_OFF;
3477                                 else if (test_bit(PPC440SPE_DESC_RXOR123,
3478                                     &sw_desc->flags))
3479                                         haddr = DMA_RXOR123 <<
3480                                                 DMA_CUED_REGION_OFF;
3481                                 else if (test_bit(PPC440SPE_DESC_RXOR124,
3482                                     &sw_desc->flags))
3483                                         haddr = DMA_RXOR124 <<
3484                                                 DMA_CUED_REGION_OFF;
3485                                 else if (test_bit(PPC440SPE_DESC_RXOR125,
3486                                     &sw_desc->flags))
3487                                         haddr = DMA_RXOR125 <<
3488                                                 DMA_CUED_REGION_OFF;
3489                                 else
3490                                         BUG();
3491                                 haddr |= DMA_CUED_XOR_BASE;
3492                                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3493                         } else if (index < iskip) {
3494                                 /* 1st slot (RXOR)
3495                                  * shall actually set source address only once
3496                                  * instead of first <iskip>
3497                                  */
3498                                 iter = NULL;
3499                         } else {
3500                                 /* 2nd/3d and next slots (WXOR);
3501                                  * skip first slot with RXOR
3502                                  */
3503                                 haddr = DMA_CUED_XOR_HB;
3504                                 iter = ppc440spe_get_group_entry(sw_desc,
3505                                     index - iskip + sw_desc->dst_cnt);
3506                         }
3507                 } else {
3508                         int znum = 0;
3510                         /* WXOR-only operation; skip first slots with
3511                          * zeroing destinations
3512                          */
3513                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3514                                 znum++;
3515                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3516                                 znum++;
3518                         haddr = DMA_CUED_XOR_HB;
3519                         iter = ppc440spe_get_group_entry(sw_desc,
3520                                         index + znum);
3521                 }
3523                 if (likely(iter)) {
3524                         ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3526                         if (!index &&
3527                             test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3528                             sw_desc->dst_cnt == 2) {
3529                                 /* if we have two destinations for RXOR, then
3530                                  * setup source in the second descr too
3531                                  */
3532                                 iter = ppc440spe_get_group_entry(sw_desc, 1);
3533                                 ppc440spe_desc_set_src_addr(iter, chan, 0,
3534                                         haddr, addr);
3535                         }
3536                 }
3537                 break;
3539         case PPC440SPE_XOR_ID:
3540                 /* DMA2 may do Biskup */
3541                 iter = sw_desc->group_head;
3542                 if (iter->dst_cnt == 2) {
3543                         /* both P & Q calculations required; set P src here */
3544                         ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3546                         /* this is for Q */
3547                         iter = ppc440spe_get_group_entry(sw_desc,
3548                                 sw_desc->descs_per_op);
3549                 }
3550                 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3551                 break;
3552         }
3555 /**
3556  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3557  */
3558 static void ppc440spe_adma_memcpy_xor_set_src(
3559                 struct ppc440spe_adma_desc_slot *sw_desc,
3560                 dma_addr_t addr, int index)
3562         struct ppc440spe_adma_chan *chan;
3564         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3565         sw_desc = sw_desc->group_head;
3567         if (likely(sw_desc))
3568                 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3571 /**
3572  * ppc440spe_adma_dma2rxor_inc_addr  -
3573  */
3574 static void ppc440spe_adma_dma2rxor_inc_addr(
3575                 struct ppc440spe_adma_desc_slot *desc,
3576                 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3578         cursor->addr_count++;
3579         if (index == src_cnt - 1) {
3580                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3581         } else if (cursor->addr_count == XOR_MAX_OPS) {
3582                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3583                 cursor->addr_count = 0;
3584                 cursor->desc_count++;
3585         }
3588 /**
3589  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3590  */
3591 static int ppc440spe_adma_dma2rxor_prep_src(
3592                 struct ppc440spe_adma_desc_slot *hdesc,
3593                 struct ppc440spe_rxor *cursor, int index,
3594                 int src_cnt, u32 addr)
3596         int rval = 0;
3597         u32 sign;
3598         struct ppc440spe_adma_desc_slot *desc = hdesc;
3599         int i;
3601         for (i = 0; i < cursor->desc_count; i++) {
3602                 desc = list_entry(hdesc->chain_node.next,
3603                                   struct ppc440spe_adma_desc_slot,
3604                                   chain_node);
3605         }
3607         switch (cursor->state) {
3608         case 0:
3609                 if (addr == cursor->addrl + cursor->len) {
3610                         /* direct RXOR */
3611                         cursor->state = 1;
3612                         cursor->xor_count++;
3613                         if (index == src_cnt-1) {
3614                                 ppc440spe_rxor_set_region(desc,
3615                                         cursor->addr_count,
3616                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3617                                 ppc440spe_adma_dma2rxor_inc_addr(
3618                                         desc, cursor, index, src_cnt);
3619                         }
3620                 } else if (cursor->addrl == addr + cursor->len) {
3621                         /* reverse RXOR */
3622                         cursor->state = 1;
3623                         cursor->xor_count++;
3624                         set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3625                         if (index == src_cnt-1) {
3626                                 ppc440spe_rxor_set_region(desc,
3627                                         cursor->addr_count,
3628                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3629                                 ppc440spe_adma_dma2rxor_inc_addr(
3630                                         desc, cursor, index, src_cnt);
3631                         }
3632                 } else {
3633                         printk(KERN_ERR "Cannot build "
3634                                 "DMA2 RXOR command block.\n");
3635                         BUG();
3636                 }
3637                 break;
3638         case 1:
3639                 sign = test_bit(cursor->addr_count,
3640                                 desc->reverse_flags)
3641                         ? -1 : 1;
3642                 if (index == src_cnt-2 || (sign == -1
3643                         && addr != cursor->addrl - 2*cursor->len)) {
3644                         cursor->state = 0;
3645                         cursor->xor_count = 1;
3646                         cursor->addrl = addr;
3647                         ppc440spe_rxor_set_region(desc,
3648                                 cursor->addr_count,
3649                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3650                         ppc440spe_adma_dma2rxor_inc_addr(
3651                                 desc, cursor, index, src_cnt);
3652                 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3653                         cursor->state = 2;
3654                         cursor->xor_count = 0;
3655                         ppc440spe_rxor_set_region(desc,
3656                                 cursor->addr_count,
3657                                 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3658                         if (index == src_cnt-1) {
3659                                 ppc440spe_adma_dma2rxor_inc_addr(
3660                                         desc, cursor, index, src_cnt);
3661                         }
3662                 } else if (addr == cursor->addrl + 3*cursor->len) {
3663                         cursor->state = 2;
3664                         cursor->xor_count = 0;
3665                         ppc440spe_rxor_set_region(desc,
3666                                 cursor->addr_count,
3667                                 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3668                         if (index == src_cnt-1) {
3669                                 ppc440spe_adma_dma2rxor_inc_addr(
3670                                         desc, cursor, index, src_cnt);
3671                         }
3672                 } else if (addr == cursor->addrl + 4*cursor->len) {
3673                         cursor->state = 2;
3674                         cursor->xor_count = 0;
3675                         ppc440spe_rxor_set_region(desc,
3676                                 cursor->addr_count,
3677                                 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3678                         if (index == src_cnt-1) {
3679                                 ppc440spe_adma_dma2rxor_inc_addr(
3680                                         desc, cursor, index, src_cnt);
3681                         }
3682                 } else {
3683                         cursor->state = 0;
3684                         cursor->xor_count = 1;
3685                         cursor->addrl = addr;
3686                         ppc440spe_rxor_set_region(desc,
3687                                 cursor->addr_count,
3688                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3689                         ppc440spe_adma_dma2rxor_inc_addr(
3690                                 desc, cursor, index, src_cnt);
3691                 }
3692                 break;
3693         case 2:
3694                 cursor->state = 0;
3695                 cursor->addrl = addr;
3696                 cursor->xor_count++;
3697                 if (index) {
3698                         ppc440spe_adma_dma2rxor_inc_addr(
3699                                 desc, cursor, index, src_cnt);
3700                 }
3701                 break;
3702         }
3704         return rval;
3707 /**
3708  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3709  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3710  */
3711 static void ppc440spe_adma_dma2rxor_set_src(
3712                 struct ppc440spe_adma_desc_slot *desc,
3713                 int index, dma_addr_t addr)
3715         struct xor_cb *xcb = desc->hw_desc;
3716         int k = 0, op = 0, lop = 0;
3718         /* get the RXOR operand which corresponds to index addr */
3719         while (op <= index) {
3720                 lop = op;
3721                 if (k == XOR_MAX_OPS) {
3722                         k = 0;
3723                         desc = list_entry(desc->chain_node.next,
3724                                 struct ppc440spe_adma_desc_slot, chain_node);
3725                         xcb = desc->hw_desc;
3727                 }
3728                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3729                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3730                         op += 2;
3731                 else
3732                         op += 3;
3733         }
3735         BUG_ON(k < 1);
3737         if (test_bit(k-1, desc->reverse_flags)) {
3738                 /* reverse operand order; put last op in RXOR group */
3739                 if (index == op - 1)
3740                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3741         } else {
3742                 /* direct operand order; put first op in RXOR group */
3743                 if (index == lop)
3744                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3745         }
3748 /**
3749  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3750  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3751  */
3752 static void ppc440spe_adma_dma2rxor_set_mult(
3753                 struct ppc440spe_adma_desc_slot *desc,
3754                 int index, u8 mult)
3756         struct xor_cb *xcb = desc->hw_desc;
3757         int k = 0, op = 0, lop = 0;
3759         /* get the RXOR operand which corresponds to index mult */
3760         while (op <= index) {
3761                 lop = op;
3762                 if (k == XOR_MAX_OPS) {
3763                         k = 0;
3764                         desc = list_entry(desc->chain_node.next,
3765                                           struct ppc440spe_adma_desc_slot,
3766                                           chain_node);
3767                         xcb = desc->hw_desc;
3769                 }
3770                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3771                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3772                         op += 2;
3773                 else
3774                         op += 3;
3775         }
3777         BUG_ON(k < 1);
3778         if (test_bit(k-1, desc->reverse_flags)) {
3779                 /* reverse order */
3780                 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3781         } else {
3782                 /* direct order */
3783                 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3784         }
3787 /**
3788  * ppc440spe_init_rxor_cursor -
3789  */
3790 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3792         memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3793         cursor->state = 2;
3796 /**
3797  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3798  * descriptor for the PQXOR operation
3799  */
3800 static void ppc440spe_adma_pq_set_src_mult(
3801                 struct ppc440spe_adma_desc_slot *sw_desc,
3802                 unsigned char mult, int index, int dst_pos)
3804         struct ppc440spe_adma_chan *chan;
3805         u32 mult_idx, mult_dst;
3806         struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3808         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3810         switch (chan->device->id) {
3811         case PPC440SPE_DMA0_ID:
3812         case PPC440SPE_DMA1_ID:
3813                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3814                         int region = test_bit(PPC440SPE_DESC_RXOR12,
3815                                         &sw_desc->flags) ? 2 : 3;
3817                         if (index < region) {
3818                                 /* RXOR multipliers */
3819                                 iter = ppc440spe_get_group_entry(sw_desc,
3820                                         sw_desc->dst_cnt - 1);
3821                                 if (sw_desc->dst_cnt == 2)
3822                                         iter1 = ppc440spe_get_group_entry(
3823                                                         sw_desc, 0);
3825                                 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3826                                 mult_dst = DMA_CDB_SG_SRC;
3827                         } else {
3828                                 /* WXOR multiplier */
3829                                 iter = ppc440spe_get_group_entry(sw_desc,
3830                                                         index - region +
3831                                                         sw_desc->dst_cnt);
3832                                 mult_idx = DMA_CUED_MULT1_OFF;
3833                                 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3834                                                      DMA_CDB_SG_DST1;
3835                         }
3836                 } else {
3837                         int znum = 0;
3839                         /* WXOR-only;
3840                          * skip first slots with destinations (if ZERO_DST has
3841                          * place)
3842                          */
3843                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3844                                 znum++;
3845                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3846                                 znum++;
3848                         iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3849                         mult_idx = DMA_CUED_MULT1_OFF;
3850                         mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3851                 }
3853                 if (likely(iter)) {
3854                         ppc440spe_desc_set_src_mult(iter, chan,
3855                                 mult_idx, mult_dst, mult);
3857                         if (unlikely(iter1)) {
3858                                 /* if we have two destinations for RXOR, then
3859                                  * we've just set Q mult. Set-up P now.
3860                                  */
3861                                 ppc440spe_desc_set_src_mult(iter1, chan,
3862                                         mult_idx, mult_dst, 1);
3863                         }
3865                 }
3866                 break;
3868         case PPC440SPE_XOR_ID:
3869                 iter = sw_desc->group_head;
3870                 if (sw_desc->dst_cnt == 2) {
3871                         /* both P & Q calculations required; set P mult here */
3872                         ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3874                         /* and then set Q mult */
3875                         iter = ppc440spe_get_group_entry(sw_desc,
3876                                sw_desc->descs_per_op);
3877                 }
3878                 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3879                 break;
3880         }
3883 /**
3884  * ppc440spe_adma_free_chan_resources - free the resources allocated
3885  */
3886 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3888         struct ppc440spe_adma_chan *ppc440spe_chan;
3889         struct ppc440spe_adma_desc_slot *iter, *_iter;
3890         int in_use_descs = 0;
3892         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3893         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3895         spin_lock_bh(&ppc440spe_chan->lock);
3896         list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3897                                         chain_node) {
3898                 in_use_descs++;
3899                 list_del(&iter->chain_node);
3900         }
3901         list_for_each_entry_safe_reverse(iter, _iter,
3902                         &ppc440spe_chan->all_slots, slot_node) {
3903                 list_del(&iter->slot_node);
3904                 kfree(iter);
3905                 ppc440spe_chan->slots_allocated--;
3906         }
3907         ppc440spe_chan->last_used = NULL;
3909         dev_dbg(ppc440spe_chan->device->common.dev,
3910                 "ppc440spe adma%d %s slots_allocated %d\n",
3911                 ppc440spe_chan->device->id,
3912                 __func__, ppc440spe_chan->slots_allocated);
3913         spin_unlock_bh(&ppc440spe_chan->lock);
3915         /* one is ok since we left it on there on purpose */
3916         if (in_use_descs > 1)
3917                 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3918                         in_use_descs - 1);
3921 /**
3922  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3923  * @chan: ADMA channel handle
3924  * @cookie: ADMA transaction identifier
3925  * @txstate: a holder for the current state of the channel
3926  */
3927 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3928                         dma_cookie_t cookie, struct dma_tx_state *txstate)
3930         struct ppc440spe_adma_chan *ppc440spe_chan;
3931         enum dma_status ret;
3933         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3934         ret = dma_cookie_status(chan, cookie, txstate);
3935         if (ret == DMA_SUCCESS)
3936                 return ret;
3938         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3940         return dma_cookie_status(chan, cookie, txstate);
3943 /**
3944  * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3945  */
3946 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3948         struct ppc440spe_adma_chan *chan = data;
3950         dev_dbg(chan->device->common.dev,
3951                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3953         tasklet_schedule(&chan->irq_tasklet);
3954         ppc440spe_adma_device_clear_eot_status(chan);
3956         return IRQ_HANDLED;
3959 /**
3960  * ppc440spe_adma_err_handler - DMA error interrupt handler;
3961  *      do the same things as a eot handler
3962  */
3963 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3965         struct ppc440spe_adma_chan *chan = data;
3967         dev_dbg(chan->device->common.dev,
3968                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3970         tasklet_schedule(&chan->irq_tasklet);
3971         ppc440spe_adma_device_clear_eot_status(chan);
3973         return IRQ_HANDLED;
3976 /**
3977  * ppc440spe_test_callback - called when test operation has been done
3978  */
3979 static void ppc440spe_test_callback(void *unused)
3981         complete(&ppc440spe_r6_test_comp);
3984 /**
3985  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3986  */
3987 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3989         struct ppc440spe_adma_chan *ppc440spe_chan;
3991         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3992         dev_dbg(ppc440spe_chan->device->common.dev,
3993                 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3994                 __func__, ppc440spe_chan->pending);
3996         if (ppc440spe_chan->pending) {
3997                 ppc440spe_chan->pending = 0;
3998                 ppc440spe_chan_append(ppc440spe_chan);
3999         }
4002 /**
4003  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
4004  *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
4005  *      specific operation)
4006  */
4007 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
4009         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
4010         dma_cookie_t cookie;
4011         int slot_cnt, slots_per_op;
4013         dev_dbg(chan->device->common.dev,
4014                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
4016         spin_lock_bh(&chan->lock);
4017         slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
4018         sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
4019         if (sw_desc) {
4020                 group_start = sw_desc->group_head;
4021                 list_splice_init(&sw_desc->group_list, &chan->chain);
4022                 async_tx_ack(&sw_desc->async_tx);
4023                 ppc440spe_desc_init_null_xor(group_start);
4025                 cookie = dma_cookie_assign(&sw_desc->async_tx);
4027                 /* initialize the completed cookie to be less than
4028                  * the most recently used cookie
4029                  */
4030                 chan->common.completed_cookie = cookie - 1;
4032                 /* channel should not be busy */
4033                 BUG_ON(ppc440spe_chan_is_busy(chan));
4035                 /* set the descriptor address */
4036                 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
4038                 /* run the descriptor */
4039                 ppc440spe_chan_run(chan);
4040         } else
4041                 printk(KERN_ERR "ppc440spe adma%d"
4042                         " failed to allocate null descriptor\n",
4043                         chan->device->id);
4044         spin_unlock_bh(&chan->lock);
4047 /**
4048  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4049  *      For this we just perform one WXOR operation with the same source
4050  *      and destination addresses, the GF-multiplier is 1; so if RAID-6
4051  *      capabilities are enabled then we'll get src/dst filled with zero.
4052  */
4053 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4055         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4056         struct page *pg;
4057         char *a;
4058         dma_addr_t dma_addr, addrs[2];
4059         unsigned long op = 0;
4060         int rval = 0;
4062         set_bit(PPC440SPE_DESC_WXOR, &op);
4064         pg = alloc_page(GFP_KERNEL);
4065         if (!pg)
4066                 return -ENOMEM;
4068         spin_lock_bh(&chan->lock);
4069         sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4070         if (sw_desc) {
4071                 /* 1 src, 1 dsr, int_ena, WXOR */
4072                 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4073                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4074                         ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4075                         iter->unmap_len = PAGE_SIZE;
4076                 }
4077         } else {
4078                 rval = -EFAULT;
4079                 spin_unlock_bh(&chan->lock);
4080                 goto exit;
4081         }
4082         spin_unlock_bh(&chan->lock);
4084         /* Fill the test page with ones */
4085         memset(page_address(pg), 0xFF, PAGE_SIZE);
4086         dma_addr = dma_map_page(chan->device->dev, pg, 0,
4087                                 PAGE_SIZE, DMA_BIDIRECTIONAL);
4089         /* Setup addresses */
4090         ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4091         ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4092         addrs[0] = dma_addr;
4093         addrs[1] = 0;
4094         ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4096         async_tx_ack(&sw_desc->async_tx);
4097         sw_desc->async_tx.callback = ppc440spe_test_callback;
4098         sw_desc->async_tx.callback_param = NULL;
4100         init_completion(&ppc440spe_r6_test_comp);
4102         ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4103         ppc440spe_adma_issue_pending(&chan->common);
4105         wait_for_completion(&ppc440spe_r6_test_comp);
4107         /* Now check if the test page is zeroed */
4108         a = page_address(pg);
4109         if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4110                 /* page is zero - RAID-6 enabled */
4111                 rval = 0;
4112         } else {
4113                 /* RAID-6 was not enabled */
4114                 rval = -EINVAL;
4115         }
4116 exit:
4117         __free_page(pg);
4118         return rval;
4121 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4123         switch (adev->id) {
4124         case PPC440SPE_DMA0_ID:
4125         case PPC440SPE_DMA1_ID:
4126                 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4127                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4128                 dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
4129                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4130                 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4131                 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4132                 break;
4133         case PPC440SPE_XOR_ID:
4134                 dma_cap_set(DMA_XOR, adev->common.cap_mask);
4135                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4136                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4137                 adev->common.cap_mask = adev->common.cap_mask;
4138                 break;
4139         }
4141         /* Set base routines */
4142         adev->common.device_alloc_chan_resources =
4143                                 ppc440spe_adma_alloc_chan_resources;
4144         adev->common.device_free_chan_resources =
4145                                 ppc440spe_adma_free_chan_resources;
4146         adev->common.device_tx_status = ppc440spe_adma_tx_status;
4147         adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4149         /* Set prep routines based on capability */
4150         if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4151                 adev->common.device_prep_dma_memcpy =
4152                         ppc440spe_adma_prep_dma_memcpy;
4153         }
4154         if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
4155                 adev->common.device_prep_dma_memset =
4156                         ppc440spe_adma_prep_dma_memset;
4157         }
4158         if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4159                 adev->common.max_xor = XOR_MAX_OPS;
4160                 adev->common.device_prep_dma_xor =
4161                         ppc440spe_adma_prep_dma_xor;
4162         }
4163         if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4164                 switch (adev->id) {
4165                 case PPC440SPE_DMA0_ID:
4166                         dma_set_maxpq(&adev->common,
4167                                 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4168                         break;
4169                 case PPC440SPE_DMA1_ID:
4170                         dma_set_maxpq(&adev->common,
4171                                 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4172                         break;
4173                 case PPC440SPE_XOR_ID:
4174                         adev->common.max_pq = XOR_MAX_OPS * 3;
4175                         break;
4176                 }
4177                 adev->common.device_prep_dma_pq =
4178                         ppc440spe_adma_prep_dma_pq;
4179         }
4180         if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4181                 switch (adev->id) {
4182                 case PPC440SPE_DMA0_ID:
4183                         adev->common.max_pq = DMA0_FIFO_SIZE /
4184                                                 sizeof(struct dma_cdb);
4185                         break;
4186                 case PPC440SPE_DMA1_ID:
4187                         adev->common.max_pq = DMA1_FIFO_SIZE /
4188                                                 sizeof(struct dma_cdb);
4189                         break;
4190                 }
4191                 adev->common.device_prep_dma_pq_val =
4192                         ppc440spe_adma_prep_dma_pqzero_sum;
4193         }
4194         if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4195                 switch (adev->id) {
4196                 case PPC440SPE_DMA0_ID:
4197                         adev->common.max_xor = DMA0_FIFO_SIZE /
4198                                                 sizeof(struct dma_cdb);
4199                         break;
4200                 case PPC440SPE_DMA1_ID:
4201                         adev->common.max_xor = DMA1_FIFO_SIZE /
4202                                                 sizeof(struct dma_cdb);
4203                         break;
4204                 }
4205                 adev->common.device_prep_dma_xor_val =
4206                         ppc440spe_adma_prep_dma_xor_zero_sum;
4207         }
4208         if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4209                 adev->common.device_prep_dma_interrupt =
4210                         ppc440spe_adma_prep_dma_interrupt;
4211         }
4212         pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4213           "( %s%s%s%s%s%s%s)\n",
4214           dev_name(adev->dev),
4215           dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4216           dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4217           dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4218           dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4219           dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4220           dma_has_cap(DMA_MEMSET, adev->common.cap_mask)  ? "memset " : "",
4221           dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4224 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4225                                      struct ppc440spe_adma_chan *chan,
4226                                      int *initcode)
4228         struct platform_device *ofdev;
4229         struct device_node *np;
4230         int ret;
4232         ofdev = container_of(adev->dev, struct platform_device, dev);
4233         np = ofdev->dev.of_node;
4234         if (adev->id != PPC440SPE_XOR_ID) {
4235                 adev->err_irq = irq_of_parse_and_map(np, 1);
4236                 if (adev->err_irq == NO_IRQ) {
4237                         dev_warn(adev->dev, "no err irq resource?\n");
4238                         *initcode = PPC_ADMA_INIT_IRQ2;
4239                         adev->err_irq = -ENXIO;
4240                 } else
4241                         atomic_inc(&ppc440spe_adma_err_irq_ref);
4242         } else {
4243                 adev->err_irq = -ENXIO;
4244         }
4246         adev->irq = irq_of_parse_and_map(np, 0);
4247         if (adev->irq == NO_IRQ) {
4248                 dev_err(adev->dev, "no irq resource\n");
4249                 *initcode = PPC_ADMA_INIT_IRQ1;
4250                 ret = -ENXIO;
4251                 goto err_irq_map;
4252         }
4253         dev_dbg(adev->dev, "irq %d, err irq %d\n",
4254                 adev->irq, adev->err_irq);
4256         ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4257                           0, dev_driver_string(adev->dev), chan);
4258         if (ret) {
4259                 dev_err(adev->dev, "can't request irq %d\n",
4260                         adev->irq);
4261                 *initcode = PPC_ADMA_INIT_IRQ1;
4262                 ret = -EIO;
4263                 goto err_req1;
4264         }
4266         /* only DMA engines have a separate error IRQ
4267          * so it's Ok if err_irq < 0 in XOR engine case.
4268          */
4269         if (adev->err_irq > 0) {
4270                 /* both DMA engines share common error IRQ */
4271                 ret = request_irq(adev->err_irq,
4272                                   ppc440spe_adma_err_handler,
4273                                   IRQF_SHARED,
4274                                   dev_driver_string(adev->dev),
4275                                   chan);
4276                 if (ret) {
4277                         dev_err(adev->dev, "can't request irq %d\n",
4278                                 adev->err_irq);
4279                         *initcode = PPC_ADMA_INIT_IRQ2;
4280                         ret = -EIO;
4281                         goto err_req2;
4282                 }
4283         }
4285         if (adev->id == PPC440SPE_XOR_ID) {
4286                 /* enable XOR engine interrupts */
4287                 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4288                             XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4289                             &adev->xor_reg->ier);
4290         } else {
4291                 u32 mask, enable;
4293                 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4294                 if (!np) {
4295                         pr_err("%s: can't find I2O device tree node\n",
4296                                 __func__);
4297                         ret = -ENODEV;
4298                         goto err_req2;
4299                 }
4300                 adev->i2o_reg = of_iomap(np, 0);
4301                 if (!adev->i2o_reg) {
4302                         pr_err("%s: failed to map I2O registers\n", __func__);
4303                         of_node_put(np);
4304                         ret = -EINVAL;
4305                         goto err_req2;
4306                 }
4307                 of_node_put(np);
4308                 /* Unmask 'CS FIFO Attention' interrupts and
4309                  * enable generating interrupts on errors
4310                  */
4311                 enable = (adev->id == PPC440SPE_DMA0_ID) ?
4312                          ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4313                          ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4314                 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4315                 iowrite32(mask, &adev->i2o_reg->iopim);
4316         }
4317         return 0;
4319 err_req2:
4320         free_irq(adev->irq, chan);
4321 err_req1:
4322         irq_dispose_mapping(adev->irq);
4323 err_irq_map:
4324         if (adev->err_irq > 0) {
4325                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4326                         irq_dispose_mapping(adev->err_irq);
4327         }
4328         return ret;
4331 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4332                                         struct ppc440spe_adma_chan *chan)
4334         u32 mask, disable;
4336         if (adev->id == PPC440SPE_XOR_ID) {
4337                 /* disable XOR engine interrupts */
4338                 mask = ioread32be(&adev->xor_reg->ier);
4339                 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4340                           XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4341                 iowrite32be(mask, &adev->xor_reg->ier);
4342         } else {
4343                 /* disable DMAx engine interrupts */
4344                 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4345                           (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4346                           (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4347                 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4348                 iowrite32(mask, &adev->i2o_reg->iopim);
4349         }
4350         free_irq(adev->irq, chan);
4351         irq_dispose_mapping(adev->irq);
4352         if (adev->err_irq > 0) {
4353                 free_irq(adev->err_irq, chan);
4354                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4355                         irq_dispose_mapping(adev->err_irq);
4356                         iounmap(adev->i2o_reg);
4357                 }
4358         }
4361 /**
4362  * ppc440spe_adma_probe - probe the asynch device
4363  */
4364 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4366         struct device_node *np = ofdev->dev.of_node;
4367         struct resource res;
4368         struct ppc440spe_adma_device *adev;
4369         struct ppc440spe_adma_chan *chan;
4370         struct ppc_dma_chan_ref *ref, *_ref;
4371         int ret = 0, initcode = PPC_ADMA_INIT_OK;
4372         const u32 *idx;
4373         int len;
4374         void *regs;
4375         u32 id, pool_size;
4377         if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4378                 id = PPC440SPE_XOR_ID;
4379                 /* As far as the XOR engine is concerned, it does not
4380                  * use FIFOs but uses linked list. So there is no dependency
4381                  * between pool size to allocate and the engine configuration.
4382                  */
4383                 pool_size = PAGE_SIZE << 1;
4384         } else {
4385                 /* it is DMA0 or DMA1 */
4386                 idx = of_get_property(np, "cell-index", &len);
4387                 if (!idx || (len != sizeof(u32))) {
4388                         dev_err(&ofdev->dev, "Device node %s has missing "
4389                                 "or invalid cell-index property\n",
4390                                 np->full_name);
4391                         return -EINVAL;
4392                 }
4393                 id = *idx;
4394                 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4395                  * should allocate the pool accordingly to size of this
4396                  * FIFO. Thus, the pool size depends on the FIFO depth:
4397                  * how much CDBs pointers the FIFO may contain then so
4398                  * much CDBs we should provide in the pool.
4399                  * That is
4400                  *   CDB size = 32B;
4401                  *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4402                  *   Pool size = CDBs number * CDB size =
4403                  *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4404                  */
4405                 pool_size = (id == PPC440SPE_DMA0_ID) ?
4406                             DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4407                 pool_size <<= 2;
4408         }
4410         if (of_address_to_resource(np, 0, &res)) {
4411                 dev_err(&ofdev->dev, "failed to get memory resource\n");
4412                 initcode = PPC_ADMA_INIT_MEMRES;
4413                 ret = -ENODEV;
4414                 goto out;
4415         }
4417         if (!request_mem_region(res.start, resource_size(&res),
4418                                 dev_driver_string(&ofdev->dev))) {
4419                 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4420                         &res);
4421                 initcode = PPC_ADMA_INIT_MEMREG;
4422                 ret = -EBUSY;
4423                 goto out;
4424         }
4426         /* create a device */
4427         adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4428         if (!adev) {
4429                 dev_err(&ofdev->dev, "failed to allocate device\n");
4430                 initcode = PPC_ADMA_INIT_ALLOC;
4431                 ret = -ENOMEM;
4432                 goto err_adev_alloc;
4433         }
4435         adev->id = id;
4436         adev->pool_size = pool_size;
4437         /* allocate coherent memory for hardware descriptors */
4438         adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4439                                         adev->pool_size, &adev->dma_desc_pool,
4440                                         GFP_KERNEL);
4441         if (adev->dma_desc_pool_virt == NULL) {
4442                 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4443                         "memory for hardware descriptors\n",
4444                         adev->pool_size);
4445                 initcode = PPC_ADMA_INIT_COHERENT;
4446                 ret = -ENOMEM;
4447                 goto err_dma_alloc;
4448         }
4449         dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4450                 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4452         regs = ioremap(res.start, resource_size(&res));
4453         if (!regs) {
4454                 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4455                 goto err_regs_alloc;
4456         }
4458         if (adev->id == PPC440SPE_XOR_ID) {
4459                 adev->xor_reg = regs;
4460                 /* Reset XOR */
4461                 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4462                 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4463         } else {
4464                 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4465                                    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4466                 adev->dma_reg = regs;
4467                 /* DMAx_FIFO_SIZE is defined in bytes,
4468                  * <fsiz> - is defined in number of CDB pointers (8byte).
4469                  * DMA FIFO Length = CSlength + CPlength, where
4470                  * CSlength = CPlength = (fsiz + 1) * 8.
4471                  */
4472                 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4473                           &adev->dma_reg->fsiz);
4474                 /* Configure DMA engine */
4475                 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4476                           &adev->dma_reg->cfg);
4477                 /* Clear Status */
4478                 iowrite32(~0, &adev->dma_reg->dsts);
4479         }
4481         adev->dev = &ofdev->dev;
4482         adev->common.dev = &ofdev->dev;
4483         INIT_LIST_HEAD(&adev->common.channels);
4484         dev_set_drvdata(&ofdev->dev, adev);
4486         /* create a channel */
4487         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4488         if (!chan) {
4489                 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4490                 initcode = PPC_ADMA_INIT_CHANNEL;
4491                 ret = -ENOMEM;
4492                 goto err_chan_alloc;
4493         }
4495         spin_lock_init(&chan->lock);
4496         INIT_LIST_HEAD(&chan->chain);
4497         INIT_LIST_HEAD(&chan->all_slots);
4498         chan->device = adev;
4499         chan->common.device = &adev->common;
4500         dma_cookie_init(&chan->common);
4501         list_add_tail(&chan->common.device_node, &adev->common.channels);
4502         tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4503                      (unsigned long)chan);
4505         /* allocate and map helper pages for async validation or
4506          * async_mult/async_sum_product operations on DMA0/1.
4507          */
4508         if (adev->id != PPC440SPE_XOR_ID) {
4509                 chan->pdest_page = alloc_page(GFP_KERNEL);
4510                 chan->qdest_page = alloc_page(GFP_KERNEL);
4511                 if (!chan->pdest_page ||
4512                     !chan->qdest_page) {
4513                         if (chan->pdest_page)
4514                                 __free_page(chan->pdest_page);
4515                         if (chan->qdest_page)
4516                                 __free_page(chan->qdest_page);
4517                         ret = -ENOMEM;
4518                         goto err_page_alloc;
4519                 }
4520                 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4521                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4522                 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4523                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4524         }
4526         ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4527         if (ref) {
4528                 ref->chan = &chan->common;
4529                 INIT_LIST_HEAD(&ref->node);
4530                 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4531         } else {
4532                 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4533                 ret = -ENOMEM;
4534                 goto err_ref_alloc;
4535         }
4537         ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4538         if (ret)
4539                 goto err_irq;
4541         ppc440spe_adma_init_capabilities(adev);
4543         ret = dma_async_device_register(&adev->common);
4544         if (ret) {
4545                 initcode = PPC_ADMA_INIT_REGISTER;
4546                 dev_err(&ofdev->dev, "failed to register dma device\n");
4547                 goto err_dev_reg;
4548         }
4550         goto out;
4552 err_dev_reg:
4553         ppc440spe_adma_release_irqs(adev, chan);
4554 err_irq:
4555         list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4556                 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4557                         list_del(&ref->node);
4558                         kfree(ref);
4559                 }
4560         }
4561 err_ref_alloc:
4562         if (adev->id != PPC440SPE_XOR_ID) {
4563                 dma_unmap_page(&ofdev->dev, chan->pdest,
4564                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4565                 dma_unmap_page(&ofdev->dev, chan->qdest,
4566                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4567                 __free_page(chan->pdest_page);
4568                 __free_page(chan->qdest_page);
4569         }
4570 err_page_alloc:
4571         kfree(chan);
4572 err_chan_alloc:
4573         if (adev->id == PPC440SPE_XOR_ID)
4574                 iounmap(adev->xor_reg);
4575         else
4576                 iounmap(adev->dma_reg);
4577 err_regs_alloc:
4578         dma_free_coherent(adev->dev, adev->pool_size,
4579                           adev->dma_desc_pool_virt,
4580                           adev->dma_desc_pool);
4581 err_dma_alloc:
4582         kfree(adev);
4583 err_adev_alloc:
4584         release_mem_region(res.start, resource_size(&res));
4585 out:
4586         if (id < PPC440SPE_ADMA_ENGINES_NUM)
4587                 ppc440spe_adma_devices[id] = initcode;
4589         return ret;
4592 /**
4593  * ppc440spe_adma_remove - remove the asynch device
4594  */
4595 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4597         struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
4598         struct device_node *np = ofdev->dev.of_node;
4599         struct resource res;
4600         struct dma_chan *chan, *_chan;
4601         struct ppc_dma_chan_ref *ref, *_ref;
4602         struct ppc440spe_adma_chan *ppc440spe_chan;
4604         dev_set_drvdata(&ofdev->dev, NULL);
4605         if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4606                 ppc440spe_adma_devices[adev->id] = -1;
4608         dma_async_device_unregister(&adev->common);
4610         list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4611                                  device_node) {
4612                 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4613                 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4614                 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4615                 if (adev->id != PPC440SPE_XOR_ID) {
4616                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4617                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4618                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4619                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4620                         __free_page(ppc440spe_chan->pdest_page);
4621                         __free_page(ppc440spe_chan->qdest_page);
4622                 }
4623                 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4624                                          node) {
4625                         if (ppc440spe_chan ==
4626                             to_ppc440spe_adma_chan(ref->chan)) {
4627                                 list_del(&ref->node);
4628                                 kfree(ref);
4629                         }
4630                 }
4631                 list_del(&chan->device_node);
4632                 kfree(ppc440spe_chan);
4633         }
4635         dma_free_coherent(adev->dev, adev->pool_size,
4636                           adev->dma_desc_pool_virt, adev->dma_desc_pool);
4637         if (adev->id == PPC440SPE_XOR_ID)
4638                 iounmap(adev->xor_reg);
4639         else
4640                 iounmap(adev->dma_reg);
4641         of_address_to_resource(np, 0, &res);
4642         release_mem_region(res.start, resource_size(&res));
4643         kfree(adev);
4644         return 0;
4647 /*
4648  * /sys driver interface to enable h/w RAID-6 capabilities
4649  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4650  * directory are "devices", "enable" and "poly".
4651  * "devices" shows available engines.
4652  * "enable" is used to enable RAID-6 capabilities or to check
4653  * whether these has been activated.
4654  * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4655  */
4657 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4659         ssize_t size = 0;
4660         int i;
4662         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4663                 if (ppc440spe_adma_devices[i] == -1)
4664                         continue;
4665                 size += snprintf(buf + size, PAGE_SIZE - size,
4666                                  "PPC440SP(E)-ADMA.%d: %s\n", i,
4667                                  ppc_adma_errors[ppc440spe_adma_devices[i]]);
4668         }
4669         return size;
4672 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4674         return snprintf(buf, PAGE_SIZE,
4675                         "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4676                         ppc440spe_r6_enabled ? "EN" : "DIS");
4679 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4680                                         const char *buf, size_t count)
4682         unsigned long val;
4684         if (!count || count > 11)
4685                 return -EINVAL;
4687         if (!ppc440spe_r6_tchan)
4688                 return -EFAULT;
4690         /* Write a key */
4691         sscanf(buf, "%lx", &val);
4692         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4693         isync();
4695         /* Verify whether it really works now */
4696         if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4697                 pr_info("PPC440SP(e) RAID-6 has been activated "
4698                         "successfully\n");
4699                 ppc440spe_r6_enabled = 1;
4700         } else {
4701                 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4702                         " Error key ?\n");
4703                 ppc440spe_r6_enabled = 0;
4704         }
4705         return count;
4708 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4710         ssize_t size = 0;
4711         u32 reg;
4713 #ifdef CONFIG_440SP
4714         /* 440SP has fixed polynomial */
4715         reg = 0x4d;
4716 #else
4717         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4718         reg >>= MQ0_CFBHL_POLY;
4719         reg &= 0xFF;
4720 #endif
4722         size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4723                         "uses 0x1%02x polynomial.\n", reg);
4724         return size;
4727 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4728                                       const char *buf, size_t count)
4730         unsigned long reg, val;
4732 #ifdef CONFIG_440SP
4733         /* 440SP uses default 0x14D polynomial only */
4734         return -EINVAL;
4735 #endif
4737         if (!count || count > 6)
4738                 return -EINVAL;
4740         /* e.g., 0x14D or 0x11D */
4741         sscanf(buf, "%lx", &val);
4743         if (val & ~0x1FF)
4744                 return -EINVAL;
4746         val &= 0xFF;
4747         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4748         reg &= ~(0xFF << MQ0_CFBHL_POLY);
4749         reg |= val << MQ0_CFBHL_POLY;
4750         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4752         return count;
4755 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4756 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4757                    store_ppc440spe_r6enable);
4758 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4759                    store_ppc440spe_r6poly);
4761 /*
4762  * Common initialisation for RAID engines; allocate memory for
4763  * DMAx FIFOs, perform configuration common for all DMA engines.
4764  * Further DMA engine specific configuration is done at probe time.
4765  */
4766 static int ppc440spe_configure_raid_devices(void)
4768         struct device_node *np;
4769         struct resource i2o_res;
4770         struct i2o_regs __iomem *i2o_reg;
4771         dcr_host_t i2o_dcr_host;
4772         unsigned int dcr_base, dcr_len;
4773         int i, ret;
4775         np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4776         if (!np) {
4777                 pr_err("%s: can't find I2O device tree node\n",
4778                         __func__);
4779                 return -ENODEV;
4780         }
4782         if (of_address_to_resource(np, 0, &i2o_res)) {
4783                 of_node_put(np);
4784                 return -EINVAL;
4785         }
4787         i2o_reg = of_iomap(np, 0);
4788         if (!i2o_reg) {
4789                 pr_err("%s: failed to map I2O registers\n", __func__);
4790                 of_node_put(np);
4791                 return -EINVAL;
4792         }
4794         /* Get I2O DCRs base */
4795         dcr_base = dcr_resource_start(np, 0);
4796         dcr_len = dcr_resource_len(np, 0);
4797         if (!dcr_base && !dcr_len) {
4798                 pr_err("%s: can't get DCR registers base/len!\n",
4799                         np->full_name);
4800                 of_node_put(np);
4801                 iounmap(i2o_reg);
4802                 return -ENODEV;
4803         }
4805         i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4806         if (!DCR_MAP_OK(i2o_dcr_host)) {
4807                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4808                 of_node_put(np);
4809                 iounmap(i2o_reg);
4810                 return -ENODEV;
4811         }
4812         of_node_put(np);
4814         /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4815          * the base address of FIFO memory space.
4816          * Actually we need twice more physical memory than programmed in the
4817          * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4818          */
4819         ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4820                                          GFP_KERNEL);
4821         if (!ppc440spe_dma_fifo_buf) {
4822                 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4823                 iounmap(i2o_reg);
4824                 dcr_unmap(i2o_dcr_host, dcr_len);
4825                 return -ENOMEM;
4826         }
4828         /*
4829          * Configure h/w
4830          */
4831         /* Reset I2O/DMA */
4832         mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4833         mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4835         /* Setup the base address of mmaped registers */
4836         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4837         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4838                                                 I2O_REG_ENABLE);
4839         dcr_unmap(i2o_dcr_host, dcr_len);
4841         /* Setup FIFO memory space base address */
4842         iowrite32(0, &i2o_reg->ifbah);
4843         iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4845         /* set zero FIFO size for I2O, so the whole
4846          * ppc440spe_dma_fifo_buf is used by DMAs.
4847          * DMAx_FIFOs will be configured while probe.
4848          */
4849         iowrite32(0, &i2o_reg->ifsiz);
4850         iounmap(i2o_reg);
4852         /* To prepare WXOR/RXOR functionality we need access to
4853          * Memory Queue Module DCRs (finally it will be enabled
4854          * via /sys interface of the ppc440spe ADMA driver).
4855          */
4856         np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4857         if (!np) {
4858                 pr_err("%s: can't find MQ device tree node\n",
4859                         __func__);
4860                 ret = -ENODEV;
4861                 goto out_free;
4862         }
4864         /* Get MQ DCRs base */
4865         dcr_base = dcr_resource_start(np, 0);
4866         dcr_len = dcr_resource_len(np, 0);
4867         if (!dcr_base && !dcr_len) {
4868                 pr_err("%s: can't get DCR registers base/len!\n",
4869                         np->full_name);
4870                 ret = -ENODEV;
4871                 goto out_mq;
4872         }
4874         ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4875         if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4876                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4877                 ret = -ENODEV;
4878                 goto out_mq;
4879         }
4880         of_node_put(np);
4881         ppc440spe_mq_dcr_len = dcr_len;
4883         /* Set HB alias */
4884         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4886         /* Set:
4887          * - LL transaction passing limit to 1;
4888          * - Memory controller cycle limit to 1;
4889          * - Galois Polynomial to 0x14d (default)
4890          */
4891         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4892                   (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4893                   (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4895         atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4896         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4897                 ppc440spe_adma_devices[i] = -1;
4899         return 0;
4901 out_mq:
4902         of_node_put(np);
4903 out_free:
4904         kfree(ppc440spe_dma_fifo_buf);
4905         return ret;
4908 static const struct of_device_id ppc440spe_adma_of_match[] = {
4909         { .compatible   = "ibm,dma-440spe", },
4910         { .compatible   = "amcc,xor-accelerator", },
4911         {},
4912 };
4913 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4915 static struct platform_driver ppc440spe_adma_driver = {
4916         .probe = ppc440spe_adma_probe,
4917         .remove = ppc440spe_adma_remove,
4918         .driver = {
4919                 .name = "PPC440SP(E)-ADMA",
4920                 .owner = THIS_MODULE,
4921                 .of_match_table = ppc440spe_adma_of_match,
4922         },
4923 };
4925 static __init int ppc440spe_adma_init(void)
4927         int ret;
4929         ret = ppc440spe_configure_raid_devices();
4930         if (ret)
4931                 return ret;
4933         ret = platform_driver_register(&ppc440spe_adma_driver);
4934         if (ret) {
4935                 pr_err("%s: failed to register platform driver\n",
4936                         __func__);
4937                 goto out_reg;
4938         }
4940         /* Initialization status */
4941         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4942                                  &driver_attr_devices);
4943         if (ret)
4944                 goto out_dev;
4946         /* RAID-6 h/w enable entry */
4947         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4948                                  &driver_attr_enable);
4949         if (ret)
4950                 goto out_en;
4952         /* GF polynomial to use */
4953         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4954                                  &driver_attr_poly);
4955         if (!ret)
4956                 return ret;
4958         driver_remove_file(&ppc440spe_adma_driver.driver,
4959                            &driver_attr_enable);
4960 out_en:
4961         driver_remove_file(&ppc440spe_adma_driver.driver,
4962                            &driver_attr_devices);
4963 out_dev:
4964         /* User will not be able to enable h/w RAID-6 */
4965         pr_err("%s: failed to create RAID-6 driver interface\n",
4966                 __func__);
4967         platform_driver_unregister(&ppc440spe_adma_driver);
4968 out_reg:
4969         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4970         kfree(ppc440spe_dma_fifo_buf);
4971         return ret;
4974 static void __exit ppc440spe_adma_exit(void)
4976         driver_remove_file(&ppc440spe_adma_driver.driver,
4977                            &driver_attr_poly);
4978         driver_remove_file(&ppc440spe_adma_driver.driver,
4979                            &driver_attr_enable);
4980         driver_remove_file(&ppc440spe_adma_driver.driver,
4981                            &driver_attr_devices);
4982         platform_driver_unregister(&ppc440spe_adma_driver);
4983         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4984         kfree(ppc440spe_dma_fifo_buf);
4987 arch_initcall(ppc440spe_adma_init);
4988 module_exit(ppc440spe_adma_exit);
4990 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4991 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4992 MODULE_LICENSE("GPL");