1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 #include <uapi/linux/sched.h>
7 struct sched_param {
8 int sched_priority;
9 };
11 #include <asm/param.h> /* for HZ */
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
55 #include <asm/processor.h>
57 struct exec_domain;
58 struct futex_pi_state;
59 struct robust_list_head;
60 struct bio_list;
61 struct fs_struct;
62 struct perf_event_context;
63 struct blk_plug;
65 /*
66 * List of flags we want to share for kernel threads,
67 * if only because they are not used by them anyway.
68 */
69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71 /*
72 * These are the constant used to fake the fixed-point load-average
73 * counting. Some notes:
74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
75 * a load-average precision of 10 bits integer + 11 bits fractional
76 * - if you want to count load-averages more often, you need more
77 * precision, or rounding will get you. With 2-second counting freq,
78 * the EXP_n values would be 1981, 2034 and 2043 if still using only
79 * 11 bit fractions.
80 */
81 extern unsigned long avenrun[]; /* Load averages */
82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84 #define FSHIFT 11 /* nr of bits of precision */
85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
88 #define EXP_5 2014 /* 1/exp(5sec/5min) */
89 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91 #define CALC_LOAD(load,exp,n) \
92 load *= exp; \
93 load += n*(FIXED_1-exp); \
94 load >>= FSHIFT;
96 extern unsigned long total_forks;
97 extern int nr_threads;
98 DECLARE_PER_CPU(unsigned long, process_counts);
99 extern int nr_processes(void);
100 extern unsigned long nr_running(void);
101 extern unsigned long nr_uninterruptible(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
118 extern unsigned long get_parent_ip(unsigned long addr);
120 extern void dump_cpu_task(int cpu);
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #else
131 static inline void
132 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
133 {
134 }
135 static inline void proc_sched_set_task(struct task_struct *p)
136 {
137 }
138 static inline void
139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
140 {
141 }
142 #endif
144 /*
145 * Task state bitmask. NOTE! These bits are also
146 * encoded in fs/proc/array.c: get_task_state().
147 *
148 * We have two separate sets of flags: task->state
149 * is about runnability, while task->exit_state are
150 * about the task exiting. Confusing, but this way
151 * modifying one set can't modify the other one by
152 * mistake.
153 */
154 #define TASK_RUNNING 0
155 #define TASK_INTERRUPTIBLE 1
156 #define TASK_UNINTERRUPTIBLE 2
157 #define __TASK_STOPPED 4
158 #define __TASK_TRACED 8
159 /* in tsk->exit_state */
160 #define EXIT_ZOMBIE 16
161 #define EXIT_DEAD 32
162 /* in tsk->state again */
163 #define TASK_DEAD 64
164 #define TASK_WAKEKILL 128
165 #define TASK_WAKING 256
166 #define TASK_PARKED 512
167 #define TASK_STATE_MAX 1024
169 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
171 extern char ___assert_task_state[1 - 2*!!(
172 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
174 /* Convenience macros for the sake of set_task_state */
175 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
176 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
177 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
179 /* Convenience macros for the sake of wake_up */
180 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
181 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
183 /* get_task_state() */
184 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
185 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
186 __TASK_TRACED)
188 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
189 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
190 #define task_is_dead(task) ((task)->exit_state != 0)
191 #define task_is_stopped_or_traced(task) \
192 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
193 #define task_contributes_to_load(task) \
194 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
195 (task->flags & PF_FROZEN) == 0)
197 #define __set_task_state(tsk, state_value) \
198 do { (tsk)->state = (state_value); } while (0)
199 #define set_task_state(tsk, state_value) \
200 set_mb((tsk)->state, (state_value))
202 /*
203 * set_current_state() includes a barrier so that the write of current->state
204 * is correctly serialised wrt the caller's subsequent test of whether to
205 * actually sleep:
206 *
207 * set_current_state(TASK_UNINTERRUPTIBLE);
208 * if (do_i_need_to_sleep())
209 * schedule();
210 *
211 * If the caller does not need such serialisation then use __set_current_state()
212 */
213 #define __set_current_state(state_value) \
214 do { current->state = (state_value); } while (0)
215 #define set_current_state(state_value) \
216 set_mb(current->state, (state_value))
218 /* Task command name length */
219 #define TASK_COMM_LEN 16
221 #include <linux/spinlock.h>
223 /*
224 * This serializes "schedule()" and also protects
225 * the run-queue from deletions/modifications (but
226 * _adding_ to the beginning of the run-queue has
227 * a separate lock).
228 */
229 extern rwlock_t tasklist_lock;
230 extern spinlock_t mmlist_lock;
232 struct task_struct;
234 #ifdef CONFIG_PROVE_RCU
235 extern int lockdep_tasklist_lock_is_held(void);
236 #endif /* #ifdef CONFIG_PROVE_RCU */
238 extern void sched_init(void);
239 extern void sched_init_smp(void);
240 extern asmlinkage void schedule_tail(struct task_struct *prev);
241 extern void init_idle(struct task_struct *idle, int cpu);
242 extern void init_idle_bootup_task(struct task_struct *idle);
244 extern int runqueue_is_locked(int cpu);
246 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
247 extern void nohz_balance_enter_idle(int cpu);
248 extern void set_cpu_sd_state_idle(void);
249 extern int get_nohz_timer_target(void);
250 #else
251 static inline void nohz_balance_enter_idle(int cpu) { }
252 static inline void set_cpu_sd_state_idle(void) { }
253 #endif
255 /*
256 * Only dump TASK_* tasks. (0 for all tasks)
257 */
258 extern void show_state_filter(unsigned long state_filter);
260 static inline void show_state(void)
261 {
262 show_state_filter(0);
263 }
265 extern void show_regs(struct pt_regs *);
267 /*
268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
269 * task), SP is the stack pointer of the first frame that should be shown in the back
270 * trace (or NULL if the entire call-chain of the task should be shown).
271 */
272 extern void show_stack(struct task_struct *task, unsigned long *sp);
274 void io_schedule(void);
275 long io_schedule_timeout(long timeout);
277 extern void cpu_init (void);
278 extern void trap_init(void);
279 extern void update_process_times(int user);
280 extern void scheduler_tick(void);
282 extern void sched_show_task(struct task_struct *p);
284 #ifdef CONFIG_LOCKUP_DETECTOR
285 extern void touch_softlockup_watchdog(void);
286 extern void touch_softlockup_watchdog_sync(void);
287 extern void touch_all_softlockup_watchdogs(void);
288 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
289 void __user *buffer,
290 size_t *lenp, loff_t *ppos);
291 extern unsigned int softlockup_panic;
292 void lockup_detector_init(void);
293 #else
294 static inline void touch_softlockup_watchdog(void)
295 {
296 }
297 static inline void touch_softlockup_watchdog_sync(void)
298 {
299 }
300 static inline void touch_all_softlockup_watchdogs(void)
301 {
302 }
303 static inline void lockup_detector_init(void)
304 {
305 }
306 #endif
308 #ifdef CONFIG_DETECT_HUNG_TASK
309 extern unsigned int sysctl_hung_task_panic;
310 extern unsigned long sysctl_hung_task_check_count;
311 extern unsigned long sysctl_hung_task_timeout_secs;
312 extern unsigned long sysctl_hung_task_warnings;
313 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
314 void __user *buffer,
315 size_t *lenp, loff_t *ppos);
316 #else
317 /* Avoid need for ifdefs elsewhere in the code */
318 enum { sysctl_hung_task_timeout_secs = 0 };
319 #endif
321 /* Attach to any functions which should be ignored in wchan output. */
322 #define __sched __attribute__((__section__(".sched.text")))
324 /* Linker adds these: start and end of __sched functions */
325 extern char __sched_text_start[], __sched_text_end[];
327 /* Is this address in the __sched functions? */
328 extern int in_sched_functions(unsigned long addr);
330 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
331 extern signed long schedule_timeout(signed long timeout);
332 extern signed long schedule_timeout_interruptible(signed long timeout);
333 extern signed long schedule_timeout_killable(signed long timeout);
334 extern signed long schedule_timeout_uninterruptible(signed long timeout);
335 asmlinkage void schedule(void);
336 extern void schedule_preempt_disabled(void);
337 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
339 struct nsproxy;
340 struct user_namespace;
342 /*
343 * Default maximum number of active map areas, this limits the number of vmas
344 * per mm struct. Users can overwrite this number by sysctl but there is a
345 * problem.
346 *
347 * When a program's coredump is generated as ELF format, a section is created
348 * per a vma. In ELF, the number of sections is represented in unsigned short.
349 * This means the number of sections should be smaller than 65535 at coredump.
350 * Because the kernel adds some informative sections to a image of program at
351 * generating coredump, we need some margin. The number of extra sections is
352 * 1-3 now and depends on arch. We use "5" as safe margin, here.
353 */
354 #define MAPCOUNT_ELF_CORE_MARGIN (5)
355 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
357 extern int sysctl_max_map_count;
359 #include <linux/aio.h>
361 #ifdef CONFIG_MMU
362 extern void arch_pick_mmap_layout(struct mm_struct *mm);
363 extern unsigned long
364 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
365 unsigned long, unsigned long);
366 extern unsigned long
367 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
368 unsigned long len, unsigned long pgoff,
369 unsigned long flags);
370 extern void arch_unmap_area(struct mm_struct *, unsigned long);
371 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
372 #else
373 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
374 #endif
377 extern void set_dumpable(struct mm_struct *mm, int value);
378 extern int get_dumpable(struct mm_struct *mm);
380 /* get/set_dumpable() values */
381 #define SUID_DUMPABLE_DISABLED 0
382 #define SUID_DUMPABLE_ENABLED 1
383 #define SUID_DUMPABLE_SAFE 2
385 /* mm flags */
386 /* dumpable bits */
387 #define MMF_DUMPABLE 0 /* core dump is permitted */
388 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
390 #define MMF_DUMPABLE_BITS 2
391 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
393 /* coredump filter bits */
394 #define MMF_DUMP_ANON_PRIVATE 2
395 #define MMF_DUMP_ANON_SHARED 3
396 #define MMF_DUMP_MAPPED_PRIVATE 4
397 #define MMF_DUMP_MAPPED_SHARED 5
398 #define MMF_DUMP_ELF_HEADERS 6
399 #define MMF_DUMP_HUGETLB_PRIVATE 7
400 #define MMF_DUMP_HUGETLB_SHARED 8
402 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
403 #define MMF_DUMP_FILTER_BITS 7
404 #define MMF_DUMP_FILTER_MASK \
405 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
406 #define MMF_DUMP_FILTER_DEFAULT \
407 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
408 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
410 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
411 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
412 #else
413 # define MMF_DUMP_MASK_DEFAULT_ELF 0
414 #endif
415 /* leave room for more dump flags */
416 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
417 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
418 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
420 #define MMF_HAS_UPROBES 19 /* has uprobes */
421 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
423 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
425 struct sighand_struct {
426 atomic_t count;
427 struct k_sigaction action[_NSIG];
428 spinlock_t siglock;
429 wait_queue_head_t signalfd_wqh;
430 };
432 struct pacct_struct {
433 int ac_flag;
434 long ac_exitcode;
435 unsigned long ac_mem;
436 cputime_t ac_utime, ac_stime;
437 unsigned long ac_minflt, ac_majflt;
438 };
440 struct cpu_itimer {
441 cputime_t expires;
442 cputime_t incr;
443 u32 error;
444 u32 incr_error;
445 };
447 /**
448 * struct cputime - snaphsot of system and user cputime
449 * @utime: time spent in user mode
450 * @stime: time spent in system mode
451 *
452 * Gathers a generic snapshot of user and system time.
453 */
454 struct cputime {
455 cputime_t utime;
456 cputime_t stime;
457 };
459 /**
460 * struct task_cputime - collected CPU time counts
461 * @utime: time spent in user mode, in &cputime_t units
462 * @stime: time spent in kernel mode, in &cputime_t units
463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
464 *
465 * This is an extension of struct cputime that includes the total runtime
466 * spent by the task from the scheduler point of view.
467 *
468 * As a result, this structure groups together three kinds of CPU time
469 * that are tracked for threads and thread groups. Most things considering
470 * CPU time want to group these counts together and treat all three
471 * of them in parallel.
472 */
473 struct task_cputime {
474 cputime_t utime;
475 cputime_t stime;
476 unsigned long long sum_exec_runtime;
477 };
478 /* Alternate field names when used to cache expirations. */
479 #define prof_exp stime
480 #define virt_exp utime
481 #define sched_exp sum_exec_runtime
483 #define INIT_CPUTIME \
484 (struct task_cputime) { \
485 .utime = 0, \
486 .stime = 0, \
487 .sum_exec_runtime = 0, \
488 }
490 /*
491 * Disable preemption until the scheduler is running.
492 * Reset by start_kernel()->sched_init()->init_idle().
493 *
494 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
495 * before the scheduler is active -- see should_resched().
496 */
497 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
499 /**
500 * struct thread_group_cputimer - thread group interval timer counts
501 * @cputime: thread group interval timers.
502 * @running: non-zero when there are timers running and
503 * @cputime receives updates.
504 * @lock: lock for fields in this struct.
505 *
506 * This structure contains the version of task_cputime, above, that is
507 * used for thread group CPU timer calculations.
508 */
509 struct thread_group_cputimer {
510 struct task_cputime cputime;
511 int running;
512 raw_spinlock_t lock;
513 };
515 #include <linux/rwsem.h>
516 struct autogroup;
518 /*
519 * NOTE! "signal_struct" does not have its own
520 * locking, because a shared signal_struct always
521 * implies a shared sighand_struct, so locking
522 * sighand_struct is always a proper superset of
523 * the locking of signal_struct.
524 */
525 struct signal_struct {
526 atomic_t sigcnt;
527 atomic_t live;
528 int nr_threads;
530 wait_queue_head_t wait_chldexit; /* for wait4() */
532 /* current thread group signal load-balancing target: */
533 struct task_struct *curr_target;
535 /* shared signal handling: */
536 struct sigpending shared_pending;
538 /* thread group exit support */
539 int group_exit_code;
540 /* overloaded:
541 * - notify group_exit_task when ->count is equal to notify_count
542 * - everyone except group_exit_task is stopped during signal delivery
543 * of fatal signals, group_exit_task processes the signal.
544 */
545 int notify_count;
546 struct task_struct *group_exit_task;
548 /* thread group stop support, overloads group_exit_code too */
549 int group_stop_count;
550 unsigned int flags; /* see SIGNAL_* flags below */
552 /*
553 * PR_SET_CHILD_SUBREAPER marks a process, like a service
554 * manager, to re-parent orphan (double-forking) child processes
555 * to this process instead of 'init'. The service manager is
556 * able to receive SIGCHLD signals and is able to investigate
557 * the process until it calls wait(). All children of this
558 * process will inherit a flag if they should look for a
559 * child_subreaper process at exit.
560 */
561 unsigned int is_child_subreaper:1;
562 unsigned int has_child_subreaper:1;
564 /* POSIX.1b Interval Timers */
565 struct list_head posix_timers;
567 /* ITIMER_REAL timer for the process */
568 struct hrtimer real_timer;
569 struct pid *leader_pid;
570 ktime_t it_real_incr;
572 /*
573 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
574 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
575 * values are defined to 0 and 1 respectively
576 */
577 struct cpu_itimer it[2];
579 /*
580 * Thread group totals for process CPU timers.
581 * See thread_group_cputimer(), et al, for details.
582 */
583 struct thread_group_cputimer cputimer;
585 /* Earliest-expiration cache. */
586 struct task_cputime cputime_expires;
588 struct list_head cpu_timers[3];
590 struct pid *tty_old_pgrp;
592 /* boolean value for session group leader */
593 int leader;
595 struct tty_struct *tty; /* NULL if no tty */
597 #ifdef CONFIG_SCHED_AUTOGROUP
598 struct autogroup *autogroup;
599 #endif
600 /*
601 * Cumulative resource counters for dead threads in the group,
602 * and for reaped dead child processes forked by this group.
603 * Live threads maintain their own counters and add to these
604 * in __exit_signal, except for the group leader.
605 */
606 cputime_t utime, stime, cutime, cstime;
607 cputime_t gtime;
608 cputime_t cgtime;
609 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
610 struct cputime prev_cputime;
611 #endif
612 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
613 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
614 unsigned long inblock, oublock, cinblock, coublock;
615 unsigned long maxrss, cmaxrss;
616 struct task_io_accounting ioac;
618 /*
619 * Cumulative ns of schedule CPU time fo dead threads in the
620 * group, not including a zombie group leader, (This only differs
621 * from jiffies_to_ns(utime + stime) if sched_clock uses something
622 * other than jiffies.)
623 */
624 unsigned long long sum_sched_runtime;
626 /*
627 * We don't bother to synchronize most readers of this at all,
628 * because there is no reader checking a limit that actually needs
629 * to get both rlim_cur and rlim_max atomically, and either one
630 * alone is a single word that can safely be read normally.
631 * getrlimit/setrlimit use task_lock(current->group_leader) to
632 * protect this instead of the siglock, because they really
633 * have no need to disable irqs.
634 */
635 struct rlimit rlim[RLIM_NLIMITS];
637 #ifdef CONFIG_BSD_PROCESS_ACCT
638 struct pacct_struct pacct; /* per-process accounting information */
639 #endif
640 #ifdef CONFIG_TASKSTATS
641 struct taskstats *stats;
642 #endif
643 #ifdef CONFIG_AUDIT
644 unsigned audit_tty;
645 struct tty_audit_buf *tty_audit_buf;
646 #endif
647 #ifdef CONFIG_CGROUPS
648 /*
649 * group_rwsem prevents new tasks from entering the threadgroup and
650 * member tasks from exiting,a more specifically, setting of
651 * PF_EXITING. fork and exit paths are protected with this rwsem
652 * using threadgroup_change_begin/end(). Users which require
653 * threadgroup to remain stable should use threadgroup_[un]lock()
654 * which also takes care of exec path. Currently, cgroup is the
655 * only user.
656 */
657 struct rw_semaphore group_rwsem;
658 #endif
660 oom_flags_t oom_flags;
661 short oom_score_adj; /* OOM kill score adjustment */
662 short oom_score_adj_min; /* OOM kill score adjustment min value.
663 * Only settable by CAP_SYS_RESOURCE. */
665 struct mutex cred_guard_mutex; /* guard against foreign influences on
666 * credential calculations
667 * (notably. ptrace) */
668 };
670 /*
671 * Bits in flags field of signal_struct.
672 */
673 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
674 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
675 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
676 /*
677 * Pending notifications to parent.
678 */
679 #define SIGNAL_CLD_STOPPED 0x00000010
680 #define SIGNAL_CLD_CONTINUED 0x00000020
681 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
683 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
685 /* If true, all threads except ->group_exit_task have pending SIGKILL */
686 static inline int signal_group_exit(const struct signal_struct *sig)
687 {
688 return (sig->flags & SIGNAL_GROUP_EXIT) ||
689 (sig->group_exit_task != NULL);
690 }
692 /*
693 * Some day this will be a full-fledged user tracking system..
694 */
695 struct user_struct {
696 atomic_t __count; /* reference count */
697 atomic_t processes; /* How many processes does this user have? */
698 atomic_t files; /* How many open files does this user have? */
699 atomic_t sigpending; /* How many pending signals does this user have? */
700 #ifdef CONFIG_INOTIFY_USER
701 atomic_t inotify_watches; /* How many inotify watches does this user have? */
702 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
703 #endif
704 #ifdef CONFIG_FANOTIFY
705 atomic_t fanotify_listeners;
706 #endif
707 #ifdef CONFIG_EPOLL
708 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
709 #endif
710 #ifdef CONFIG_POSIX_MQUEUE
711 /* protected by mq_lock */
712 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
713 #endif
714 unsigned long locked_shm; /* How many pages of mlocked shm ? */
716 #ifdef CONFIG_KEYS
717 struct key *uid_keyring; /* UID specific keyring */
718 struct key *session_keyring; /* UID's default session keyring */
719 #endif
721 /* Hash table maintenance information */
722 struct hlist_node uidhash_node;
723 kuid_t uid;
725 #ifdef CONFIG_PERF_EVENTS
726 atomic_long_t locked_vm;
727 #endif
728 };
730 extern int uids_sysfs_init(void);
732 extern struct user_struct *find_user(kuid_t);
734 extern struct user_struct root_user;
735 #define INIT_USER (&root_user)
738 struct backing_dev_info;
739 struct reclaim_state;
741 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
742 struct sched_info {
743 /* cumulative counters */
744 unsigned long pcount; /* # of times run on this cpu */
745 unsigned long long run_delay; /* time spent waiting on a runqueue */
747 /* timestamps */
748 unsigned long long last_arrival,/* when we last ran on a cpu */
749 last_queued; /* when we were last queued to run */
750 };
751 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
753 #ifdef CONFIG_TASK_DELAY_ACCT
754 struct task_delay_info {
755 spinlock_t lock;
756 unsigned int flags; /* Private per-task flags */
758 /* For each stat XXX, add following, aligned appropriately
759 *
760 * struct timespec XXX_start, XXX_end;
761 * u64 XXX_delay;
762 * u32 XXX_count;
763 *
764 * Atomicity of updates to XXX_delay, XXX_count protected by
765 * single lock above (split into XXX_lock if contention is an issue).
766 */
768 /*
769 * XXX_count is incremented on every XXX operation, the delay
770 * associated with the operation is added to XXX_delay.
771 * XXX_delay contains the accumulated delay time in nanoseconds.
772 */
773 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
774 u64 blkio_delay; /* wait for sync block io completion */
775 u64 swapin_delay; /* wait for swapin block io completion */
776 u32 blkio_count; /* total count of the number of sync block */
777 /* io operations performed */
778 u32 swapin_count; /* total count of the number of swapin block */
779 /* io operations performed */
781 struct timespec freepages_start, freepages_end;
782 u64 freepages_delay; /* wait for memory reclaim */
783 u32 freepages_count; /* total count of memory reclaim */
784 };
785 #endif /* CONFIG_TASK_DELAY_ACCT */
787 static inline int sched_info_on(void)
788 {
789 #ifdef CONFIG_SCHEDSTATS
790 return 1;
791 #elif defined(CONFIG_TASK_DELAY_ACCT)
792 extern int delayacct_on;
793 return delayacct_on;
794 #else
795 return 0;
796 #endif
797 }
799 enum cpu_idle_type {
800 CPU_IDLE,
801 CPU_NOT_IDLE,
802 CPU_NEWLY_IDLE,
803 CPU_MAX_IDLE_TYPES
804 };
806 /*
807 * Increase resolution of nice-level calculations for 64-bit architectures.
808 * The extra resolution improves shares distribution and load balancing of
809 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
810 * hierarchies, especially on larger systems. This is not a user-visible change
811 * and does not change the user-interface for setting shares/weights.
812 *
813 * We increase resolution only if we have enough bits to allow this increased
814 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
815 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
816 * increased costs.
817 */
818 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
819 # define SCHED_LOAD_RESOLUTION 10
820 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
821 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
822 #else
823 # define SCHED_LOAD_RESOLUTION 0
824 # define scale_load(w) (w)
825 # define scale_load_down(w) (w)
826 #endif
828 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
829 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
831 /*
832 * Increase resolution of cpu_power calculations
833 */
834 #define SCHED_POWER_SHIFT 10
835 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
837 /*
838 * sched-domains (multiprocessor balancing) declarations:
839 */
840 #ifdef CONFIG_SMP
841 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
842 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
843 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
844 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
845 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
846 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
847 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
848 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
849 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
850 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
851 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
852 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
854 extern int __weak arch_sd_sibiling_asym_packing(void);
856 struct sched_group_power {
857 atomic_t ref;
858 /*
859 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
860 * single CPU.
861 */
862 unsigned int power, power_orig;
863 unsigned long next_update;
864 /*
865 * Number of busy cpus in this group.
866 */
867 atomic_t nr_busy_cpus;
869 unsigned long cpumask[0]; /* iteration mask */
870 };
872 struct sched_group {
873 struct sched_group *next; /* Must be a circular list */
874 atomic_t ref;
876 unsigned int group_weight;
877 struct sched_group_power *sgp;
879 /*
880 * The CPUs this group covers.
881 *
882 * NOTE: this field is variable length. (Allocated dynamically
883 * by attaching extra space to the end of the structure,
884 * depending on how many CPUs the kernel has booted up with)
885 */
886 unsigned long cpumask[0];
887 };
889 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
890 {
891 return to_cpumask(sg->cpumask);
892 }
894 /*
895 * cpumask masking which cpus in the group are allowed to iterate up the domain
896 * tree.
897 */
898 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
899 {
900 return to_cpumask(sg->sgp->cpumask);
901 }
903 /**
904 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
905 * @group: The group whose first cpu is to be returned.
906 */
907 static inline unsigned int group_first_cpu(struct sched_group *group)
908 {
909 return cpumask_first(sched_group_cpus(group));
910 }
912 struct sched_domain_attr {
913 int relax_domain_level;
914 };
916 #define SD_ATTR_INIT (struct sched_domain_attr) { \
917 .relax_domain_level = -1, \
918 }
920 extern int sched_domain_level_max;
922 struct sched_domain {
923 /* These fields must be setup */
924 struct sched_domain *parent; /* top domain must be null terminated */
925 struct sched_domain *child; /* bottom domain must be null terminated */
926 struct sched_group *groups; /* the balancing groups of the domain */
927 unsigned long min_interval; /* Minimum balance interval ms */
928 unsigned long max_interval; /* Maximum balance interval ms */
929 unsigned int busy_factor; /* less balancing by factor if busy */
930 unsigned int imbalance_pct; /* No balance until over watermark */
931 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
932 unsigned int busy_idx;
933 unsigned int idle_idx;
934 unsigned int newidle_idx;
935 unsigned int wake_idx;
936 unsigned int forkexec_idx;
937 unsigned int smt_gain;
938 int flags; /* See SD_* */
939 int level;
941 /* Runtime fields. */
942 unsigned long last_balance; /* init to jiffies. units in jiffies */
943 unsigned int balance_interval; /* initialise to 1. units in ms. */
944 unsigned int nr_balance_failed; /* initialise to 0 */
946 u64 last_update;
948 #ifdef CONFIG_SCHEDSTATS
949 /* load_balance() stats */
950 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
951 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
952 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
953 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
954 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
955 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
956 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
957 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
959 /* Active load balancing */
960 unsigned int alb_count;
961 unsigned int alb_failed;
962 unsigned int alb_pushed;
964 /* SD_BALANCE_EXEC stats */
965 unsigned int sbe_count;
966 unsigned int sbe_balanced;
967 unsigned int sbe_pushed;
969 /* SD_BALANCE_FORK stats */
970 unsigned int sbf_count;
971 unsigned int sbf_balanced;
972 unsigned int sbf_pushed;
974 /* try_to_wake_up() stats */
975 unsigned int ttwu_wake_remote;
976 unsigned int ttwu_move_affine;
977 unsigned int ttwu_move_balance;
978 #endif
979 #ifdef CONFIG_SCHED_DEBUG
980 char *name;
981 #endif
982 union {
983 void *private; /* used during construction */
984 struct rcu_head rcu; /* used during destruction */
985 };
987 unsigned int span_weight;
988 /*
989 * Span of all CPUs in this domain.
990 *
991 * NOTE: this field is variable length. (Allocated dynamically
992 * by attaching extra space to the end of the structure,
993 * depending on how many CPUs the kernel has booted up with)
994 */
995 unsigned long span[0];
996 };
998 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
999 {
1000 return to_cpumask(sd->span);
1001 }
1003 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1004 struct sched_domain_attr *dattr_new);
1006 /* Allocate an array of sched domains, for partition_sched_domains(). */
1007 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1008 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1010 /* Test a flag in parent sched domain */
1011 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1012 {
1013 if (sd->parent && (sd->parent->flags & flag))
1014 return 1;
1016 return 0;
1017 }
1019 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1020 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1022 bool cpus_share_cache(int this_cpu, int that_cpu);
1024 #else /* CONFIG_SMP */
1026 struct sched_domain_attr;
1028 static inline void
1029 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1030 struct sched_domain_attr *dattr_new)
1031 {
1032 }
1034 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1035 {
1036 return true;
1037 }
1039 #endif /* !CONFIG_SMP */
1042 struct io_context; /* See blkdev.h */
1045 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1046 extern void prefetch_stack(struct task_struct *t);
1047 #else
1048 static inline void prefetch_stack(struct task_struct *t) { }
1049 #endif
1051 struct audit_context; /* See audit.c */
1052 struct mempolicy;
1053 struct pipe_inode_info;
1054 struct uts_namespace;
1056 struct rq;
1057 struct sched_domain;
1059 /*
1060 * wake flags
1061 */
1062 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1063 #define WF_FORK 0x02 /* child wakeup after fork */
1064 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1066 #define ENQUEUE_WAKEUP 1
1067 #define ENQUEUE_HEAD 2
1068 #ifdef CONFIG_SMP
1069 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1070 #else
1071 #define ENQUEUE_WAKING 0
1072 #endif
1074 #define DEQUEUE_SLEEP 1
1076 struct sched_class {
1077 const struct sched_class *next;
1079 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1080 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1081 void (*yield_task) (struct rq *rq);
1082 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1084 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1086 struct task_struct * (*pick_next_task) (struct rq *rq);
1087 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1089 #ifdef CONFIG_SMP
1090 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1091 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1093 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1094 void (*post_schedule) (struct rq *this_rq);
1095 void (*task_waking) (struct task_struct *task);
1096 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1098 void (*set_cpus_allowed)(struct task_struct *p,
1099 const struct cpumask *newmask);
1101 void (*rq_online)(struct rq *rq);
1102 void (*rq_offline)(struct rq *rq);
1103 #endif
1105 void (*set_curr_task) (struct rq *rq);
1106 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1107 void (*task_fork) (struct task_struct *p);
1109 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1110 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1111 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1112 int oldprio);
1114 unsigned int (*get_rr_interval) (struct rq *rq,
1115 struct task_struct *task);
1117 #ifdef CONFIG_FAIR_GROUP_SCHED
1118 void (*task_move_group) (struct task_struct *p, int on_rq);
1119 #endif
1120 };
1122 struct load_weight {
1123 unsigned long weight, inv_weight;
1124 };
1126 struct sched_avg {
1127 /*
1128 * These sums represent an infinite geometric series and so are bound
1129 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1130 * choices of y < 1-2^(-32)*1024.
1131 */
1132 u32 runnable_avg_sum, runnable_avg_period;
1133 u64 last_runnable_update;
1134 s64 decay_count;
1135 unsigned long load_avg_contrib;
1136 };
1138 #ifdef CONFIG_SCHEDSTATS
1139 struct sched_statistics {
1140 u64 wait_start;
1141 u64 wait_max;
1142 u64 wait_count;
1143 u64 wait_sum;
1144 u64 iowait_count;
1145 u64 iowait_sum;
1147 u64 sleep_start;
1148 u64 sleep_max;
1149 s64 sum_sleep_runtime;
1151 u64 block_start;
1152 u64 block_max;
1153 u64 exec_max;
1154 u64 slice_max;
1156 u64 nr_migrations_cold;
1157 u64 nr_failed_migrations_affine;
1158 u64 nr_failed_migrations_running;
1159 u64 nr_failed_migrations_hot;
1160 u64 nr_forced_migrations;
1162 u64 nr_wakeups;
1163 u64 nr_wakeups_sync;
1164 u64 nr_wakeups_migrate;
1165 u64 nr_wakeups_local;
1166 u64 nr_wakeups_remote;
1167 u64 nr_wakeups_affine;
1168 u64 nr_wakeups_affine_attempts;
1169 u64 nr_wakeups_passive;
1170 u64 nr_wakeups_idle;
1171 };
1172 #endif
1174 struct sched_entity {
1175 struct load_weight load; /* for load-balancing */
1176 struct rb_node run_node;
1177 struct list_head group_node;
1178 unsigned int on_rq;
1180 u64 exec_start;
1181 u64 sum_exec_runtime;
1182 u64 vruntime;
1183 u64 prev_sum_exec_runtime;
1185 u64 nr_migrations;
1187 #ifdef CONFIG_SCHEDSTATS
1188 struct sched_statistics statistics;
1189 #endif
1191 #ifdef CONFIG_FAIR_GROUP_SCHED
1192 struct sched_entity *parent;
1193 /* rq on which this entity is (to be) queued: */
1194 struct cfs_rq *cfs_rq;
1195 /* rq "owned" by this entity/group: */
1196 struct cfs_rq *my_q;
1197 #endif
1198 /*
1199 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1200 * removed when useful for applications beyond shares distribution (e.g.
1201 * load-balance).
1202 */
1203 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1204 /* Per-entity load-tracking */
1205 struct sched_avg avg;
1206 #endif
1207 };
1209 struct sched_rt_entity {
1210 struct list_head run_list;
1211 unsigned long timeout;
1212 unsigned int time_slice;
1214 struct sched_rt_entity *back;
1215 #ifdef CONFIG_RT_GROUP_SCHED
1216 struct sched_rt_entity *parent;
1217 /* rq on which this entity is (to be) queued: */
1218 struct rt_rq *rt_rq;
1219 /* rq "owned" by this entity/group: */
1220 struct rt_rq *my_q;
1221 #endif
1222 };
1224 /*
1225 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1226 * Timeslices get refilled after they expire.
1227 */
1228 #define RR_TIMESLICE (100 * HZ / 1000)
1230 struct rcu_node;
1232 enum perf_event_task_context {
1233 perf_invalid_context = -1,
1234 perf_hw_context = 0,
1235 perf_sw_context,
1236 perf_nr_task_contexts,
1237 };
1239 struct task_struct {
1240 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1241 void *stack;
1242 atomic_t usage;
1243 unsigned int flags; /* per process flags, defined below */
1244 unsigned int ptrace;
1246 #ifdef CONFIG_SMP
1247 struct llist_node wake_entry;
1248 int on_cpu;
1249 #endif
1250 int on_rq;
1252 int prio, static_prio, normal_prio;
1253 unsigned int rt_priority;
1254 const struct sched_class *sched_class;
1255 struct sched_entity se;
1256 struct sched_rt_entity rt;
1257 #ifdef CONFIG_CGROUP_SCHED
1258 struct task_group *sched_task_group;
1259 #endif
1261 #ifdef CONFIG_PREEMPT_NOTIFIERS
1262 /* list of struct preempt_notifier: */
1263 struct hlist_head preempt_notifiers;
1264 #endif
1266 /*
1267 * fpu_counter contains the number of consecutive context switches
1268 * that the FPU is used. If this is over a threshold, the lazy fpu
1269 * saving becomes unlazy to save the trap. This is an unsigned char
1270 * so that after 256 times the counter wraps and the behavior turns
1271 * lazy again; this to deal with bursty apps that only use FPU for
1272 * a short time
1273 */
1274 unsigned char fpu_counter;
1275 #ifdef CONFIG_BLK_DEV_IO_TRACE
1276 unsigned int btrace_seq;
1277 #endif
1279 unsigned int policy;
1280 int nr_cpus_allowed;
1281 cpumask_t cpus_allowed;
1283 #ifdef CONFIG_PREEMPT_RCU
1284 int rcu_read_lock_nesting;
1285 char rcu_read_unlock_special;
1286 struct list_head rcu_node_entry;
1287 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1288 #ifdef CONFIG_TREE_PREEMPT_RCU
1289 struct rcu_node *rcu_blocked_node;
1290 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1291 #ifdef CONFIG_RCU_BOOST
1292 struct rt_mutex *rcu_boost_mutex;
1293 #endif /* #ifdef CONFIG_RCU_BOOST */
1295 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1296 struct sched_info sched_info;
1297 #endif
1299 struct list_head tasks;
1300 #ifdef CONFIG_SMP
1301 struct plist_node pushable_tasks;
1302 #endif
1304 struct mm_struct *mm, *active_mm;
1305 #ifdef CONFIG_COMPAT_BRK
1306 unsigned brk_randomized:1;
1307 #endif
1308 #if defined(SPLIT_RSS_COUNTING)
1309 struct task_rss_stat rss_stat;
1310 #endif
1311 /* task state */
1312 int exit_state;
1313 int exit_code, exit_signal;
1314 int pdeath_signal; /* The signal sent when the parent dies */
1315 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1316 /* ??? */
1317 unsigned int personality;
1318 unsigned did_exec:1;
1319 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1320 * execve */
1321 unsigned in_iowait:1;
1323 /* task may not gain privileges */
1324 unsigned no_new_privs:1;
1326 /* Revert to default priority/policy when forking */
1327 unsigned sched_reset_on_fork:1;
1328 unsigned sched_contributes_to_load:1;
1330 pid_t pid;
1331 pid_t tgid;
1333 #ifdef CONFIG_CC_STACKPROTECTOR
1334 /* Canary value for the -fstack-protector gcc feature */
1335 unsigned long stack_canary;
1336 #endif
1337 /*
1338 * pointers to (original) parent process, youngest child, younger sibling,
1339 * older sibling, respectively. (p->father can be replaced with
1340 * p->real_parent->pid)
1341 */
1342 struct task_struct __rcu *real_parent; /* real parent process */
1343 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1344 /*
1345 * children/sibling forms the list of my natural children
1346 */
1347 struct list_head children; /* list of my children */
1348 struct list_head sibling; /* linkage in my parent's children list */
1349 struct task_struct *group_leader; /* threadgroup leader */
1351 /*
1352 * ptraced is the list of tasks this task is using ptrace on.
1353 * This includes both natural children and PTRACE_ATTACH targets.
1354 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1355 */
1356 struct list_head ptraced;
1357 struct list_head ptrace_entry;
1359 /* PID/PID hash table linkage. */
1360 struct pid_link pids[PIDTYPE_MAX];
1361 struct list_head thread_group;
1363 struct completion *vfork_done; /* for vfork() */
1364 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1365 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1367 cputime_t utime, stime, utimescaled, stimescaled;
1368 cputime_t gtime;
1369 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1370 struct cputime prev_cputime;
1371 #endif
1372 unsigned long nvcsw, nivcsw; /* context switch counts */
1373 struct timespec start_time; /* monotonic time */
1374 struct timespec real_start_time; /* boot based time */
1375 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1376 unsigned long min_flt, maj_flt;
1378 struct task_cputime cputime_expires;
1379 struct list_head cpu_timers[3];
1381 /* process credentials */
1382 const struct cred __rcu *real_cred; /* objective and real subjective task
1383 * credentials (COW) */
1384 const struct cred __rcu *cred; /* effective (overridable) subjective task
1385 * credentials (COW) */
1386 char comm[TASK_COMM_LEN]; /* executable name excluding path
1387 - access with [gs]et_task_comm (which lock
1388 it with task_lock())
1389 - initialized normally by setup_new_exec */
1390 /* file system info */
1391 int link_count, total_link_count;
1392 #ifdef CONFIG_SYSVIPC
1393 /* ipc stuff */
1394 struct sysv_sem sysvsem;
1395 #endif
1396 #ifdef CONFIG_DETECT_HUNG_TASK
1397 /* hung task detection */
1398 unsigned long last_switch_count;
1399 #endif
1400 /* CPU-specific state of this task */
1401 struct thread_struct thread;
1402 /* filesystem information */
1403 struct fs_struct *fs;
1404 /* open file information */
1405 struct files_struct *files;
1406 /* namespaces */
1407 struct nsproxy *nsproxy;
1408 /* signal handlers */
1409 struct signal_struct *signal;
1410 struct sighand_struct *sighand;
1412 sigset_t blocked, real_blocked;
1413 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1414 struct sigpending pending;
1416 unsigned long sas_ss_sp;
1417 size_t sas_ss_size;
1418 int (*notifier)(void *priv);
1419 void *notifier_data;
1420 sigset_t *notifier_mask;
1421 struct callback_head *task_works;
1423 struct audit_context *audit_context;
1424 #ifdef CONFIG_AUDITSYSCALL
1425 kuid_t loginuid;
1426 unsigned int sessionid;
1427 #endif
1428 struct seccomp seccomp;
1430 /* Thread group tracking */
1431 u32 parent_exec_id;
1432 u32 self_exec_id;
1433 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1434 * mempolicy */
1435 spinlock_t alloc_lock;
1437 /* Protection of the PI data structures: */
1438 raw_spinlock_t pi_lock;
1440 #ifdef CONFIG_RT_MUTEXES
1441 /* PI waiters blocked on a rt_mutex held by this task */
1442 struct plist_head pi_waiters;
1443 /* Deadlock detection and priority inheritance handling */
1444 struct rt_mutex_waiter *pi_blocked_on;
1445 #endif
1447 #ifdef CONFIG_DEBUG_MUTEXES
1448 /* mutex deadlock detection */
1449 struct mutex_waiter *blocked_on;
1450 #endif
1451 #ifdef CONFIG_TRACE_IRQFLAGS
1452 unsigned int irq_events;
1453 unsigned long hardirq_enable_ip;
1454 unsigned long hardirq_disable_ip;
1455 unsigned int hardirq_enable_event;
1456 unsigned int hardirq_disable_event;
1457 int hardirqs_enabled;
1458 int hardirq_context;
1459 unsigned long softirq_disable_ip;
1460 unsigned long softirq_enable_ip;
1461 unsigned int softirq_disable_event;
1462 unsigned int softirq_enable_event;
1463 int softirqs_enabled;
1464 int softirq_context;
1465 #endif
1466 #ifdef CONFIG_LOCKDEP
1467 # define MAX_LOCK_DEPTH 48UL
1468 u64 curr_chain_key;
1469 int lockdep_depth;
1470 unsigned int lockdep_recursion;
1471 struct held_lock held_locks[MAX_LOCK_DEPTH];
1472 gfp_t lockdep_reclaim_gfp;
1473 #endif
1475 /* journalling filesystem info */
1476 void *journal_info;
1478 /* stacked block device info */
1479 struct bio_list *bio_list;
1481 #ifdef CONFIG_BLOCK
1482 /* stack plugging */
1483 struct blk_plug *plug;
1484 #endif
1486 /* VM state */
1487 struct reclaim_state *reclaim_state;
1489 struct backing_dev_info *backing_dev_info;
1491 struct io_context *io_context;
1493 unsigned long ptrace_message;
1494 siginfo_t *last_siginfo; /* For ptrace use. */
1495 struct task_io_accounting ioac;
1496 #if defined(CONFIG_TASK_XACCT)
1497 u64 acct_rss_mem1; /* accumulated rss usage */
1498 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1499 cputime_t acct_timexpd; /* stime + utime since last update */
1500 #endif
1501 #ifdef CONFIG_CPUSETS
1502 nodemask_t mems_allowed; /* Protected by alloc_lock */
1503 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1504 int cpuset_mem_spread_rotor;
1505 int cpuset_slab_spread_rotor;
1506 #endif
1507 #ifdef CONFIG_CGROUPS
1508 /* Control Group info protected by css_set_lock */
1509 struct css_set __rcu *cgroups;
1510 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1511 struct list_head cg_list;
1512 #endif
1513 #ifdef CONFIG_FUTEX
1514 struct robust_list_head __user *robust_list;
1515 #ifdef CONFIG_COMPAT
1516 struct compat_robust_list_head __user *compat_robust_list;
1517 #endif
1518 struct list_head pi_state_list;
1519 struct futex_pi_state *pi_state_cache;
1520 #endif
1521 #ifdef CONFIG_PERF_EVENTS
1522 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1523 struct mutex perf_event_mutex;
1524 struct list_head perf_event_list;
1525 #endif
1526 #ifdef CONFIG_NUMA
1527 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1528 short il_next;
1529 short pref_node_fork;
1530 #endif
1531 #ifdef CONFIG_NUMA_BALANCING
1532 int numa_scan_seq;
1533 int numa_migrate_seq;
1534 unsigned int numa_scan_period;
1535 u64 node_stamp; /* migration stamp */
1536 struct callback_head numa_work;
1537 #endif /* CONFIG_NUMA_BALANCING */
1539 struct rcu_head rcu;
1541 /*
1542 * cache last used pipe for splice
1543 */
1544 struct pipe_inode_info *splice_pipe;
1546 struct page_frag task_frag;
1548 #ifdef CONFIG_TASK_DELAY_ACCT
1549 struct task_delay_info *delays;
1550 #endif
1551 #ifdef CONFIG_FAULT_INJECTION
1552 int make_it_fail;
1553 #endif
1554 /*
1555 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1556 * balance_dirty_pages() for some dirty throttling pause
1557 */
1558 int nr_dirtied;
1559 int nr_dirtied_pause;
1560 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1562 #ifdef CONFIG_LATENCYTOP
1563 int latency_record_count;
1564 struct latency_record latency_record[LT_SAVECOUNT];
1565 #endif
1566 /*
1567 * time slack values; these are used to round up poll() and
1568 * select() etc timeout values. These are in nanoseconds.
1569 */
1570 unsigned long timer_slack_ns;
1571 unsigned long default_timer_slack_ns;
1573 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1574 /* Index of current stored address in ret_stack */
1575 int curr_ret_stack;
1576 /* Stack of return addresses for return function tracing */
1577 struct ftrace_ret_stack *ret_stack;
1578 /* time stamp for last schedule */
1579 unsigned long long ftrace_timestamp;
1580 /*
1581 * Number of functions that haven't been traced
1582 * because of depth overrun.
1583 */
1584 atomic_t trace_overrun;
1585 /* Pause for the tracing */
1586 atomic_t tracing_graph_pause;
1587 #endif
1588 #ifdef CONFIG_TRACING
1589 /* state flags for use by tracers */
1590 unsigned long trace;
1591 /* bitmask and counter of trace recursion */
1592 unsigned long trace_recursion;
1593 #endif /* CONFIG_TRACING */
1594 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1595 struct memcg_batch_info {
1596 int do_batch; /* incremented when batch uncharge started */
1597 struct mem_cgroup *memcg; /* target memcg of uncharge */
1598 unsigned long nr_pages; /* uncharged usage */
1599 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1600 } memcg_batch;
1601 unsigned int memcg_kmem_skip_account;
1602 #endif
1603 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1604 atomic_t ptrace_bp_refcnt;
1605 #endif
1606 #ifdef CONFIG_UPROBES
1607 struct uprobe_task *utask;
1608 #endif
1609 };
1611 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1612 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1614 #ifdef CONFIG_NUMA_BALANCING
1615 extern void task_numa_fault(int node, int pages, bool migrated);
1616 extern void set_numabalancing_state(bool enabled);
1617 #else
1618 static inline void task_numa_fault(int node, int pages, bool migrated)
1619 {
1620 }
1621 static inline void set_numabalancing_state(bool enabled)
1622 {
1623 }
1624 #endif
1626 /*
1627 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1628 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1629 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1630 * values are inverted: lower p->prio value means higher priority.
1631 *
1632 * The MAX_USER_RT_PRIO value allows the actual maximum
1633 * RT priority to be separate from the value exported to
1634 * user-space. This allows kernel threads to set their
1635 * priority to a value higher than any user task. Note:
1636 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1637 */
1639 #define MAX_USER_RT_PRIO 100
1640 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1642 #define MAX_PRIO (MAX_RT_PRIO + 40)
1643 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1645 static inline int rt_prio(int prio)
1646 {
1647 if (unlikely(prio < MAX_RT_PRIO))
1648 return 1;
1649 return 0;
1650 }
1652 static inline int rt_task(struct task_struct *p)
1653 {
1654 return rt_prio(p->prio);
1655 }
1657 static inline struct pid *task_pid(struct task_struct *task)
1658 {
1659 return task->pids[PIDTYPE_PID].pid;
1660 }
1662 static inline struct pid *task_tgid(struct task_struct *task)
1663 {
1664 return task->group_leader->pids[PIDTYPE_PID].pid;
1665 }
1667 /*
1668 * Without tasklist or rcu lock it is not safe to dereference
1669 * the result of task_pgrp/task_session even if task == current,
1670 * we can race with another thread doing sys_setsid/sys_setpgid.
1671 */
1672 static inline struct pid *task_pgrp(struct task_struct *task)
1673 {
1674 return task->group_leader->pids[PIDTYPE_PGID].pid;
1675 }
1677 static inline struct pid *task_session(struct task_struct *task)
1678 {
1679 return task->group_leader->pids[PIDTYPE_SID].pid;
1680 }
1682 struct pid_namespace;
1684 /*
1685 * the helpers to get the task's different pids as they are seen
1686 * from various namespaces
1687 *
1688 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1689 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1690 * current.
1691 * task_xid_nr_ns() : id seen from the ns specified;
1692 *
1693 * set_task_vxid() : assigns a virtual id to a task;
1694 *
1695 * see also pid_nr() etc in include/linux/pid.h
1696 */
1697 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1698 struct pid_namespace *ns);
1700 static inline pid_t task_pid_nr(struct task_struct *tsk)
1701 {
1702 return tsk->pid;
1703 }
1705 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1706 struct pid_namespace *ns)
1707 {
1708 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1709 }
1711 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1712 {
1713 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1714 }
1717 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1718 {
1719 return tsk->tgid;
1720 }
1722 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1724 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1725 {
1726 return pid_vnr(task_tgid(tsk));
1727 }
1730 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1731 struct pid_namespace *ns)
1732 {
1733 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1734 }
1736 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1737 {
1738 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1739 }
1742 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1743 struct pid_namespace *ns)
1744 {
1745 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1746 }
1748 static inline pid_t task_session_vnr(struct task_struct *tsk)
1749 {
1750 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1751 }
1753 /* obsolete, do not use */
1754 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1755 {
1756 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1757 }
1759 /**
1760 * pid_alive - check that a task structure is not stale
1761 * @p: Task structure to be checked.
1762 *
1763 * Test if a process is not yet dead (at most zombie state)
1764 * If pid_alive fails, then pointers within the task structure
1765 * can be stale and must not be dereferenced.
1766 */
1767 static inline int pid_alive(struct task_struct *p)
1768 {
1769 return p->pids[PIDTYPE_PID].pid != NULL;
1770 }
1772 /**
1773 * is_global_init - check if a task structure is init
1774 * @tsk: Task structure to be checked.
1775 *
1776 * Check if a task structure is the first user space task the kernel created.
1777 */
1778 static inline int is_global_init(struct task_struct *tsk)
1779 {
1780 return tsk->pid == 1;
1781 }
1783 extern struct pid *cad_pid;
1785 extern void free_task(struct task_struct *tsk);
1786 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1788 extern void __put_task_struct(struct task_struct *t);
1790 static inline void put_task_struct(struct task_struct *t)
1791 {
1792 if (atomic_dec_and_test(&t->usage))
1793 __put_task_struct(t);
1794 }
1796 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1797 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1799 extern int task_free_register(struct notifier_block *n);
1800 extern int task_free_unregister(struct notifier_block *n);
1802 /*
1803 * Per process flags
1804 */
1805 #define PF_EXITING 0x00000004 /* getting shut down */
1806 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1807 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1808 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1809 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1810 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1811 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1812 #define PF_DUMPCORE 0x00000200 /* dumped core */
1813 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1814 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1815 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1816 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1817 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1818 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1819 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1820 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1821 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1822 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1823 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1824 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1825 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1826 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1827 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1828 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1829 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1830 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1831 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1832 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1834 /*
1835 * Only the _current_ task can read/write to tsk->flags, but other
1836 * tasks can access tsk->flags in readonly mode for example
1837 * with tsk_used_math (like during threaded core dumping).
1838 * There is however an exception to this rule during ptrace
1839 * or during fork: the ptracer task is allowed to write to the
1840 * child->flags of its traced child (same goes for fork, the parent
1841 * can write to the child->flags), because we're guaranteed the
1842 * child is not running and in turn not changing child->flags
1843 * at the same time the parent does it.
1844 */
1845 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1846 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1847 #define clear_used_math() clear_stopped_child_used_math(current)
1848 #define set_used_math() set_stopped_child_used_math(current)
1849 #define conditional_stopped_child_used_math(condition, child) \
1850 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1851 #define conditional_used_math(condition) \
1852 conditional_stopped_child_used_math(condition, current)
1853 #define copy_to_stopped_child_used_math(child) \
1854 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1855 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1856 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1857 #define used_math() tsk_used_math(current)
1859 /*
1860 * task->jobctl flags
1861 */
1862 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1864 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1865 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1866 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1867 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1868 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1869 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1870 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1872 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1873 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1874 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1875 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1876 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1877 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1878 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1880 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1881 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1883 extern bool task_set_jobctl_pending(struct task_struct *task,
1884 unsigned int mask);
1885 extern void task_clear_jobctl_trapping(struct task_struct *task);
1886 extern void task_clear_jobctl_pending(struct task_struct *task,
1887 unsigned int mask);
1889 #ifdef CONFIG_PREEMPT_RCU
1891 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1892 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1894 static inline void rcu_copy_process(struct task_struct *p)
1895 {
1896 p->rcu_read_lock_nesting = 0;
1897 p->rcu_read_unlock_special = 0;
1898 #ifdef CONFIG_TREE_PREEMPT_RCU
1899 p->rcu_blocked_node = NULL;
1900 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1901 #ifdef CONFIG_RCU_BOOST
1902 p->rcu_boost_mutex = NULL;
1903 #endif /* #ifdef CONFIG_RCU_BOOST */
1904 INIT_LIST_HEAD(&p->rcu_node_entry);
1905 }
1907 #else
1909 static inline void rcu_copy_process(struct task_struct *p)
1910 {
1911 }
1913 #endif
1915 static inline void tsk_restore_flags(struct task_struct *task,
1916 unsigned long orig_flags, unsigned long flags)
1917 {
1918 task->flags &= ~flags;
1919 task->flags |= orig_flags & flags;
1920 }
1922 #ifdef CONFIG_SMP
1923 extern void do_set_cpus_allowed(struct task_struct *p,
1924 const struct cpumask *new_mask);
1926 extern int set_cpus_allowed_ptr(struct task_struct *p,
1927 const struct cpumask *new_mask);
1928 #else
1929 static inline void do_set_cpus_allowed(struct task_struct *p,
1930 const struct cpumask *new_mask)
1931 {
1932 }
1933 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1934 const struct cpumask *new_mask)
1935 {
1936 if (!cpumask_test_cpu(0, new_mask))
1937 return -EINVAL;
1938 return 0;
1939 }
1940 #endif
1942 #ifdef CONFIG_NO_HZ
1943 void calc_load_enter_idle(void);
1944 void calc_load_exit_idle(void);
1945 #else
1946 static inline void calc_load_enter_idle(void) { }
1947 static inline void calc_load_exit_idle(void) { }
1948 #endif /* CONFIG_NO_HZ */
1950 #ifndef CONFIG_CPUMASK_OFFSTACK
1951 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1952 {
1953 return set_cpus_allowed_ptr(p, &new_mask);
1954 }
1955 #endif
1957 /*
1958 * Do not use outside of architecture code which knows its limitations.
1959 *
1960 * sched_clock() has no promise of monotonicity or bounded drift between
1961 * CPUs, use (which you should not) requires disabling IRQs.
1962 *
1963 * Please use one of the three interfaces below.
1964 */
1965 extern unsigned long long notrace sched_clock(void);
1966 /*
1967 * See the comment in kernel/sched/clock.c
1968 */
1969 extern u64 cpu_clock(int cpu);
1970 extern u64 local_clock(void);
1971 extern u64 sched_clock_cpu(int cpu);
1974 extern void sched_clock_init(void);
1976 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1977 static inline void sched_clock_tick(void)
1978 {
1979 }
1981 static inline void sched_clock_idle_sleep_event(void)
1982 {
1983 }
1985 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1986 {
1987 }
1988 #else
1989 /*
1990 * Architectures can set this to 1 if they have specified
1991 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1992 * but then during bootup it turns out that sched_clock()
1993 * is reliable after all:
1994 */
1995 extern int sched_clock_stable;
1997 extern void sched_clock_tick(void);
1998 extern void sched_clock_idle_sleep_event(void);
1999 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2000 #endif
2002 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2003 /*
2004 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2005 * The reason for this explicit opt-in is not to have perf penalty with
2006 * slow sched_clocks.
2007 */
2008 extern void enable_sched_clock_irqtime(void);
2009 extern void disable_sched_clock_irqtime(void);
2010 #else
2011 static inline void enable_sched_clock_irqtime(void) {}
2012 static inline void disable_sched_clock_irqtime(void) {}
2013 #endif
2015 extern unsigned long long
2016 task_sched_runtime(struct task_struct *task);
2018 /* sched_exec is called by processes performing an exec */
2019 #ifdef CONFIG_SMP
2020 extern void sched_exec(void);
2021 #else
2022 #define sched_exec() {}
2023 #endif
2025 extern void sched_clock_idle_sleep_event(void);
2026 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2028 #ifdef CONFIG_HOTPLUG_CPU
2029 extern void idle_task_exit(void);
2030 #else
2031 static inline void idle_task_exit(void) {}
2032 #endif
2034 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2035 extern void wake_up_idle_cpu(int cpu);
2036 #else
2037 static inline void wake_up_idle_cpu(int cpu) { }
2038 #endif
2040 extern unsigned int sysctl_sched_latency;
2041 extern unsigned int sysctl_sched_min_granularity;
2042 extern unsigned int sysctl_sched_wakeup_granularity;
2043 extern unsigned int sysctl_sched_child_runs_first;
2045 enum sched_tunable_scaling {
2046 SCHED_TUNABLESCALING_NONE,
2047 SCHED_TUNABLESCALING_LOG,
2048 SCHED_TUNABLESCALING_LINEAR,
2049 SCHED_TUNABLESCALING_END,
2050 };
2051 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2053 extern unsigned int sysctl_numa_balancing_scan_delay;
2054 extern unsigned int sysctl_numa_balancing_scan_period_min;
2055 extern unsigned int sysctl_numa_balancing_scan_period_max;
2056 extern unsigned int sysctl_numa_balancing_scan_period_reset;
2057 extern unsigned int sysctl_numa_balancing_scan_size;
2058 extern unsigned int sysctl_numa_balancing_settle_count;
2060 #ifdef CONFIG_SCHED_DEBUG
2061 extern unsigned int sysctl_sched_migration_cost;
2062 extern unsigned int sysctl_sched_nr_migrate;
2063 extern unsigned int sysctl_sched_time_avg;
2064 extern unsigned int sysctl_timer_migration;
2065 extern unsigned int sysctl_sched_shares_window;
2067 int sched_proc_update_handler(struct ctl_table *table, int write,
2068 void __user *buffer, size_t *length,
2069 loff_t *ppos);
2070 #endif
2071 #ifdef CONFIG_SCHED_DEBUG
2072 static inline unsigned int get_sysctl_timer_migration(void)
2073 {
2074 return sysctl_timer_migration;
2075 }
2076 #else
2077 static inline unsigned int get_sysctl_timer_migration(void)
2078 {
2079 return 1;
2080 }
2081 #endif
2082 extern unsigned int sysctl_sched_rt_period;
2083 extern int sysctl_sched_rt_runtime;
2085 int sched_rt_handler(struct ctl_table *table, int write,
2086 void __user *buffer, size_t *lenp,
2087 loff_t *ppos);
2089 #ifdef CONFIG_SCHED_AUTOGROUP
2090 extern unsigned int sysctl_sched_autogroup_enabled;
2092 extern void sched_autogroup_create_attach(struct task_struct *p);
2093 extern void sched_autogroup_detach(struct task_struct *p);
2094 extern void sched_autogroup_fork(struct signal_struct *sig);
2095 extern void sched_autogroup_exit(struct signal_struct *sig);
2096 #ifdef CONFIG_PROC_FS
2097 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2098 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2099 #endif
2100 #else
2101 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2102 static inline void sched_autogroup_detach(struct task_struct *p) { }
2103 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2104 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2105 #endif
2107 #ifdef CONFIG_CFS_BANDWIDTH
2108 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2109 #endif
2111 #ifdef CONFIG_RT_MUTEXES
2112 extern int rt_mutex_getprio(struct task_struct *p);
2113 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2114 extern void rt_mutex_adjust_pi(struct task_struct *p);
2115 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2116 {
2117 return tsk->pi_blocked_on != NULL;
2118 }
2119 #else
2120 static inline int rt_mutex_getprio(struct task_struct *p)
2121 {
2122 return p->normal_prio;
2123 }
2124 # define rt_mutex_adjust_pi(p) do { } while (0)
2125 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2126 {
2127 return false;
2128 }
2129 #endif
2131 extern bool yield_to(struct task_struct *p, bool preempt);
2132 extern void set_user_nice(struct task_struct *p, long nice);
2133 extern int task_prio(const struct task_struct *p);
2134 extern int task_nice(const struct task_struct *p);
2135 extern int can_nice(const struct task_struct *p, const int nice);
2136 extern int task_curr(const struct task_struct *p);
2137 extern int idle_cpu(int cpu);
2138 extern int sched_setscheduler(struct task_struct *, int,
2139 const struct sched_param *);
2140 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2141 const struct sched_param *);
2142 extern struct task_struct *idle_task(int cpu);
2143 /**
2144 * is_idle_task - is the specified task an idle task?
2145 * @p: the task in question.
2146 */
2147 static inline bool is_idle_task(const struct task_struct *p)
2148 {
2149 return p->pid == 0;
2150 }
2151 extern struct task_struct *curr_task(int cpu);
2152 extern void set_curr_task(int cpu, struct task_struct *p);
2154 void yield(void);
2156 /*
2157 * The default (Linux) execution domain.
2158 */
2159 extern struct exec_domain default_exec_domain;
2161 union thread_union {
2162 struct thread_info thread_info;
2163 unsigned long stack[THREAD_SIZE/sizeof(long)];
2164 };
2166 #ifndef __HAVE_ARCH_KSTACK_END
2167 static inline int kstack_end(void *addr)
2168 {
2169 /* Reliable end of stack detection:
2170 * Some APM bios versions misalign the stack
2171 */
2172 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2173 }
2174 #endif
2176 extern union thread_union init_thread_union;
2177 extern struct task_struct init_task;
2179 extern struct mm_struct init_mm;
2181 extern struct pid_namespace init_pid_ns;
2183 /*
2184 * find a task by one of its numerical ids
2185 *
2186 * find_task_by_pid_ns():
2187 * finds a task by its pid in the specified namespace
2188 * find_task_by_vpid():
2189 * finds a task by its virtual pid
2190 *
2191 * see also find_vpid() etc in include/linux/pid.h
2192 */
2194 extern struct task_struct *find_task_by_vpid(pid_t nr);
2195 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2196 struct pid_namespace *ns);
2198 extern void __set_special_pids(struct pid *pid);
2200 /* per-UID process charging. */
2201 extern struct user_struct * alloc_uid(kuid_t);
2202 static inline struct user_struct *get_uid(struct user_struct *u)
2203 {
2204 atomic_inc(&u->__count);
2205 return u;
2206 }
2207 extern void free_uid(struct user_struct *);
2209 #include <asm/current.h>
2211 extern void xtime_update(unsigned long ticks);
2213 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2214 extern int wake_up_process(struct task_struct *tsk);
2215 extern void wake_up_new_task(struct task_struct *tsk);
2216 #ifdef CONFIG_SMP
2217 extern void kick_process(struct task_struct *tsk);
2218 #else
2219 static inline void kick_process(struct task_struct *tsk) { }
2220 #endif
2221 extern void sched_fork(struct task_struct *p);
2222 extern void sched_dead(struct task_struct *p);
2224 extern void proc_caches_init(void);
2225 extern void flush_signals(struct task_struct *);
2226 extern void __flush_signals(struct task_struct *);
2227 extern void ignore_signals(struct task_struct *);
2228 extern void flush_signal_handlers(struct task_struct *, int force_default);
2229 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2231 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2232 {
2233 unsigned long flags;
2234 int ret;
2236 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2237 ret = dequeue_signal(tsk, mask, info);
2238 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2240 return ret;
2241 }
2243 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2244 sigset_t *mask);
2245 extern void unblock_all_signals(void);
2246 extern void release_task(struct task_struct * p);
2247 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2248 extern int force_sigsegv(int, struct task_struct *);
2249 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2250 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2251 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2252 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2253 const struct cred *, u32);
2254 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2255 extern int kill_pid(struct pid *pid, int sig, int priv);
2256 extern int kill_proc_info(int, struct siginfo *, pid_t);
2257 extern __must_check bool do_notify_parent(struct task_struct *, int);
2258 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2259 extern void force_sig(int, struct task_struct *);
2260 extern int send_sig(int, struct task_struct *, int);
2261 extern int zap_other_threads(struct task_struct *p);
2262 extern struct sigqueue *sigqueue_alloc(void);
2263 extern void sigqueue_free(struct sigqueue *);
2264 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2265 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2266 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2268 static inline void restore_saved_sigmask(void)
2269 {
2270 if (test_and_clear_restore_sigmask())
2271 __set_current_blocked(¤t->saved_sigmask);
2272 }
2274 static inline sigset_t *sigmask_to_save(void)
2275 {
2276 sigset_t *res = ¤t->blocked;
2277 if (unlikely(test_restore_sigmask()))
2278 res = ¤t->saved_sigmask;
2279 return res;
2280 }
2282 static inline int kill_cad_pid(int sig, int priv)
2283 {
2284 return kill_pid(cad_pid, sig, priv);
2285 }
2287 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2288 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2289 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2290 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2292 /*
2293 * True if we are on the alternate signal stack.
2294 */
2295 static inline int on_sig_stack(unsigned long sp)
2296 {
2297 #ifdef CONFIG_STACK_GROWSUP
2298 return sp >= current->sas_ss_sp &&
2299 sp - current->sas_ss_sp < current->sas_ss_size;
2300 #else
2301 return sp > current->sas_ss_sp &&
2302 sp - current->sas_ss_sp <= current->sas_ss_size;
2303 #endif
2304 }
2306 static inline int sas_ss_flags(unsigned long sp)
2307 {
2308 return (current->sas_ss_size == 0 ? SS_DISABLE
2309 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2310 }
2312 /*
2313 * Routines for handling mm_structs
2314 */
2315 extern struct mm_struct * mm_alloc(void);
2317 /* mmdrop drops the mm and the page tables */
2318 extern void __mmdrop(struct mm_struct *);
2319 static inline void mmdrop(struct mm_struct * mm)
2320 {
2321 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2322 __mmdrop(mm);
2323 }
2325 /* mmput gets rid of the mappings and all user-space */
2326 extern void mmput(struct mm_struct *);
2327 /* Grab a reference to a task's mm, if it is not already going away */
2328 extern struct mm_struct *get_task_mm(struct task_struct *task);
2329 /*
2330 * Grab a reference to a task's mm, if it is not already going away
2331 * and ptrace_may_access with the mode parameter passed to it
2332 * succeeds.
2333 */
2334 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2335 /* Remove the current tasks stale references to the old mm_struct */
2336 extern void mm_release(struct task_struct *, struct mm_struct *);
2337 /* Allocate a new mm structure and copy contents from tsk->mm */
2338 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2340 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2341 struct task_struct *);
2342 extern void flush_thread(void);
2343 extern void exit_thread(void);
2345 extern void exit_files(struct task_struct *);
2346 extern void __cleanup_sighand(struct sighand_struct *);
2348 extern void exit_itimers(struct signal_struct *);
2349 extern void flush_itimer_signals(void);
2351 extern void do_group_exit(int);
2353 extern int allow_signal(int);
2354 extern int disallow_signal(int);
2356 extern int do_execve(const char *,
2357 const char __user * const __user *,
2358 const char __user * const __user *);
2359 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2360 struct task_struct *fork_idle(int);
2361 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2363 extern void set_task_comm(struct task_struct *tsk, char *from);
2364 extern char *get_task_comm(char *to, struct task_struct *tsk);
2366 #ifdef CONFIG_SMP
2367 void scheduler_ipi(void);
2368 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2369 #else
2370 static inline void scheduler_ipi(void) { }
2371 static inline unsigned long wait_task_inactive(struct task_struct *p,
2372 long match_state)
2373 {
2374 return 1;
2375 }
2376 #endif
2378 #define next_task(p) \
2379 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2381 #define for_each_process(p) \
2382 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2384 extern bool current_is_single_threaded(void);
2386 /*
2387 * Careful: do_each_thread/while_each_thread is a double loop so
2388 * 'break' will not work as expected - use goto instead.
2389 */
2390 #define do_each_thread(g, t) \
2391 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2393 #define while_each_thread(g, t) \
2394 while ((t = next_thread(t)) != g)
2396 static inline int get_nr_threads(struct task_struct *tsk)
2397 {
2398 return tsk->signal->nr_threads;
2399 }
2401 static inline bool thread_group_leader(struct task_struct *p)
2402 {
2403 return p->exit_signal >= 0;
2404 }
2406 /* Do to the insanities of de_thread it is possible for a process
2407 * to have the pid of the thread group leader without actually being
2408 * the thread group leader. For iteration through the pids in proc
2409 * all we care about is that we have a task with the appropriate
2410 * pid, we don't actually care if we have the right task.
2411 */
2412 static inline int has_group_leader_pid(struct task_struct *p)
2413 {
2414 return p->pid == p->tgid;
2415 }
2417 static inline
2418 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2419 {
2420 return p1->tgid == p2->tgid;
2421 }
2423 static inline struct task_struct *next_thread(const struct task_struct *p)
2424 {
2425 return list_entry_rcu(p->thread_group.next,
2426 struct task_struct, thread_group);
2427 }
2429 static inline int thread_group_empty(struct task_struct *p)
2430 {
2431 return list_empty(&p->thread_group);
2432 }
2434 #define delay_group_leader(p) \
2435 (thread_group_leader(p) && !thread_group_empty(p))
2437 /*
2438 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2439 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2440 * pins the final release of task.io_context. Also protects ->cpuset and
2441 * ->cgroup.subsys[]. And ->vfork_done.
2442 *
2443 * Nests both inside and outside of read_lock(&tasklist_lock).
2444 * It must not be nested with write_lock_irq(&tasklist_lock),
2445 * neither inside nor outside.
2446 */
2447 static inline void task_lock(struct task_struct *p)
2448 {
2449 spin_lock(&p->alloc_lock);
2450 }
2452 static inline void task_unlock(struct task_struct *p)
2453 {
2454 spin_unlock(&p->alloc_lock);
2455 }
2457 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2458 unsigned long *flags);
2460 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2461 unsigned long *flags)
2462 {
2463 struct sighand_struct *ret;
2465 ret = __lock_task_sighand(tsk, flags);
2466 (void)__cond_lock(&tsk->sighand->siglock, ret);
2467 return ret;
2468 }
2470 static inline void unlock_task_sighand(struct task_struct *tsk,
2471 unsigned long *flags)
2472 {
2473 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2474 }
2476 #ifdef CONFIG_CGROUPS
2477 static inline void threadgroup_change_begin(struct task_struct *tsk)
2478 {
2479 down_read(&tsk->signal->group_rwsem);
2480 }
2481 static inline void threadgroup_change_end(struct task_struct *tsk)
2482 {
2483 up_read(&tsk->signal->group_rwsem);
2484 }
2486 /**
2487 * threadgroup_lock - lock threadgroup
2488 * @tsk: member task of the threadgroup to lock
2489 *
2490 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2491 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2492 * change ->group_leader/pid. This is useful for cases where the threadgroup
2493 * needs to stay stable across blockable operations.
2494 *
2495 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2496 * synchronization. While held, no new task will be added to threadgroup
2497 * and no existing live task will have its PF_EXITING set.
2498 *
2499 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2500 * sub-thread becomes a new leader.
2501 */
2502 static inline void threadgroup_lock(struct task_struct *tsk)
2503 {
2504 down_write(&tsk->signal->group_rwsem);
2505 }
2507 /**
2508 * threadgroup_unlock - unlock threadgroup
2509 * @tsk: member task of the threadgroup to unlock
2510 *
2511 * Reverse threadgroup_lock().
2512 */
2513 static inline void threadgroup_unlock(struct task_struct *tsk)
2514 {
2515 up_write(&tsk->signal->group_rwsem);
2516 }
2517 #else
2518 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2519 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2520 static inline void threadgroup_lock(struct task_struct *tsk) {}
2521 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2522 #endif
2524 #ifndef __HAVE_THREAD_FUNCTIONS
2526 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2527 #define task_stack_page(task) ((task)->stack)
2529 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2530 {
2531 *task_thread_info(p) = *task_thread_info(org);
2532 task_thread_info(p)->task = p;
2533 }
2535 static inline unsigned long *end_of_stack(struct task_struct *p)
2536 {
2537 return (unsigned long *)(task_thread_info(p) + 1);
2538 }
2540 #endif
2542 static inline int object_is_on_stack(void *obj)
2543 {
2544 void *stack = task_stack_page(current);
2546 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2547 }
2549 extern void thread_info_cache_init(void);
2551 #ifdef CONFIG_DEBUG_STACK_USAGE
2552 static inline unsigned long stack_not_used(struct task_struct *p)
2553 {
2554 unsigned long *n = end_of_stack(p);
2556 do { /* Skip over canary */
2557 n++;
2558 } while (!*n);
2560 return (unsigned long)n - (unsigned long)end_of_stack(p);
2561 }
2562 #endif
2564 /* set thread flags in other task's structures
2565 * - see asm/thread_info.h for TIF_xxxx flags available
2566 */
2567 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2568 {
2569 set_ti_thread_flag(task_thread_info(tsk), flag);
2570 }
2572 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2573 {
2574 clear_ti_thread_flag(task_thread_info(tsk), flag);
2575 }
2577 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2578 {
2579 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2580 }
2582 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2583 {
2584 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2585 }
2587 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2588 {
2589 return test_ti_thread_flag(task_thread_info(tsk), flag);
2590 }
2592 static inline void set_tsk_need_resched(struct task_struct *tsk)
2593 {
2594 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2595 }
2597 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2598 {
2599 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2600 }
2602 static inline int test_tsk_need_resched(struct task_struct *tsk)
2603 {
2604 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2605 }
2607 static inline int restart_syscall(void)
2608 {
2609 set_tsk_thread_flag(current, TIF_SIGPENDING);
2610 return -ERESTARTNOINTR;
2611 }
2613 static inline int signal_pending(struct task_struct *p)
2614 {
2615 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2616 }
2618 static inline int __fatal_signal_pending(struct task_struct *p)
2619 {
2620 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2621 }
2623 static inline int fatal_signal_pending(struct task_struct *p)
2624 {
2625 return signal_pending(p) && __fatal_signal_pending(p);
2626 }
2628 static inline int signal_pending_state(long state, struct task_struct *p)
2629 {
2630 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2631 return 0;
2632 if (!signal_pending(p))
2633 return 0;
2635 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2636 }
2638 static inline int need_resched(void)
2639 {
2640 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2641 }
2643 /*
2644 * cond_resched() and cond_resched_lock(): latency reduction via
2645 * explicit rescheduling in places that are safe. The return
2646 * value indicates whether a reschedule was done in fact.
2647 * cond_resched_lock() will drop the spinlock before scheduling,
2648 * cond_resched_softirq() will enable bhs before scheduling.
2649 */
2650 extern int _cond_resched(void);
2652 #define cond_resched() ({ \
2653 __might_sleep(__FILE__, __LINE__, 0); \
2654 _cond_resched(); \
2655 })
2657 extern int __cond_resched_lock(spinlock_t *lock);
2659 #ifdef CONFIG_PREEMPT_COUNT
2660 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2661 #else
2662 #define PREEMPT_LOCK_OFFSET 0
2663 #endif
2665 #define cond_resched_lock(lock) ({ \
2666 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2667 __cond_resched_lock(lock); \
2668 })
2670 extern int __cond_resched_softirq(void);
2672 #define cond_resched_softirq() ({ \
2673 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2674 __cond_resched_softirq(); \
2675 })
2677 /*
2678 * Does a critical section need to be broken due to another
2679 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2680 * but a general need for low latency)
2681 */
2682 static inline int spin_needbreak(spinlock_t *lock)
2683 {
2684 #ifdef CONFIG_PREEMPT
2685 return spin_is_contended(lock);
2686 #else
2687 return 0;
2688 #endif
2689 }
2691 /*
2692 * Thread group CPU time accounting.
2693 */
2694 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2695 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2697 static inline void thread_group_cputime_init(struct signal_struct *sig)
2698 {
2699 raw_spin_lock_init(&sig->cputimer.lock);
2700 }
2702 /*
2703 * Reevaluate whether the task has signals pending delivery.
2704 * Wake the task if so.
2705 * This is required every time the blocked sigset_t changes.
2706 * callers must hold sighand->siglock.
2707 */
2708 extern void recalc_sigpending_and_wake(struct task_struct *t);
2709 extern void recalc_sigpending(void);
2711 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2713 static inline void signal_wake_up(struct task_struct *t, bool resume)
2714 {
2715 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2716 }
2717 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2718 {
2719 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2720 }
2722 /*
2723 * Wrappers for p->thread_info->cpu access. No-op on UP.
2724 */
2725 #ifdef CONFIG_SMP
2727 static inline unsigned int task_cpu(const struct task_struct *p)
2728 {
2729 return task_thread_info(p)->cpu;
2730 }
2732 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2734 #else
2736 static inline unsigned int task_cpu(const struct task_struct *p)
2737 {
2738 return 0;
2739 }
2741 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2742 {
2743 }
2745 #endif /* CONFIG_SMP */
2747 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2748 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2750 extern void normalize_rt_tasks(void);
2752 #ifdef CONFIG_CGROUP_SCHED
2754 extern struct task_group root_task_group;
2756 extern struct task_group *sched_create_group(struct task_group *parent);
2757 extern void sched_destroy_group(struct task_group *tg);
2758 extern void sched_move_task(struct task_struct *tsk);
2759 #ifdef CONFIG_FAIR_GROUP_SCHED
2760 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2761 extern unsigned long sched_group_shares(struct task_group *tg);
2762 #endif
2763 #ifdef CONFIG_RT_GROUP_SCHED
2764 extern int sched_group_set_rt_runtime(struct task_group *tg,
2765 long rt_runtime_us);
2766 extern long sched_group_rt_runtime(struct task_group *tg);
2767 extern int sched_group_set_rt_period(struct task_group *tg,
2768 long rt_period_us);
2769 extern long sched_group_rt_period(struct task_group *tg);
2770 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2771 #endif
2772 #endif /* CONFIG_CGROUP_SCHED */
2774 extern int task_can_switch_user(struct user_struct *up,
2775 struct task_struct *tsk);
2777 #ifdef CONFIG_TASK_XACCT
2778 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2779 {
2780 tsk->ioac.rchar += amt;
2781 }
2783 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2784 {
2785 tsk->ioac.wchar += amt;
2786 }
2788 static inline void inc_syscr(struct task_struct *tsk)
2789 {
2790 tsk->ioac.syscr++;
2791 }
2793 static inline void inc_syscw(struct task_struct *tsk)
2794 {
2795 tsk->ioac.syscw++;
2796 }
2797 #else
2798 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2799 {
2800 }
2802 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2803 {
2804 }
2806 static inline void inc_syscr(struct task_struct *tsk)
2807 {
2808 }
2810 static inline void inc_syscw(struct task_struct *tsk)
2811 {
2812 }
2813 #endif
2815 #ifndef TASK_SIZE_OF
2816 #define TASK_SIZE_OF(tsk) TASK_SIZE
2817 #endif
2819 #ifdef CONFIG_MM_OWNER
2820 extern void mm_update_next_owner(struct mm_struct *mm);
2821 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2822 #else
2823 static inline void mm_update_next_owner(struct mm_struct *mm)
2824 {
2825 }
2827 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2828 {
2829 }
2830 #endif /* CONFIG_MM_OWNER */
2832 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2833 unsigned int limit)
2834 {
2835 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2836 }
2838 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2839 unsigned int limit)
2840 {
2841 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2842 }
2844 static inline unsigned long rlimit(unsigned int limit)
2845 {
2846 return task_rlimit(current, limit);
2847 }
2849 static inline unsigned long rlimit_max(unsigned int limit)
2850 {
2851 return task_rlimit_max(current, limit);
2852 }
2854 #endif