1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
85 #include "sched.h"
86 #include "../workqueue_sched.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
121 if (rq->skip_clock_update > 0)
122 return;
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
129 /*
130 * Debugging: various feature bits
131 */
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
140 #undef SCHED_FEAT
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
150 #undef SCHED_FEAT
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
163 return 0;
164 }
166 #ifdef HAVE_JUMP_LABEL
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
178 #undef SCHED_FEAT
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
219 return i;
220 }
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
230 if (cnt > 63)
231 cnt = 63;
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
243 *ppos += cnt;
245 return cnt;
246 }
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
291 __read_mostly int scheduler_running;
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
309 lockdep_assert_held(&p->pi_lock);
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
367 return rq;
368 }
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
403 return HRTIMER_NORESTART;
404 }
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 hrtimer_set_expires(timer, time);
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
456 return NOTIFY_DONE;
457 }
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
524 assert_raw_spin_locked(&task_rq(p)->lock);
526 if (test_tsk_need_resched(p))
527 return;
529 set_tsk_need_resched(p);
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
594 if (cpu == smp_processor_id())
595 return;
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
626 #else /* CONFIG_NO_HZ */
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
633 #endif /* CONFIG_NO_HZ */
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
673 parent = from;
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
741 enqueue_task(rq, p, flags);
742 }
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
749 dequeue_task(rq, p, flags);
750 }
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((¶virt_steal_rq_enabled))) {
787 u64 st;
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
792 if (unlikely(steal > delta))
793 steal = delta;
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
798 rq->prev_steal_time_rq += steal;
800 delta -= steal;
801 }
802 #endif
804 rq->clock_task += delta;
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
828 stop->sched_class = &stop_sched_class;
829 }
831 cpu_rq(cpu)->stop = stop;
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
968 trace_sched_migrate_task(p, new_cpu);
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
985 __set_task_cpu(p, new_cpu);
986 }
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
993 static int migration_cpu_stop(void *data);
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1100 return ncsw;
1101 }
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 enum { cpuset, possible, fail } state = cpuset;
1137 int dest_cpu;
1139 /* Look for allowed, online CPU in same node. */
1140 for_each_cpu(dest_cpu, nodemask) {
1141 if (!cpu_online(dest_cpu))
1142 continue;
1143 if (!cpu_active(dest_cpu))
1144 continue;
1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146 return dest_cpu;
1147 }
1149 for (;;) {
1150 /* Any allowed, online CPU? */
1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 if (!cpu_online(dest_cpu))
1153 continue;
1154 if (!cpu_active(dest_cpu))
1155 continue;
1156 goto out;
1157 }
1159 switch (state) {
1160 case cpuset:
1161 /* No more Mr. Nice Guy. */
1162 cpuset_cpus_allowed_fallback(p);
1163 state = possible;
1164 break;
1166 case possible:
1167 do_set_cpus_allowed(p, cpu_possible_mask);
1168 state = fail;
1169 break;
1171 case fail:
1172 BUG();
1173 break;
1174 }
1175 }
1177 out:
1178 if (state != cpuset) {
1179 /*
1180 * Don't tell them about moving exiting tasks or
1181 * kernel threads (both mm NULL), since they never
1182 * leave kernel.
1183 */
1184 if (p->mm && printk_ratelimit()) {
1185 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 task_pid_nr(p), p->comm, cpu);
1187 }
1188 }
1190 return dest_cpu;
1191 }
1193 /*
1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195 */
1196 static inline
1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198 {
1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1201 /*
1202 * In order not to call set_task_cpu() on a blocking task we need
1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 * cpu.
1205 *
1206 * Since this is common to all placement strategies, this lives here.
1207 *
1208 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 * not worry about this generic constraint ]
1210 */
1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212 !cpu_online(cpu)))
1213 cpu = select_fallback_rq(task_cpu(p), p);
1215 return cpu;
1216 }
1218 static void update_avg(u64 *avg, u64 sample)
1219 {
1220 s64 diff = sample - *avg;
1221 *avg += diff >> 3;
1222 }
1223 #endif
1225 static void
1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227 {
1228 #ifdef CONFIG_SCHEDSTATS
1229 struct rq *rq = this_rq();
1231 #ifdef CONFIG_SMP
1232 int this_cpu = smp_processor_id();
1234 if (cpu == this_cpu) {
1235 schedstat_inc(rq, ttwu_local);
1236 schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 } else {
1238 struct sched_domain *sd;
1240 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241 rcu_read_lock();
1242 for_each_domain(this_cpu, sd) {
1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 schedstat_inc(sd, ttwu_wake_remote);
1245 break;
1246 }
1247 }
1248 rcu_read_unlock();
1249 }
1251 if (wake_flags & WF_MIGRATED)
1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1254 #endif /* CONFIG_SMP */
1256 schedstat_inc(rq, ttwu_count);
1257 schedstat_inc(p, se.statistics.nr_wakeups);
1259 if (wake_flags & WF_SYNC)
1260 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1262 #endif /* CONFIG_SCHEDSTATS */
1263 }
1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266 {
1267 activate_task(rq, p, en_flags);
1268 p->on_rq = 1;
1270 /* if a worker is waking up, notify workqueue */
1271 if (p->flags & PF_WQ_WORKER)
1272 wq_worker_waking_up(p, cpu_of(rq));
1273 }
1275 /*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
1278 static void
1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280 {
1281 trace_sched_wakeup(p, true);
1282 check_preempt_curr(rq, p, wake_flags);
1284 p->state = TASK_RUNNING;
1285 #ifdef CONFIG_SMP
1286 if (p->sched_class->task_woken)
1287 p->sched_class->task_woken(rq, p);
1289 if (rq->idle_stamp) {
1290 u64 delta = rq->clock - rq->idle_stamp;
1291 u64 max = 2*sysctl_sched_migration_cost;
1293 if (delta > max)
1294 rq->avg_idle = max;
1295 else
1296 update_avg(&rq->avg_idle, delta);
1297 rq->idle_stamp = 0;
1298 }
1299 #endif
1300 }
1302 static void
1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304 {
1305 #ifdef CONFIG_SMP
1306 if (p->sched_contributes_to_load)
1307 rq->nr_uninterruptible--;
1308 #endif
1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 ttwu_do_wakeup(rq, p, wake_flags);
1312 }
1314 /*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320 static int ttwu_remote(struct task_struct *p, int wake_flags)
1321 {
1322 struct rq *rq;
1323 int ret = 0;
1325 rq = __task_rq_lock(p);
1326 if (p->on_rq) {
1327 ttwu_do_wakeup(rq, p, wake_flags);
1328 ret = 1;
1329 }
1330 __task_rq_unlock(rq);
1332 return ret;
1333 }
1335 #ifdef CONFIG_SMP
1336 static void sched_ttwu_pending(void)
1337 {
1338 struct rq *rq = this_rq();
1339 struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 struct task_struct *p;
1342 raw_spin_lock(&rq->lock);
1344 while (llist) {
1345 p = llist_entry(llist, struct task_struct, wake_entry);
1346 llist = llist_next(llist);
1347 ttwu_do_activate(rq, p, 0);
1348 }
1350 raw_spin_unlock(&rq->lock);
1351 }
1353 void scheduler_ipi(void)
1354 {
1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 return;
1358 /*
1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 * traditionally all their work was done from the interrupt return
1361 * path. Now that we actually do some work, we need to make sure
1362 * we do call them.
1363 *
1364 * Some archs already do call them, luckily irq_enter/exit nest
1365 * properly.
1366 *
1367 * Arguably we should visit all archs and update all handlers,
1368 * however a fair share of IPIs are still resched only so this would
1369 * somewhat pessimize the simple resched case.
1370 */
1371 irq_enter();
1372 sched_ttwu_pending();
1374 /*
1375 * Check if someone kicked us for doing the nohz idle load balance.
1376 */
1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 this_rq()->idle_balance = 1;
1379 raise_softirq_irqoff(SCHED_SOFTIRQ);
1380 }
1381 irq_exit();
1382 }
1384 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385 {
1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 smp_send_reschedule(cpu);
1388 }
1390 bool cpus_share_cache(int this_cpu, int that_cpu)
1391 {
1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393 }
1394 #endif /* CONFIG_SMP */
1396 static void ttwu_queue(struct task_struct *p, int cpu)
1397 {
1398 struct rq *rq = cpu_rq(cpu);
1400 #if defined(CONFIG_SMP)
1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 ttwu_queue_remote(p, cpu);
1404 return;
1405 }
1406 #endif
1408 raw_spin_lock(&rq->lock);
1409 ttwu_do_activate(rq, p, 0);
1410 raw_spin_unlock(&rq->lock);
1411 }
1413 /**
1414 * try_to_wake_up - wake up a thread
1415 * @p: the thread to be awakened
1416 * @state: the mask of task states that can be woken
1417 * @wake_flags: wake modifier flags (WF_*)
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1427 */
1428 static int
1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430 {
1431 unsigned long flags;
1432 int cpu, success = 0;
1434 smp_wmb();
1435 raw_spin_lock_irqsave(&p->pi_lock, flags);
1436 if (!(p->state & state))
1437 goto out;
1439 success = 1; /* we're going to change ->state */
1440 cpu = task_cpu(p);
1442 if (p->on_rq && ttwu_remote(p, wake_flags))
1443 goto stat;
1445 #ifdef CONFIG_SMP
1446 /*
1447 * If the owning (remote) cpu is still in the middle of schedule() with
1448 * this task as prev, wait until its done referencing the task.
1449 */
1450 while (p->on_cpu)
1451 cpu_relax();
1452 /*
1453 * Pairs with the smp_wmb() in finish_lock_switch().
1454 */
1455 smp_rmb();
1457 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458 p->state = TASK_WAKING;
1460 if (p->sched_class->task_waking)
1461 p->sched_class->task_waking(p);
1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 if (task_cpu(p) != cpu) {
1465 wake_flags |= WF_MIGRATED;
1466 set_task_cpu(p, cpu);
1467 }
1468 #endif /* CONFIG_SMP */
1470 ttwu_queue(p, cpu);
1471 stat:
1472 ttwu_stat(p, cpu, wake_flags);
1473 out:
1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1476 return success;
1477 }
1479 /**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
1483 * Put @p on the run-queue if it's not already there. The caller must
1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485 * the current task.
1486 */
1487 static void try_to_wake_up_local(struct task_struct *p)
1488 {
1489 struct rq *rq = task_rq(p);
1491 if (WARN_ON_ONCE(rq != this_rq()) ||
1492 WARN_ON_ONCE(p == current))
1493 return;
1495 lockdep_assert_held(&rq->lock);
1497 if (!raw_spin_trylock(&p->pi_lock)) {
1498 raw_spin_unlock(&rq->lock);
1499 raw_spin_lock(&p->pi_lock);
1500 raw_spin_lock(&rq->lock);
1501 }
1503 if (!(p->state & TASK_NORMAL))
1504 goto out;
1506 if (!p->on_rq)
1507 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1509 ttwu_do_wakeup(rq, p, 0);
1510 ttwu_stat(p, smp_processor_id(), 0);
1511 out:
1512 raw_spin_unlock(&p->pi_lock);
1513 }
1515 /**
1516 * wake_up_process - Wake up a specific process
1517 * @p: The process to be woken up.
1518 *
1519 * Attempt to wake up the nominated process and move it to the set of runnable
1520 * processes. Returns 1 if the process was woken up, 0 if it was already
1521 * running.
1522 *
1523 * It may be assumed that this function implies a write memory barrier before
1524 * changing the task state if and only if any tasks are woken up.
1525 */
1526 int wake_up_process(struct task_struct *p)
1527 {
1528 WARN_ON(task_is_stopped_or_traced(p));
1529 return try_to_wake_up(p, TASK_NORMAL, 0);
1530 }
1531 EXPORT_SYMBOL(wake_up_process);
1533 int wake_up_state(struct task_struct *p, unsigned int state)
1534 {
1535 return try_to_wake_up(p, state, 0);
1536 }
1538 /*
1539 * Perform scheduler related setup for a newly forked process p.
1540 * p is forked by current.
1541 *
1542 * __sched_fork() is basic setup used by init_idle() too:
1543 */
1544 static void __sched_fork(struct task_struct *p)
1545 {
1546 p->on_rq = 0;
1548 p->se.on_rq = 0;
1549 p->se.exec_start = 0;
1550 p->se.sum_exec_runtime = 0;
1551 p->se.prev_sum_exec_runtime = 0;
1552 p->se.nr_migrations = 0;
1553 p->se.vruntime = 0;
1554 INIT_LIST_HEAD(&p->se.group_node);
1556 /*
1557 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1558 * removed when useful for applications beyond shares distribution (e.g.
1559 * load-balance).
1560 */
1561 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1562 p->se.avg.runnable_avg_period = 0;
1563 p->se.avg.runnable_avg_sum = 0;
1564 #endif
1565 #ifdef CONFIG_SCHEDSTATS
1566 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1567 #endif
1569 INIT_LIST_HEAD(&p->rt.run_list);
1571 #ifdef CONFIG_PREEMPT_NOTIFIERS
1572 INIT_HLIST_HEAD(&p->preempt_notifiers);
1573 #endif
1575 #ifdef CONFIG_NUMA_BALANCING
1576 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1577 p->mm->numa_next_scan = jiffies;
1578 p->mm->numa_next_reset = jiffies;
1579 p->mm->numa_scan_seq = 0;
1580 }
1582 p->node_stamp = 0ULL;
1583 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1584 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1585 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1586 p->numa_work.next = &p->numa_work;
1587 #endif /* CONFIG_NUMA_BALANCING */
1588 }
1590 #ifdef CONFIG_NUMA_BALANCING
1591 #ifdef CONFIG_SCHED_DEBUG
1592 void set_numabalancing_state(bool enabled)
1593 {
1594 if (enabled)
1595 sched_feat_set("NUMA");
1596 else
1597 sched_feat_set("NO_NUMA");
1598 }
1599 #else
1600 __read_mostly bool numabalancing_enabled;
1602 void set_numabalancing_state(bool enabled)
1603 {
1604 numabalancing_enabled = enabled;
1605 }
1606 #endif /* CONFIG_SCHED_DEBUG */
1607 #endif /* CONFIG_NUMA_BALANCING */
1609 /*
1610 * fork()/clone()-time setup:
1611 */
1612 void sched_fork(struct task_struct *p)
1613 {
1614 unsigned long flags;
1615 int cpu = get_cpu();
1617 __sched_fork(p);
1618 /*
1619 * We mark the process as running here. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
1625 /*
1626 * Make sure we do not leak PI boosting priority to the child.
1627 */
1628 p->prio = current->normal_prio;
1630 /*
1631 * Revert to default priority/policy on fork if requested.
1632 */
1633 if (unlikely(p->sched_reset_on_fork)) {
1634 if (task_has_rt_policy(p)) {
1635 p->policy = SCHED_NORMAL;
1636 p->static_prio = NICE_TO_PRIO(0);
1637 p->rt_priority = 0;
1638 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1639 p->static_prio = NICE_TO_PRIO(0);
1641 p->prio = p->normal_prio = __normal_prio(p);
1642 set_load_weight(p);
1644 /*
1645 * We don't need the reset flag anymore after the fork. It has
1646 * fulfilled its duty:
1647 */
1648 p->sched_reset_on_fork = 0;
1649 }
1651 if (!rt_prio(p->prio))
1652 p->sched_class = &fair_sched_class;
1654 if (p->sched_class->task_fork)
1655 p->sched_class->task_fork(p);
1657 /*
1658 * The child is not yet in the pid-hash so no cgroup attach races,
1659 * and the cgroup is pinned to this child due to cgroup_fork()
1660 * is ran before sched_fork().
1661 *
1662 * Silence PROVE_RCU.
1663 */
1664 raw_spin_lock_irqsave(&p->pi_lock, flags);
1665 set_task_cpu(p, cpu);
1666 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1668 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1669 if (likely(sched_info_on()))
1670 memset(&p->sched_info, 0, sizeof(p->sched_info));
1671 #endif
1672 #if defined(CONFIG_SMP)
1673 p->on_cpu = 0;
1674 #endif
1675 #ifdef CONFIG_PREEMPT_COUNT
1676 /* Want to start with kernel preemption disabled. */
1677 task_thread_info(p)->preempt_count = 1;
1678 #endif
1679 #ifdef CONFIG_SMP
1680 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1681 #endif
1683 put_cpu();
1684 }
1686 /*
1687 * wake_up_new_task - wake up a newly created task for the first time.
1688 *
1689 * This function will do some initial scheduler statistics housekeeping
1690 * that must be done for every newly created context, then puts the task
1691 * on the runqueue and wakes it.
1692 */
1693 void wake_up_new_task(struct task_struct *p)
1694 {
1695 unsigned long flags;
1696 struct rq *rq;
1698 raw_spin_lock_irqsave(&p->pi_lock, flags);
1699 #ifdef CONFIG_SMP
1700 /*
1701 * Fork balancing, do it here and not earlier because:
1702 * - cpus_allowed can change in the fork path
1703 * - any previously selected cpu might disappear through hotplug
1704 */
1705 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1706 #endif
1708 rq = __task_rq_lock(p);
1709 activate_task(rq, p, 0);
1710 p->on_rq = 1;
1711 trace_sched_wakeup_new(p, true);
1712 check_preempt_curr(rq, p, WF_FORK);
1713 #ifdef CONFIG_SMP
1714 if (p->sched_class->task_woken)
1715 p->sched_class->task_woken(rq, p);
1716 #endif
1717 task_rq_unlock(rq, p, &flags);
1718 }
1720 #ifdef CONFIG_PREEMPT_NOTIFIERS
1722 /**
1723 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1724 * @notifier: notifier struct to register
1725 */
1726 void preempt_notifier_register(struct preempt_notifier *notifier)
1727 {
1728 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
1729 }
1730 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1732 /**
1733 * preempt_notifier_unregister - no longer interested in preemption notifications
1734 * @notifier: notifier struct to unregister
1735 *
1736 * This is safe to call from within a preemption notifier.
1737 */
1738 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1739 {
1740 hlist_del(¬ifier->link);
1741 }
1742 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1744 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1745 {
1746 struct preempt_notifier *notifier;
1747 struct hlist_node *node;
1749 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1750 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1751 }
1753 static void
1754 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1755 struct task_struct *next)
1756 {
1757 struct preempt_notifier *notifier;
1758 struct hlist_node *node;
1760 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1761 notifier->ops->sched_out(notifier, next);
1762 }
1764 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1766 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1767 {
1768 }
1770 static void
1771 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1772 struct task_struct *next)
1773 {
1774 }
1776 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1778 /**
1779 * prepare_task_switch - prepare to switch tasks
1780 * @rq: the runqueue preparing to switch
1781 * @prev: the current task that is being switched out
1782 * @next: the task we are going to switch to.
1783 *
1784 * This is called with the rq lock held and interrupts off. It must
1785 * be paired with a subsequent finish_task_switch after the context
1786 * switch.
1787 *
1788 * prepare_task_switch sets up locking and calls architecture specific
1789 * hooks.
1790 */
1791 static inline void
1792 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1793 struct task_struct *next)
1794 {
1795 trace_sched_switch(prev, next);
1796 sched_info_switch(prev, next);
1797 perf_event_task_sched_out(prev, next);
1798 fire_sched_out_preempt_notifiers(prev, next);
1799 prepare_lock_switch(rq, next);
1800 prepare_arch_switch(next);
1801 }
1803 /**
1804 * finish_task_switch - clean up after a task-switch
1805 * @rq: runqueue associated with task-switch
1806 * @prev: the thread we just switched away from.
1807 *
1808 * finish_task_switch must be called after the context switch, paired
1809 * with a prepare_task_switch call before the context switch.
1810 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1811 * and do any other architecture-specific cleanup actions.
1812 *
1813 * Note that we may have delayed dropping an mm in context_switch(). If
1814 * so, we finish that here outside of the runqueue lock. (Doing it
1815 * with the lock held can cause deadlocks; see schedule() for
1816 * details.)
1817 */
1818 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1819 __releases(rq->lock)
1820 {
1821 struct mm_struct *mm = rq->prev_mm;
1822 long prev_state;
1824 rq->prev_mm = NULL;
1826 /*
1827 * A task struct has one reference for the use as "current".
1828 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1829 * schedule one last time. The schedule call will never return, and
1830 * the scheduled task must drop that reference.
1831 * The test for TASK_DEAD must occur while the runqueue locks are
1832 * still held, otherwise prev could be scheduled on another cpu, die
1833 * there before we look at prev->state, and then the reference would
1834 * be dropped twice.
1835 * Manfred Spraul <manfred@colorfullife.com>
1836 */
1837 prev_state = prev->state;
1838 vtime_task_switch(prev);
1839 finish_arch_switch(prev);
1840 perf_event_task_sched_in(prev, current);
1841 finish_lock_switch(rq, prev);
1842 finish_arch_post_lock_switch();
1844 fire_sched_in_preempt_notifiers(current);
1845 if (mm)
1846 mmdrop(mm);
1847 if (unlikely(prev_state == TASK_DEAD)) {
1848 /*
1849 * Remove function-return probe instances associated with this
1850 * task and put them back on the free list.
1851 */
1852 kprobe_flush_task(prev);
1853 put_task_struct(prev);
1854 }
1855 }
1857 #ifdef CONFIG_SMP
1859 /* assumes rq->lock is held */
1860 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1861 {
1862 if (prev->sched_class->pre_schedule)
1863 prev->sched_class->pre_schedule(rq, prev);
1864 }
1866 /* rq->lock is NOT held, but preemption is disabled */
1867 static inline void post_schedule(struct rq *rq)
1868 {
1869 if (rq->post_schedule) {
1870 unsigned long flags;
1872 raw_spin_lock_irqsave(&rq->lock, flags);
1873 if (rq->curr->sched_class->post_schedule)
1874 rq->curr->sched_class->post_schedule(rq);
1875 raw_spin_unlock_irqrestore(&rq->lock, flags);
1877 rq->post_schedule = 0;
1878 }
1879 }
1881 #else
1883 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1884 {
1885 }
1887 static inline void post_schedule(struct rq *rq)
1888 {
1889 }
1891 #endif
1893 /**
1894 * schedule_tail - first thing a freshly forked thread must call.
1895 * @prev: the thread we just switched away from.
1896 */
1897 asmlinkage void schedule_tail(struct task_struct *prev)
1898 __releases(rq->lock)
1899 {
1900 struct rq *rq = this_rq();
1902 finish_task_switch(rq, prev);
1904 /*
1905 * FIXME: do we need to worry about rq being invalidated by the
1906 * task_switch?
1907 */
1908 post_schedule(rq);
1910 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1911 /* In this case, finish_task_switch does not reenable preemption */
1912 preempt_enable();
1913 #endif
1914 if (current->set_child_tid)
1915 put_user(task_pid_vnr(current), current->set_child_tid);
1916 }
1918 /*
1919 * context_switch - switch to the new MM and the new
1920 * thread's register state.
1921 */
1922 static inline void
1923 context_switch(struct rq *rq, struct task_struct *prev,
1924 struct task_struct *next)
1925 {
1926 struct mm_struct *mm, *oldmm;
1928 prepare_task_switch(rq, prev, next);
1930 mm = next->mm;
1931 oldmm = prev->active_mm;
1932 /*
1933 * For paravirt, this is coupled with an exit in switch_to to
1934 * combine the page table reload and the switch backend into
1935 * one hypercall.
1936 */
1937 arch_start_context_switch(prev);
1939 if (!mm) {
1940 next->active_mm = oldmm;
1941 atomic_inc(&oldmm->mm_count);
1942 enter_lazy_tlb(oldmm, next);
1943 } else
1944 switch_mm(oldmm, mm, next);
1946 if (!prev->mm) {
1947 prev->active_mm = NULL;
1948 rq->prev_mm = oldmm;
1949 }
1950 /*
1951 * Since the runqueue lock will be released by the next
1952 * task (which is an invalid locking op but in the case
1953 * of the scheduler it's an obvious special-case), so we
1954 * do an early lockdep release here:
1955 */
1956 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1957 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1958 #endif
1960 context_tracking_task_switch(prev, next);
1961 /* Here we just switch the register state and the stack. */
1962 switch_to(prev, next, prev);
1964 barrier();
1965 /*
1966 * this_rq must be evaluated again because prev may have moved
1967 * CPUs since it called schedule(), thus the 'rq' on its stack
1968 * frame will be invalid.
1969 */
1970 finish_task_switch(this_rq(), prev);
1971 }
1973 /*
1974 * nr_running, nr_uninterruptible and nr_context_switches:
1975 *
1976 * externally visible scheduler statistics: current number of runnable
1977 * threads, current number of uninterruptible-sleeping threads, total
1978 * number of context switches performed since bootup.
1979 */
1980 unsigned long nr_running(void)
1981 {
1982 unsigned long i, sum = 0;
1984 for_each_online_cpu(i)
1985 sum += cpu_rq(i)->nr_running;
1987 return sum;
1988 }
1990 unsigned long nr_uninterruptible(void)
1991 {
1992 unsigned long i, sum = 0;
1994 for_each_possible_cpu(i)
1995 sum += cpu_rq(i)->nr_uninterruptible;
1997 /*
1998 * Since we read the counters lockless, it might be slightly
1999 * inaccurate. Do not allow it to go below zero though:
2000 */
2001 if (unlikely((long)sum < 0))
2002 sum = 0;
2004 return sum;
2005 }
2007 unsigned long long nr_context_switches(void)
2008 {
2009 int i;
2010 unsigned long long sum = 0;
2012 for_each_possible_cpu(i)
2013 sum += cpu_rq(i)->nr_switches;
2015 return sum;
2016 }
2018 unsigned long nr_iowait(void)
2019 {
2020 unsigned long i, sum = 0;
2022 for_each_possible_cpu(i)
2023 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2025 return sum;
2026 }
2028 unsigned long nr_iowait_cpu(int cpu)
2029 {
2030 struct rq *this = cpu_rq(cpu);
2031 return atomic_read(&this->nr_iowait);
2032 }
2034 unsigned long this_cpu_load(void)
2035 {
2036 struct rq *this = this_rq();
2037 return this->cpu_load[0];
2038 }
2041 /*
2042 * Global load-average calculations
2043 *
2044 * We take a distributed and async approach to calculating the global load-avg
2045 * in order to minimize overhead.
2046 *
2047 * The global load average is an exponentially decaying average of nr_running +
2048 * nr_uninterruptible.
2049 *
2050 * Once every LOAD_FREQ:
2051 *
2052 * nr_active = 0;
2053 * for_each_possible_cpu(cpu)
2054 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2055 *
2056 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2057 *
2058 * Due to a number of reasons the above turns in the mess below:
2059 *
2060 * - for_each_possible_cpu() is prohibitively expensive on machines with
2061 * serious number of cpus, therefore we need to take a distributed approach
2062 * to calculating nr_active.
2063 *
2064 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2065 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2066 *
2067 * So assuming nr_active := 0 when we start out -- true per definition, we
2068 * can simply take per-cpu deltas and fold those into a global accumulate
2069 * to obtain the same result. See calc_load_fold_active().
2070 *
2071 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2072 * across the machine, we assume 10 ticks is sufficient time for every
2073 * cpu to have completed this task.
2074 *
2075 * This places an upper-bound on the IRQ-off latency of the machine. Then
2076 * again, being late doesn't loose the delta, just wrecks the sample.
2077 *
2078 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2079 * this would add another cross-cpu cacheline miss and atomic operation
2080 * to the wakeup path. Instead we increment on whatever cpu the task ran
2081 * when it went into uninterruptible state and decrement on whatever cpu
2082 * did the wakeup. This means that only the sum of nr_uninterruptible over
2083 * all cpus yields the correct result.
2084 *
2085 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2086 */
2088 /* Variables and functions for calc_load */
2089 static atomic_long_t calc_load_tasks;
2090 static unsigned long calc_load_update;
2091 unsigned long avenrun[3];
2092 EXPORT_SYMBOL(avenrun); /* should be removed */
2094 /**
2095 * get_avenrun - get the load average array
2096 * @loads: pointer to dest load array
2097 * @offset: offset to add
2098 * @shift: shift count to shift the result left
2099 *
2100 * These values are estimates at best, so no need for locking.
2101 */
2102 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2103 {
2104 loads[0] = (avenrun[0] + offset) << shift;
2105 loads[1] = (avenrun[1] + offset) << shift;
2106 loads[2] = (avenrun[2] + offset) << shift;
2107 }
2109 static long calc_load_fold_active(struct rq *this_rq)
2110 {
2111 long nr_active, delta = 0;
2113 nr_active = this_rq->nr_running;
2114 nr_active += (long) this_rq->nr_uninterruptible;
2116 if (nr_active != this_rq->calc_load_active) {
2117 delta = nr_active - this_rq->calc_load_active;
2118 this_rq->calc_load_active = nr_active;
2119 }
2121 return delta;
2122 }
2124 /*
2125 * a1 = a0 * e + a * (1 - e)
2126 */
2127 static unsigned long
2128 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2129 {
2130 load *= exp;
2131 load += active * (FIXED_1 - exp);
2132 load += 1UL << (FSHIFT - 1);
2133 return load >> FSHIFT;
2134 }
2136 #ifdef CONFIG_NO_HZ
2137 /*
2138 * Handle NO_HZ for the global load-average.
2139 *
2140 * Since the above described distributed algorithm to compute the global
2141 * load-average relies on per-cpu sampling from the tick, it is affected by
2142 * NO_HZ.
2143 *
2144 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2145 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2146 * when we read the global state.
2147 *
2148 * Obviously reality has to ruin such a delightfully simple scheme:
2149 *
2150 * - When we go NO_HZ idle during the window, we can negate our sample
2151 * contribution, causing under-accounting.
2152 *
2153 * We avoid this by keeping two idle-delta counters and flipping them
2154 * when the window starts, thus separating old and new NO_HZ load.
2155 *
2156 * The only trick is the slight shift in index flip for read vs write.
2157 *
2158 * 0s 5s 10s 15s
2159 * +10 +10 +10 +10
2160 * |-|-----------|-|-----------|-|-----------|-|
2161 * r:0 0 1 1 0 0 1 1 0
2162 * w:0 1 1 0 0 1 1 0 0
2163 *
2164 * This ensures we'll fold the old idle contribution in this window while
2165 * accumlating the new one.
2166 *
2167 * - When we wake up from NO_HZ idle during the window, we push up our
2168 * contribution, since we effectively move our sample point to a known
2169 * busy state.
2170 *
2171 * This is solved by pushing the window forward, and thus skipping the
2172 * sample, for this cpu (effectively using the idle-delta for this cpu which
2173 * was in effect at the time the window opened). This also solves the issue
2174 * of having to deal with a cpu having been in NOHZ idle for multiple
2175 * LOAD_FREQ intervals.
2176 *
2177 * When making the ILB scale, we should try to pull this in as well.
2178 */
2179 static atomic_long_t calc_load_idle[2];
2180 static int calc_load_idx;
2182 static inline int calc_load_write_idx(void)
2183 {
2184 int idx = calc_load_idx;
2186 /*
2187 * See calc_global_nohz(), if we observe the new index, we also
2188 * need to observe the new update time.
2189 */
2190 smp_rmb();
2192 /*
2193 * If the folding window started, make sure we start writing in the
2194 * next idle-delta.
2195 */
2196 if (!time_before(jiffies, calc_load_update))
2197 idx++;
2199 return idx & 1;
2200 }
2202 static inline int calc_load_read_idx(void)
2203 {
2204 return calc_load_idx & 1;
2205 }
2207 void calc_load_enter_idle(void)
2208 {
2209 struct rq *this_rq = this_rq();
2210 long delta;
2212 /*
2213 * We're going into NOHZ mode, if there's any pending delta, fold it
2214 * into the pending idle delta.
2215 */
2216 delta = calc_load_fold_active(this_rq);
2217 if (delta) {
2218 int idx = calc_load_write_idx();
2219 atomic_long_add(delta, &calc_load_idle[idx]);
2220 }
2221 }
2223 void calc_load_exit_idle(void)
2224 {
2225 struct rq *this_rq = this_rq();
2227 /*
2228 * If we're still before the sample window, we're done.
2229 */
2230 if (time_before(jiffies, this_rq->calc_load_update))
2231 return;
2233 /*
2234 * We woke inside or after the sample window, this means we're already
2235 * accounted through the nohz accounting, so skip the entire deal and
2236 * sync up for the next window.
2237 */
2238 this_rq->calc_load_update = calc_load_update;
2239 if (time_before(jiffies, this_rq->calc_load_update + 10))
2240 this_rq->calc_load_update += LOAD_FREQ;
2241 }
2243 static long calc_load_fold_idle(void)
2244 {
2245 int idx = calc_load_read_idx();
2246 long delta = 0;
2248 if (atomic_long_read(&calc_load_idle[idx]))
2249 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2251 return delta;
2252 }
2254 /**
2255 * fixed_power_int - compute: x^n, in O(log n) time
2256 *
2257 * @x: base of the power
2258 * @frac_bits: fractional bits of @x
2259 * @n: power to raise @x to.
2260 *
2261 * By exploiting the relation between the definition of the natural power
2262 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2263 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2264 * (where: n_i \elem {0, 1}, the binary vector representing n),
2265 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2266 * of course trivially computable in O(log_2 n), the length of our binary
2267 * vector.
2268 */
2269 static unsigned long
2270 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2271 {
2272 unsigned long result = 1UL << frac_bits;
2274 if (n) for (;;) {
2275 if (n & 1) {
2276 result *= x;
2277 result += 1UL << (frac_bits - 1);
2278 result >>= frac_bits;
2279 }
2280 n >>= 1;
2281 if (!n)
2282 break;
2283 x *= x;
2284 x += 1UL << (frac_bits - 1);
2285 x >>= frac_bits;
2286 }
2288 return result;
2289 }
2291 /*
2292 * a1 = a0 * e + a * (1 - e)
2293 *
2294 * a2 = a1 * e + a * (1 - e)
2295 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2296 * = a0 * e^2 + a * (1 - e) * (1 + e)
2297 *
2298 * a3 = a2 * e + a * (1 - e)
2299 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2300 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2301 *
2302 * ...
2303 *
2304 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2305 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2306 * = a0 * e^n + a * (1 - e^n)
2307 *
2308 * [1] application of the geometric series:
2309 *
2310 * n 1 - x^(n+1)
2311 * S_n := \Sum x^i = -------------
2312 * i=0 1 - x
2313 */
2314 static unsigned long
2315 calc_load_n(unsigned long load, unsigned long exp,
2316 unsigned long active, unsigned int n)
2317 {
2319 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2320 }
2322 /*
2323 * NO_HZ can leave us missing all per-cpu ticks calling
2324 * calc_load_account_active(), but since an idle CPU folds its delta into
2325 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2326 * in the pending idle delta if our idle period crossed a load cycle boundary.
2327 *
2328 * Once we've updated the global active value, we need to apply the exponential
2329 * weights adjusted to the number of cycles missed.
2330 */
2331 static void calc_global_nohz(void)
2332 {
2333 long delta, active, n;
2335 if (!time_before(jiffies, calc_load_update + 10)) {
2336 /*
2337 * Catch-up, fold however many we are behind still
2338 */
2339 delta = jiffies - calc_load_update - 10;
2340 n = 1 + (delta / LOAD_FREQ);
2342 active = atomic_long_read(&calc_load_tasks);
2343 active = active > 0 ? active * FIXED_1 : 0;
2345 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2346 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2347 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2349 calc_load_update += n * LOAD_FREQ;
2350 }
2352 /*
2353 * Flip the idle index...
2354 *
2355 * Make sure we first write the new time then flip the index, so that
2356 * calc_load_write_idx() will see the new time when it reads the new
2357 * index, this avoids a double flip messing things up.
2358 */
2359 smp_wmb();
2360 calc_load_idx++;
2361 }
2362 #else /* !CONFIG_NO_HZ */
2364 static inline long calc_load_fold_idle(void) { return 0; }
2365 static inline void calc_global_nohz(void) { }
2367 #endif /* CONFIG_NO_HZ */
2369 /*
2370 * calc_load - update the avenrun load estimates 10 ticks after the
2371 * CPUs have updated calc_load_tasks.
2372 */
2373 void calc_global_load(unsigned long ticks)
2374 {
2375 long active, delta;
2377 if (time_before(jiffies, calc_load_update + 10))
2378 return;
2380 /*
2381 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2382 */
2383 delta = calc_load_fold_idle();
2384 if (delta)
2385 atomic_long_add(delta, &calc_load_tasks);
2387 active = atomic_long_read(&calc_load_tasks);
2388 active = active > 0 ? active * FIXED_1 : 0;
2390 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2391 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2392 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2394 calc_load_update += LOAD_FREQ;
2396 /*
2397 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2398 */
2399 calc_global_nohz();
2400 }
2402 /*
2403 * Called from update_cpu_load() to periodically update this CPU's
2404 * active count.
2405 */
2406 static void calc_load_account_active(struct rq *this_rq)
2407 {
2408 long delta;
2410 if (time_before(jiffies, this_rq->calc_load_update))
2411 return;
2413 delta = calc_load_fold_active(this_rq);
2414 if (delta)
2415 atomic_long_add(delta, &calc_load_tasks);
2417 this_rq->calc_load_update += LOAD_FREQ;
2418 }
2420 /*
2421 * End of global load-average stuff
2422 */
2424 /*
2425 * The exact cpuload at various idx values, calculated at every tick would be
2426 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2427 *
2428 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2429 * on nth tick when cpu may be busy, then we have:
2430 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2431 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2432 *
2433 * decay_load_missed() below does efficient calculation of
2434 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2435 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2436 *
2437 * The calculation is approximated on a 128 point scale.
2438 * degrade_zero_ticks is the number of ticks after which load at any
2439 * particular idx is approximated to be zero.
2440 * degrade_factor is a precomputed table, a row for each load idx.
2441 * Each column corresponds to degradation factor for a power of two ticks,
2442 * based on 128 point scale.
2443 * Example:
2444 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2445 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2446 *
2447 * With this power of 2 load factors, we can degrade the load n times
2448 * by looking at 1 bits in n and doing as many mult/shift instead of
2449 * n mult/shifts needed by the exact degradation.
2450 */
2451 #define DEGRADE_SHIFT 7
2452 static const unsigned char
2453 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2454 static const unsigned char
2455 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2456 {0, 0, 0, 0, 0, 0, 0, 0},
2457 {64, 32, 8, 0, 0, 0, 0, 0},
2458 {96, 72, 40, 12, 1, 0, 0},
2459 {112, 98, 75, 43, 15, 1, 0},
2460 {120, 112, 98, 76, 45, 16, 2} };
2462 /*
2463 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2464 * would be when CPU is idle and so we just decay the old load without
2465 * adding any new load.
2466 */
2467 static unsigned long
2468 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2469 {
2470 int j = 0;
2472 if (!missed_updates)
2473 return load;
2475 if (missed_updates >= degrade_zero_ticks[idx])
2476 return 0;
2478 if (idx == 1)
2479 return load >> missed_updates;
2481 while (missed_updates) {
2482 if (missed_updates % 2)
2483 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2485 missed_updates >>= 1;
2486 j++;
2487 }
2488 return load;
2489 }
2491 /*
2492 * Update rq->cpu_load[] statistics. This function is usually called every
2493 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2494 * every tick. We fix it up based on jiffies.
2495 */
2496 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2497 unsigned long pending_updates)
2498 {
2499 int i, scale;
2501 this_rq->nr_load_updates++;
2503 /* Update our load: */
2504 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2505 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2506 unsigned long old_load, new_load;
2508 /* scale is effectively 1 << i now, and >> i divides by scale */
2510 old_load = this_rq->cpu_load[i];
2511 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2512 new_load = this_load;
2513 /*
2514 * Round up the averaging division if load is increasing. This
2515 * prevents us from getting stuck on 9 if the load is 10, for
2516 * example.
2517 */
2518 if (new_load > old_load)
2519 new_load += scale - 1;
2521 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2522 }
2524 sched_avg_update(this_rq);
2525 }
2527 #ifdef CONFIG_NO_HZ
2528 /*
2529 * There is no sane way to deal with nohz on smp when using jiffies because the
2530 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2531 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2532 *
2533 * Therefore we cannot use the delta approach from the regular tick since that
2534 * would seriously skew the load calculation. However we'll make do for those
2535 * updates happening while idle (nohz_idle_balance) or coming out of idle
2536 * (tick_nohz_idle_exit).
2537 *
2538 * This means we might still be one tick off for nohz periods.
2539 */
2541 /*
2542 * Called from nohz_idle_balance() to update the load ratings before doing the
2543 * idle balance.
2544 */
2545 void update_idle_cpu_load(struct rq *this_rq)
2546 {
2547 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2548 unsigned long load = this_rq->load.weight;
2549 unsigned long pending_updates;
2551 /*
2552 * bail if there's load or we're actually up-to-date.
2553 */
2554 if (load || curr_jiffies == this_rq->last_load_update_tick)
2555 return;
2557 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2558 this_rq->last_load_update_tick = curr_jiffies;
2560 __update_cpu_load(this_rq, load, pending_updates);
2561 }
2563 /*
2564 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2565 */
2566 void update_cpu_load_nohz(void)
2567 {
2568 struct rq *this_rq = this_rq();
2569 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2570 unsigned long pending_updates;
2572 if (curr_jiffies == this_rq->last_load_update_tick)
2573 return;
2575 raw_spin_lock(&this_rq->lock);
2576 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2577 if (pending_updates) {
2578 this_rq->last_load_update_tick = curr_jiffies;
2579 /*
2580 * We were idle, this means load 0, the current load might be
2581 * !0 due to remote wakeups and the sort.
2582 */
2583 __update_cpu_load(this_rq, 0, pending_updates);
2584 }
2585 raw_spin_unlock(&this_rq->lock);
2586 }
2587 #endif /* CONFIG_NO_HZ */
2589 /*
2590 * Called from scheduler_tick()
2591 */
2592 static void update_cpu_load_active(struct rq *this_rq)
2593 {
2594 /*
2595 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2596 */
2597 this_rq->last_load_update_tick = jiffies;
2598 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2600 calc_load_account_active(this_rq);
2601 }
2603 #ifdef CONFIG_SMP
2605 /*
2606 * sched_exec - execve() is a valuable balancing opportunity, because at
2607 * this point the task has the smallest effective memory and cache footprint.
2608 */
2609 void sched_exec(void)
2610 {
2611 struct task_struct *p = current;
2612 unsigned long flags;
2613 int dest_cpu;
2615 raw_spin_lock_irqsave(&p->pi_lock, flags);
2616 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2617 if (dest_cpu == smp_processor_id())
2618 goto unlock;
2620 if (likely(cpu_active(dest_cpu))) {
2621 struct migration_arg arg = { p, dest_cpu };
2623 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2624 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2625 return;
2626 }
2627 unlock:
2628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2629 }
2631 #endif
2633 DEFINE_PER_CPU(struct kernel_stat, kstat);
2634 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2636 EXPORT_PER_CPU_SYMBOL(kstat);
2637 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2639 /*
2640 * Return any ns on the sched_clock that have not yet been accounted in
2641 * @p in case that task is currently running.
2642 *
2643 * Called with task_rq_lock() held on @rq.
2644 */
2645 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2646 {
2647 u64 ns = 0;
2649 if (task_current(rq, p)) {
2650 update_rq_clock(rq);
2651 ns = rq->clock_task - p->se.exec_start;
2652 if ((s64)ns < 0)
2653 ns = 0;
2654 }
2656 return ns;
2657 }
2659 unsigned long long task_delta_exec(struct task_struct *p)
2660 {
2661 unsigned long flags;
2662 struct rq *rq;
2663 u64 ns = 0;
2665 rq = task_rq_lock(p, &flags);
2666 ns = do_task_delta_exec(p, rq);
2667 task_rq_unlock(rq, p, &flags);
2669 return ns;
2670 }
2672 /*
2673 * Return accounted runtime for the task.
2674 * In case the task is currently running, return the runtime plus current's
2675 * pending runtime that have not been accounted yet.
2676 */
2677 unsigned long long task_sched_runtime(struct task_struct *p)
2678 {
2679 unsigned long flags;
2680 struct rq *rq;
2681 u64 ns = 0;
2683 rq = task_rq_lock(p, &flags);
2684 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2685 task_rq_unlock(rq, p, &flags);
2687 return ns;
2688 }
2690 /*
2691 * This function gets called by the timer code, with HZ frequency.
2692 * We call it with interrupts disabled.
2693 */
2694 void scheduler_tick(void)
2695 {
2696 int cpu = smp_processor_id();
2697 struct rq *rq = cpu_rq(cpu);
2698 struct task_struct *curr = rq->curr;
2700 sched_clock_tick();
2702 raw_spin_lock(&rq->lock);
2703 update_rq_clock(rq);
2704 update_cpu_load_active(rq);
2705 curr->sched_class->task_tick(rq, curr, 0);
2706 raw_spin_unlock(&rq->lock);
2708 perf_event_task_tick();
2710 #ifdef CONFIG_SMP
2711 rq->idle_balance = idle_cpu(cpu);
2712 trigger_load_balance(rq, cpu);
2713 #endif
2714 }
2716 notrace unsigned long get_parent_ip(unsigned long addr)
2717 {
2718 if (in_lock_functions(addr)) {
2719 addr = CALLER_ADDR2;
2720 if (in_lock_functions(addr))
2721 addr = CALLER_ADDR3;
2722 }
2723 return addr;
2724 }
2726 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2727 defined(CONFIG_PREEMPT_TRACER))
2729 void __kprobes add_preempt_count(int val)
2730 {
2731 #ifdef CONFIG_DEBUG_PREEMPT
2732 /*
2733 * Underflow?
2734 */
2735 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2736 return;
2737 #endif
2738 preempt_count() += val;
2739 #ifdef CONFIG_DEBUG_PREEMPT
2740 /*
2741 * Spinlock count overflowing soon?
2742 */
2743 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2744 PREEMPT_MASK - 10);
2745 #endif
2746 if (preempt_count() == val)
2747 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2748 }
2749 EXPORT_SYMBOL(add_preempt_count);
2751 void __kprobes sub_preempt_count(int val)
2752 {
2753 #ifdef CONFIG_DEBUG_PREEMPT
2754 /*
2755 * Underflow?
2756 */
2757 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2758 return;
2759 /*
2760 * Is the spinlock portion underflowing?
2761 */
2762 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2763 !(preempt_count() & PREEMPT_MASK)))
2764 return;
2765 #endif
2767 if (preempt_count() == val)
2768 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2769 preempt_count() -= val;
2770 }
2771 EXPORT_SYMBOL(sub_preempt_count);
2773 #endif
2775 /*
2776 * Print scheduling while atomic bug:
2777 */
2778 static noinline void __schedule_bug(struct task_struct *prev)
2779 {
2780 if (oops_in_progress)
2781 return;
2783 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2784 prev->comm, prev->pid, preempt_count());
2786 debug_show_held_locks(prev);
2787 print_modules();
2788 if (irqs_disabled())
2789 print_irqtrace_events(prev);
2790 dump_stack();
2791 add_taint(TAINT_WARN);
2792 }
2794 /*
2795 * Various schedule()-time debugging checks and statistics:
2796 */
2797 static inline void schedule_debug(struct task_struct *prev)
2798 {
2799 /*
2800 * Test if we are atomic. Since do_exit() needs to call into
2801 * schedule() atomically, we ignore that path for now.
2802 * Otherwise, whine if we are scheduling when we should not be.
2803 */
2804 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2805 __schedule_bug(prev);
2806 rcu_sleep_check();
2808 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2810 schedstat_inc(this_rq(), sched_count);
2811 }
2813 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2814 {
2815 if (prev->on_rq || rq->skip_clock_update < 0)
2816 update_rq_clock(rq);
2817 prev->sched_class->put_prev_task(rq, prev);
2818 }
2820 /*
2821 * Pick up the highest-prio task:
2822 */
2823 static inline struct task_struct *
2824 pick_next_task(struct rq *rq)
2825 {
2826 const struct sched_class *class;
2827 struct task_struct *p;
2829 /*
2830 * Optimization: we know that if all tasks are in
2831 * the fair class we can call that function directly:
2832 */
2833 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2834 p = fair_sched_class.pick_next_task(rq);
2835 if (likely(p))
2836 return p;
2837 }
2839 for_each_class(class) {
2840 p = class->pick_next_task(rq);
2841 if (p)
2842 return p;
2843 }
2845 BUG(); /* the idle class will always have a runnable task */
2846 }
2848 /*
2849 * __schedule() is the main scheduler function.
2850 *
2851 * The main means of driving the scheduler and thus entering this function are:
2852 *
2853 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2854 *
2855 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2856 * paths. For example, see arch/x86/entry_64.S.
2857 *
2858 * To drive preemption between tasks, the scheduler sets the flag in timer
2859 * interrupt handler scheduler_tick().
2860 *
2861 * 3. Wakeups don't really cause entry into schedule(). They add a
2862 * task to the run-queue and that's it.
2863 *
2864 * Now, if the new task added to the run-queue preempts the current
2865 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2866 * called on the nearest possible occasion:
2867 *
2868 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2869 *
2870 * - in syscall or exception context, at the next outmost
2871 * preempt_enable(). (this might be as soon as the wake_up()'s
2872 * spin_unlock()!)
2873 *
2874 * - in IRQ context, return from interrupt-handler to
2875 * preemptible context
2876 *
2877 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2878 * then at the next:
2879 *
2880 * - cond_resched() call
2881 * - explicit schedule() call
2882 * - return from syscall or exception to user-space
2883 * - return from interrupt-handler to user-space
2884 */
2885 static void __sched __schedule(void)
2886 {
2887 struct task_struct *prev, *next;
2888 unsigned long *switch_count;
2889 struct rq *rq;
2890 int cpu;
2892 need_resched:
2893 preempt_disable();
2894 cpu = smp_processor_id();
2895 rq = cpu_rq(cpu);
2896 rcu_note_context_switch(cpu);
2897 prev = rq->curr;
2899 schedule_debug(prev);
2901 if (sched_feat(HRTICK))
2902 hrtick_clear(rq);
2904 raw_spin_lock_irq(&rq->lock);
2906 switch_count = &prev->nivcsw;
2907 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2908 if (unlikely(signal_pending_state(prev->state, prev))) {
2909 prev->state = TASK_RUNNING;
2910 } else {
2911 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2912 prev->on_rq = 0;
2914 /*
2915 * If a worker went to sleep, notify and ask workqueue
2916 * whether it wants to wake up a task to maintain
2917 * concurrency.
2918 */
2919 if (prev->flags & PF_WQ_WORKER) {
2920 struct task_struct *to_wakeup;
2922 to_wakeup = wq_worker_sleeping(prev, cpu);
2923 if (to_wakeup)
2924 try_to_wake_up_local(to_wakeup);
2925 }
2926 }
2927 switch_count = &prev->nvcsw;
2928 }
2930 pre_schedule(rq, prev);
2932 if (unlikely(!rq->nr_running))
2933 idle_balance(cpu, rq);
2935 put_prev_task(rq, prev);
2936 next = pick_next_task(rq);
2937 clear_tsk_need_resched(prev);
2938 rq->skip_clock_update = 0;
2940 if (likely(prev != next)) {
2941 rq->nr_switches++;
2942 rq->curr = next;
2943 ++*switch_count;
2945 context_switch(rq, prev, next); /* unlocks the rq */
2946 /*
2947 * The context switch have flipped the stack from under us
2948 * and restored the local variables which were saved when
2949 * this task called schedule() in the past. prev == current
2950 * is still correct, but it can be moved to another cpu/rq.
2951 */
2952 cpu = smp_processor_id();
2953 rq = cpu_rq(cpu);
2954 } else
2955 raw_spin_unlock_irq(&rq->lock);
2957 post_schedule(rq);
2959 sched_preempt_enable_no_resched();
2960 if (need_resched())
2961 goto need_resched;
2962 }
2964 static inline void sched_submit_work(struct task_struct *tsk)
2965 {
2966 if (!tsk->state || tsk_is_pi_blocked(tsk))
2967 return;
2968 /*
2969 * If we are going to sleep and we have plugged IO queued,
2970 * make sure to submit it to avoid deadlocks.
2971 */
2972 if (blk_needs_flush_plug(tsk))
2973 blk_schedule_flush_plug(tsk);
2974 }
2976 asmlinkage void __sched schedule(void)
2977 {
2978 struct task_struct *tsk = current;
2980 sched_submit_work(tsk);
2981 __schedule();
2982 }
2983 EXPORT_SYMBOL(schedule);
2985 #ifdef CONFIG_CONTEXT_TRACKING
2986 asmlinkage void __sched schedule_user(void)
2987 {
2988 /*
2989 * If we come here after a random call to set_need_resched(),
2990 * or we have been woken up remotely but the IPI has not yet arrived,
2991 * we haven't yet exited the RCU idle mode. Do it here manually until
2992 * we find a better solution.
2993 */
2994 user_exit();
2995 schedule();
2996 user_enter();
2997 }
2998 #endif
3000 /**
3001 * schedule_preempt_disabled - called with preemption disabled
3002 *
3003 * Returns with preemption disabled. Note: preempt_count must be 1
3004 */
3005 void __sched schedule_preempt_disabled(void)
3006 {
3007 sched_preempt_enable_no_resched();
3008 schedule();
3009 preempt_disable();
3010 }
3012 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3014 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3015 {
3016 if (lock->owner != owner)
3017 return false;
3019 /*
3020 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3021 * lock->owner still matches owner, if that fails, owner might
3022 * point to free()d memory, if it still matches, the rcu_read_lock()
3023 * ensures the memory stays valid.
3024 */
3025 barrier();
3027 return owner->on_cpu;
3028 }
3030 /*
3031 * Look out! "owner" is an entirely speculative pointer
3032 * access and not reliable.
3033 */
3034 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3035 {
3036 if (!sched_feat(OWNER_SPIN))
3037 return 0;
3039 rcu_read_lock();
3040 while (owner_running(lock, owner)) {
3041 if (need_resched())
3042 break;
3044 arch_mutex_cpu_relax();
3045 }
3046 rcu_read_unlock();
3048 /*
3049 * We break out the loop above on need_resched() and when the
3050 * owner changed, which is a sign for heavy contention. Return
3051 * success only when lock->owner is NULL.
3052 */
3053 return lock->owner == NULL;
3054 }
3055 #endif
3057 #ifdef CONFIG_PREEMPT
3058 /*
3059 * this is the entry point to schedule() from in-kernel preemption
3060 * off of preempt_enable. Kernel preemptions off return from interrupt
3061 * occur there and call schedule directly.
3062 */
3063 asmlinkage void __sched notrace preempt_schedule(void)
3064 {
3065 struct thread_info *ti = current_thread_info();
3067 /*
3068 * If there is a non-zero preempt_count or interrupts are disabled,
3069 * we do not want to preempt the current task. Just return..
3070 */
3071 if (likely(ti->preempt_count || irqs_disabled()))
3072 return;
3074 do {
3075 add_preempt_count_notrace(PREEMPT_ACTIVE);
3076 __schedule();
3077 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3079 /*
3080 * Check again in case we missed a preemption opportunity
3081 * between schedule and now.
3082 */
3083 barrier();
3084 } while (need_resched());
3085 }
3086 EXPORT_SYMBOL(preempt_schedule);
3088 /*
3089 * this is the entry point to schedule() from kernel preemption
3090 * off of irq context.
3091 * Note, that this is called and return with irqs disabled. This will
3092 * protect us against recursive calling from irq.
3093 */
3094 asmlinkage void __sched preempt_schedule_irq(void)
3095 {
3096 struct thread_info *ti = current_thread_info();
3098 /* Catch callers which need to be fixed */
3099 BUG_ON(ti->preempt_count || !irqs_disabled());
3101 user_exit();
3102 do {
3103 add_preempt_count(PREEMPT_ACTIVE);
3104 local_irq_enable();
3105 __schedule();
3106 local_irq_disable();
3107 sub_preempt_count(PREEMPT_ACTIVE);
3109 /*
3110 * Check again in case we missed a preemption opportunity
3111 * between schedule and now.
3112 */
3113 barrier();
3114 } while (need_resched());
3115 }
3117 #endif /* CONFIG_PREEMPT */
3119 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3120 void *key)
3121 {
3122 return try_to_wake_up(curr->private, mode, wake_flags);
3123 }
3124 EXPORT_SYMBOL(default_wake_function);
3126 /*
3127 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3128 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3129 * number) then we wake all the non-exclusive tasks and one exclusive task.
3130 *
3131 * There are circumstances in which we can try to wake a task which has already
3132 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3133 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3134 */
3135 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3136 int nr_exclusive, int wake_flags, void *key)
3137 {
3138 wait_queue_t *curr, *next;
3140 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3141 unsigned flags = curr->flags;
3143 if (curr->func(curr, mode, wake_flags, key) &&
3144 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3145 break;
3146 }
3147 }
3149 /**
3150 * __wake_up - wake up threads blocked on a waitqueue.
3151 * @q: the waitqueue
3152 * @mode: which threads
3153 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3154 * @key: is directly passed to the wakeup function
3155 *
3156 * It may be assumed that this function implies a write memory barrier before
3157 * changing the task state if and only if any tasks are woken up.
3158 */
3159 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3160 int nr_exclusive, void *key)
3161 {
3162 unsigned long flags;
3164 spin_lock_irqsave(&q->lock, flags);
3165 __wake_up_common(q, mode, nr_exclusive, 0, key);
3166 spin_unlock_irqrestore(&q->lock, flags);
3167 }
3168 EXPORT_SYMBOL(__wake_up);
3170 /*
3171 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3172 */
3173 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3174 {
3175 __wake_up_common(q, mode, nr, 0, NULL);
3176 }
3177 EXPORT_SYMBOL_GPL(__wake_up_locked);
3179 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3180 {
3181 __wake_up_common(q, mode, 1, 0, key);
3182 }
3183 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3185 /**
3186 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3187 * @q: the waitqueue
3188 * @mode: which threads
3189 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3190 * @key: opaque value to be passed to wakeup targets
3191 *
3192 * The sync wakeup differs that the waker knows that it will schedule
3193 * away soon, so while the target thread will be woken up, it will not
3194 * be migrated to another CPU - ie. the two threads are 'synchronized'
3195 * with each other. This can prevent needless bouncing between CPUs.
3196 *
3197 * On UP it can prevent extra preemption.
3198 *
3199 * It may be assumed that this function implies a write memory barrier before
3200 * changing the task state if and only if any tasks are woken up.
3201 */
3202 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3203 int nr_exclusive, void *key)
3204 {
3205 unsigned long flags;
3206 int wake_flags = WF_SYNC;
3208 if (unlikely(!q))
3209 return;
3211 if (unlikely(!nr_exclusive))
3212 wake_flags = 0;
3214 spin_lock_irqsave(&q->lock, flags);
3215 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3216 spin_unlock_irqrestore(&q->lock, flags);
3217 }
3218 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3220 /*
3221 * __wake_up_sync - see __wake_up_sync_key()
3222 */
3223 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3224 {
3225 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3226 }
3227 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3229 /**
3230 * complete: - signals a single thread waiting on this completion
3231 * @x: holds the state of this particular completion
3232 *
3233 * This will wake up a single thread waiting on this completion. Threads will be
3234 * awakened in the same order in which they were queued.
3235 *
3236 * See also complete_all(), wait_for_completion() and related routines.
3237 *
3238 * It may be assumed that this function implies a write memory barrier before
3239 * changing the task state if and only if any tasks are woken up.
3240 */
3241 void complete(struct completion *x)
3242 {
3243 unsigned long flags;
3245 spin_lock_irqsave(&x->wait.lock, flags);
3246 x->done++;
3247 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3248 spin_unlock_irqrestore(&x->wait.lock, flags);
3249 }
3250 EXPORT_SYMBOL(complete);
3252 /**
3253 * complete_all: - signals all threads waiting on this completion
3254 * @x: holds the state of this particular completion
3255 *
3256 * This will wake up all threads waiting on this particular completion event.
3257 *
3258 * It may be assumed that this function implies a write memory barrier before
3259 * changing the task state if and only if any tasks are woken up.
3260 */
3261 void complete_all(struct completion *x)
3262 {
3263 unsigned long flags;
3265 spin_lock_irqsave(&x->wait.lock, flags);
3266 x->done += UINT_MAX/2;
3267 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3268 spin_unlock_irqrestore(&x->wait.lock, flags);
3269 }
3270 EXPORT_SYMBOL(complete_all);
3272 static inline long __sched
3273 do_wait_for_common(struct completion *x, long timeout, int state)
3274 {
3275 if (!x->done) {
3276 DECLARE_WAITQUEUE(wait, current);
3278 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3279 do {
3280 if (signal_pending_state(state, current)) {
3281 timeout = -ERESTARTSYS;
3282 break;
3283 }
3284 __set_current_state(state);
3285 spin_unlock_irq(&x->wait.lock);
3286 timeout = schedule_timeout(timeout);
3287 spin_lock_irq(&x->wait.lock);
3288 } while (!x->done && timeout);
3289 __remove_wait_queue(&x->wait, &wait);
3290 if (!x->done)
3291 return timeout;
3292 }
3293 x->done--;
3294 return timeout ?: 1;
3295 }
3297 static long __sched
3298 wait_for_common(struct completion *x, long timeout, int state)
3299 {
3300 might_sleep();
3302 spin_lock_irq(&x->wait.lock);
3303 timeout = do_wait_for_common(x, timeout, state);
3304 spin_unlock_irq(&x->wait.lock);
3305 return timeout;
3306 }
3308 /**
3309 * wait_for_completion: - waits for completion of a task
3310 * @x: holds the state of this particular completion
3311 *
3312 * This waits to be signaled for completion of a specific task. It is NOT
3313 * interruptible and there is no timeout.
3314 *
3315 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3316 * and interrupt capability. Also see complete().
3317 */
3318 void __sched wait_for_completion(struct completion *x)
3319 {
3320 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3321 }
3322 EXPORT_SYMBOL(wait_for_completion);
3324 /**
3325 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3326 * @x: holds the state of this particular completion
3327 * @timeout: timeout value in jiffies
3328 *
3329 * This waits for either a completion of a specific task to be signaled or for a
3330 * specified timeout to expire. The timeout is in jiffies. It is not
3331 * interruptible.
3332 *
3333 * The return value is 0 if timed out, and positive (at least 1, or number of
3334 * jiffies left till timeout) if completed.
3335 */
3336 unsigned long __sched
3337 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3338 {
3339 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3340 }
3341 EXPORT_SYMBOL(wait_for_completion_timeout);
3343 /**
3344 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3345 * @x: holds the state of this particular completion
3346 *
3347 * This waits for completion of a specific task to be signaled. It is
3348 * interruptible.
3349 *
3350 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3351 */
3352 int __sched wait_for_completion_interruptible(struct completion *x)
3353 {
3354 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3355 if (t == -ERESTARTSYS)
3356 return t;
3357 return 0;
3358 }
3359 EXPORT_SYMBOL(wait_for_completion_interruptible);
3361 /**
3362 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3363 * @x: holds the state of this particular completion
3364 * @timeout: timeout value in jiffies
3365 *
3366 * This waits for either a completion of a specific task to be signaled or for a
3367 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3368 *
3369 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3370 * positive (at least 1, or number of jiffies left till timeout) if completed.
3371 */
3372 long __sched
3373 wait_for_completion_interruptible_timeout(struct completion *x,
3374 unsigned long timeout)
3375 {
3376 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3377 }
3378 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3380 /**
3381 * wait_for_completion_killable: - waits for completion of a task (killable)
3382 * @x: holds the state of this particular completion
3383 *
3384 * This waits to be signaled for completion of a specific task. It can be
3385 * interrupted by a kill signal.
3386 *
3387 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3388 */
3389 int __sched wait_for_completion_killable(struct completion *x)
3390 {
3391 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3392 if (t == -ERESTARTSYS)
3393 return t;
3394 return 0;
3395 }
3396 EXPORT_SYMBOL(wait_for_completion_killable);
3398 /**
3399 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3400 * @x: holds the state of this particular completion
3401 * @timeout: timeout value in jiffies
3402 *
3403 * This waits for either a completion of a specific task to be
3404 * signaled or for a specified timeout to expire. It can be
3405 * interrupted by a kill signal. The timeout is in jiffies.
3406 *
3407 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3408 * positive (at least 1, or number of jiffies left till timeout) if completed.
3409 */
3410 long __sched
3411 wait_for_completion_killable_timeout(struct completion *x,
3412 unsigned long timeout)
3413 {
3414 return wait_for_common(x, timeout, TASK_KILLABLE);
3415 }
3416 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3418 /**
3419 * try_wait_for_completion - try to decrement a completion without blocking
3420 * @x: completion structure
3421 *
3422 * Returns: 0 if a decrement cannot be done without blocking
3423 * 1 if a decrement succeeded.
3424 *
3425 * If a completion is being used as a counting completion,
3426 * attempt to decrement the counter without blocking. This
3427 * enables us to avoid waiting if the resource the completion
3428 * is protecting is not available.
3429 */
3430 bool try_wait_for_completion(struct completion *x)
3431 {
3432 unsigned long flags;
3433 int ret = 1;
3435 spin_lock_irqsave(&x->wait.lock, flags);
3436 if (!x->done)
3437 ret = 0;
3438 else
3439 x->done--;
3440 spin_unlock_irqrestore(&x->wait.lock, flags);
3441 return ret;
3442 }
3443 EXPORT_SYMBOL(try_wait_for_completion);
3445 /**
3446 * completion_done - Test to see if a completion has any waiters
3447 * @x: completion structure
3448 *
3449 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3450 * 1 if there are no waiters.
3451 *
3452 */
3453 bool completion_done(struct completion *x)
3454 {
3455 unsigned long flags;
3456 int ret = 1;
3458 spin_lock_irqsave(&x->wait.lock, flags);
3459 if (!x->done)
3460 ret = 0;
3461 spin_unlock_irqrestore(&x->wait.lock, flags);
3462 return ret;
3463 }
3464 EXPORT_SYMBOL(completion_done);
3466 static long __sched
3467 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3468 {
3469 unsigned long flags;