]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - android-sdk/kernel-video.git/blob - mm/nommu.c
ARM: dts: dra72: enable dss node
[android-sdk/kernel-video.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 #include <linux/sched/sysctl.h>
35 #include <asm/uaccess.h>
36 #include <asm/tlb.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mmu_context.h>
39 #include "internal.h"
41 #if 0
42 #define kenter(FMT, ...) \
43         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
44 #define kleave(FMT, ...) \
45         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
46 #define kdebug(FMT, ...) \
47         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #else
49 #define kenter(FMT, ...) \
50         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
51 #define kleave(FMT, ...) \
52         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
53 #define kdebug(FMT, ...) \
54         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
55 #endif
57 void *high_memory;
58 struct page *mem_map;
59 unsigned long max_mapnr;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 unsigned long sysctl_overcommit_kbytes __read_mostly;
65 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
66 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
67 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
68 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
69 int heap_stack_gap = 0;
71 atomic_long_t mmap_pages_allocated;
73 /*
74  * The global memory commitment made in the system can be a metric
75  * that can be used to drive ballooning decisions when Linux is hosted
76  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
77  * balancing memory across competing virtual machines that are hosted.
78  * Several metrics drive this policy engine including the guest reported
79  * memory commitment.
80  */
81 unsigned long vm_memory_committed(void)
82 {
83         return percpu_counter_read_positive(&vm_committed_as);
84 }
86 EXPORT_SYMBOL_GPL(vm_memory_committed);
88 EXPORT_SYMBOL(mem_map);
90 /* list of mapped, potentially shareable regions */
91 static struct kmem_cache *vm_region_jar;
92 struct rb_root nommu_region_tree = RB_ROOT;
93 DECLARE_RWSEM(nommu_region_sem);
95 const struct vm_operations_struct generic_file_vm_ops = {
96 };
98 /*
99  * Return the total memory allocated for this pointer, not
100  * just what the caller asked for.
101  *
102  * Doesn't have to be accurate, i.e. may have races.
103  */
104 unsigned int kobjsize(const void *objp)
106         struct page *page;
108         /*
109          * If the object we have should not have ksize performed on it,
110          * return size of 0
111          */
112         if (!objp || !virt_addr_valid(objp))
113                 return 0;
115         page = virt_to_head_page(objp);
117         /*
118          * If the allocator sets PageSlab, we know the pointer came from
119          * kmalloc().
120          */
121         if (PageSlab(page))
122                 return ksize(objp);
124         /*
125          * If it's not a compound page, see if we have a matching VMA
126          * region. This test is intentionally done in reverse order,
127          * so if there's no VMA, we still fall through and hand back
128          * PAGE_SIZE for 0-order pages.
129          */
130         if (!PageCompound(page)) {
131                 struct vm_area_struct *vma;
133                 vma = find_vma(current->mm, (unsigned long)objp);
134                 if (vma)
135                         return vma->vm_end - vma->vm_start;
136         }
138         /*
139          * The ksize() function is only guaranteed to work for pointers
140          * returned by kmalloc(). So handle arbitrary pointers here.
141          */
142         return PAGE_SIZE << compound_order(page);
145 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
146                       unsigned long start, unsigned long nr_pages,
147                       unsigned int foll_flags, struct page **pages,
148                       struct vm_area_struct **vmas, int *nonblocking)
150         struct vm_area_struct *vma;
151         unsigned long vm_flags;
152         int i;
154         /* calculate required read or write permissions.
155          * If FOLL_FORCE is set, we only require the "MAY" flags.
156          */
157         vm_flags  = (foll_flags & FOLL_WRITE) ?
158                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
159         vm_flags &= (foll_flags & FOLL_FORCE) ?
160                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
162         for (i = 0; i < nr_pages; i++) {
163                 vma = find_vma(mm, start);
164                 if (!vma)
165                         goto finish_or_fault;
167                 /* protect what we can, including chardevs */
168                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
169                     !(vm_flags & vma->vm_flags))
170                         goto finish_or_fault;
172                 if (pages) {
173                         pages[i] = virt_to_page(start);
174                         if (pages[i])
175                                 page_cache_get(pages[i]);
176                 }
177                 if (vmas)
178                         vmas[i] = vma;
179                 start = (start + PAGE_SIZE) & PAGE_MASK;
180         }
182         return i;
184 finish_or_fault:
185         return i ? : -EFAULT;
188 /*
189  * get a list of pages in an address range belonging to the specified process
190  * and indicate the VMA that covers each page
191  * - this is potentially dodgy as we may end incrementing the page count of a
192  *   slab page or a secondary page from a compound page
193  * - don't permit access to VMAs that don't support it, such as I/O mappings
194  */
195 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
196                     unsigned long start, unsigned long nr_pages,
197                     int write, int force, struct page **pages,
198                     struct vm_area_struct **vmas)
200         int flags = 0;
202         if (write)
203                 flags |= FOLL_WRITE;
204         if (force)
205                 flags |= FOLL_FORCE;
207         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
208                                 NULL);
210 EXPORT_SYMBOL(get_user_pages);
212 /**
213  * follow_pfn - look up PFN at a user virtual address
214  * @vma: memory mapping
215  * @address: user virtual address
216  * @pfn: location to store found PFN
217  *
218  * Only IO mappings and raw PFN mappings are allowed.
219  *
220  * Returns zero and the pfn at @pfn on success, -ve otherwise.
221  */
222 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
223         unsigned long *pfn)
225         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
226                 return -EINVAL;
228         *pfn = address >> PAGE_SHIFT;
229         return 0;
231 EXPORT_SYMBOL(follow_pfn);
233 LIST_HEAD(vmap_area_list);
235 void vfree(const void *addr)
237         kfree(addr);
239 EXPORT_SYMBOL(vfree);
241 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
243         /*
244          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
245          * returns only a logical address.
246          */
247         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
249 EXPORT_SYMBOL(__vmalloc);
251 void *vmalloc_user(unsigned long size)
253         void *ret;
255         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
256                         PAGE_KERNEL);
257         if (ret) {
258                 struct vm_area_struct *vma;
260                 down_write(&current->mm->mmap_sem);
261                 vma = find_vma(current->mm, (unsigned long)ret);
262                 if (vma)
263                         vma->vm_flags |= VM_USERMAP;
264                 up_write(&current->mm->mmap_sem);
265         }
267         return ret;
269 EXPORT_SYMBOL(vmalloc_user);
271 struct page *vmalloc_to_page(const void *addr)
273         return virt_to_page(addr);
275 EXPORT_SYMBOL(vmalloc_to_page);
277 unsigned long vmalloc_to_pfn(const void *addr)
279         return page_to_pfn(virt_to_page(addr));
281 EXPORT_SYMBOL(vmalloc_to_pfn);
283 long vread(char *buf, char *addr, unsigned long count)
285         /* Don't allow overflow */
286         if ((unsigned long) buf + count < count)
287                 count = -(unsigned long) buf;
289         memcpy(buf, addr, count);
290         return count;
293 long vwrite(char *buf, char *addr, unsigned long count)
295         /* Don't allow overflow */
296         if ((unsigned long) addr + count < count)
297                 count = -(unsigned long) addr;
299         memcpy(addr, buf, count);
300         return(count);
303 /*
304  *      vmalloc  -  allocate virtually continguos memory
305  *
306  *      @size:          allocation size
307  *
308  *      Allocate enough pages to cover @size from the page level
309  *      allocator and map them into continguos kernel virtual space.
310  *
311  *      For tight control over page level allocator and protection flags
312  *      use __vmalloc() instead.
313  */
314 void *vmalloc(unsigned long size)
316        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
318 EXPORT_SYMBOL(vmalloc);
320 /*
321  *      vzalloc - allocate virtually continguos memory with zero fill
322  *
323  *      @size:          allocation size
324  *
325  *      Allocate enough pages to cover @size from the page level
326  *      allocator and map them into continguos kernel virtual space.
327  *      The memory allocated is set to zero.
328  *
329  *      For tight control over page level allocator and protection flags
330  *      use __vmalloc() instead.
331  */
332 void *vzalloc(unsigned long size)
334         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
335                         PAGE_KERNEL);
337 EXPORT_SYMBOL(vzalloc);
339 /**
340  * vmalloc_node - allocate memory on a specific node
341  * @size:       allocation size
342  * @node:       numa node
343  *
344  * Allocate enough pages to cover @size from the page level
345  * allocator and map them into contiguous kernel virtual space.
346  *
347  * For tight control over page level allocator and protection flags
348  * use __vmalloc() instead.
349  */
350 void *vmalloc_node(unsigned long size, int node)
352         return vmalloc(size);
354 EXPORT_SYMBOL(vmalloc_node);
356 /**
357  * vzalloc_node - allocate memory on a specific node with zero fill
358  * @size:       allocation size
359  * @node:       numa node
360  *
361  * Allocate enough pages to cover @size from the page level
362  * allocator and map them into contiguous kernel virtual space.
363  * The memory allocated is set to zero.
364  *
365  * For tight control over page level allocator and protection flags
366  * use __vmalloc() instead.
367  */
368 void *vzalloc_node(unsigned long size, int node)
370         return vzalloc(size);
372 EXPORT_SYMBOL(vzalloc_node);
374 #ifndef PAGE_KERNEL_EXEC
375 # define PAGE_KERNEL_EXEC PAGE_KERNEL
376 #endif
378 /**
379  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
380  *      @size:          allocation size
381  *
382  *      Kernel-internal function to allocate enough pages to cover @size
383  *      the page level allocator and map them into contiguous and
384  *      executable kernel virtual space.
385  *
386  *      For tight control over page level allocator and protection flags
387  *      use __vmalloc() instead.
388  */
390 void *vmalloc_exec(unsigned long size)
392         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
395 /**
396  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
397  *      @size:          allocation size
398  *
399  *      Allocate enough 32bit PA addressable pages to cover @size from the
400  *      page level allocator and map them into continguos kernel virtual space.
401  */
402 void *vmalloc_32(unsigned long size)
404         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
406 EXPORT_SYMBOL(vmalloc_32);
408 /**
409  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
410  *      @size:          allocation size
411  *
412  * The resulting memory area is 32bit addressable and zeroed so it can be
413  * mapped to userspace without leaking data.
414  *
415  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
416  * remap_vmalloc_range() are permissible.
417  */
418 void *vmalloc_32_user(unsigned long size)
420         /*
421          * We'll have to sort out the ZONE_DMA bits for 64-bit,
422          * but for now this can simply use vmalloc_user() directly.
423          */
424         return vmalloc_user(size);
426 EXPORT_SYMBOL(vmalloc_32_user);
428 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
430         BUG();
431         return NULL;
433 EXPORT_SYMBOL(vmap);
435 void vunmap(const void *addr)
437         BUG();
439 EXPORT_SYMBOL(vunmap);
441 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
443         BUG();
444         return NULL;
446 EXPORT_SYMBOL(vm_map_ram);
448 void vm_unmap_ram(const void *mem, unsigned int count)
450         BUG();
452 EXPORT_SYMBOL(vm_unmap_ram);
454 void vm_unmap_aliases(void)
457 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
459 /*
460  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
461  * have one.
462  */
463 void  __attribute__((weak)) vmalloc_sync_all(void)
467 /**
468  *      alloc_vm_area - allocate a range of kernel address space
469  *      @size:          size of the area
470  *
471  *      Returns:        NULL on failure, vm_struct on success
472  *
473  *      This function reserves a range of kernel address space, and
474  *      allocates pagetables to map that range.  No actual mappings
475  *      are created.  If the kernel address space is not shared
476  *      between processes, it syncs the pagetable across all
477  *      processes.
478  */
479 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
481         BUG();
482         return NULL;
484 EXPORT_SYMBOL_GPL(alloc_vm_area);
486 void free_vm_area(struct vm_struct *area)
488         BUG();
490 EXPORT_SYMBOL_GPL(free_vm_area);
492 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
493                    struct page *page)
495         return -EINVAL;
497 EXPORT_SYMBOL(vm_insert_page);
499 /*
500  *  sys_brk() for the most part doesn't need the global kernel
501  *  lock, except when an application is doing something nasty
502  *  like trying to un-brk an area that has already been mapped
503  *  to a regular file.  in this case, the unmapping will need
504  *  to invoke file system routines that need the global lock.
505  */
506 SYSCALL_DEFINE1(brk, unsigned long, brk)
508         struct mm_struct *mm = current->mm;
510         if (brk < mm->start_brk || brk > mm->context.end_brk)
511                 return mm->brk;
513         if (mm->brk == brk)
514                 return mm->brk;
516         /*
517          * Always allow shrinking brk
518          */
519         if (brk <= mm->brk) {
520                 mm->brk = brk;
521                 return brk;
522         }
524         /*
525          * Ok, looks good - let it rip.
526          */
527         flush_icache_range(mm->brk, brk);
528         return mm->brk = brk;
531 /*
532  * initialise the VMA and region record slabs
533  */
534 void __init mmap_init(void)
536         int ret;
538         ret = percpu_counter_init(&vm_committed_as, 0);
539         VM_BUG_ON(ret);
540         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
543 /*
544  * validate the region tree
545  * - the caller must hold the region lock
546  */
547 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
548 static noinline void validate_nommu_regions(void)
550         struct vm_region *region, *last;
551         struct rb_node *p, *lastp;
553         lastp = rb_first(&nommu_region_tree);
554         if (!lastp)
555                 return;
557         last = rb_entry(lastp, struct vm_region, vm_rb);
558         BUG_ON(unlikely(last->vm_end <= last->vm_start));
559         BUG_ON(unlikely(last->vm_top < last->vm_end));
561         while ((p = rb_next(lastp))) {
562                 region = rb_entry(p, struct vm_region, vm_rb);
563                 last = rb_entry(lastp, struct vm_region, vm_rb);
565                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
566                 BUG_ON(unlikely(region->vm_top < region->vm_end));
567                 BUG_ON(unlikely(region->vm_start < last->vm_top));
569                 lastp = p;
570         }
572 #else
573 static void validate_nommu_regions(void)
576 #endif
578 /*
579  * add a region into the global tree
580  */
581 static void add_nommu_region(struct vm_region *region)
583         struct vm_region *pregion;
584         struct rb_node **p, *parent;
586         validate_nommu_regions();
588         parent = NULL;
589         p = &nommu_region_tree.rb_node;
590         while (*p) {
591                 parent = *p;
592                 pregion = rb_entry(parent, struct vm_region, vm_rb);
593                 if (region->vm_start < pregion->vm_start)
594                         p = &(*p)->rb_left;
595                 else if (region->vm_start > pregion->vm_start)
596                         p = &(*p)->rb_right;
597                 else if (pregion == region)
598                         return;
599                 else
600                         BUG();
601         }
603         rb_link_node(&region->vm_rb, parent, p);
604         rb_insert_color(&region->vm_rb, &nommu_region_tree);
606         validate_nommu_regions();
609 /*
610  * delete a region from the global tree
611  */
612 static void delete_nommu_region(struct vm_region *region)
614         BUG_ON(!nommu_region_tree.rb_node);
616         validate_nommu_regions();
617         rb_erase(&region->vm_rb, &nommu_region_tree);
618         validate_nommu_regions();
621 /*
622  * free a contiguous series of pages
623  */
624 static void free_page_series(unsigned long from, unsigned long to)
626         for (; from < to; from += PAGE_SIZE) {
627                 struct page *page = virt_to_page(from);
629                 kdebug("- free %lx", from);
630                 atomic_long_dec(&mmap_pages_allocated);
631                 if (page_count(page) != 1)
632                         kdebug("free page %p: refcount not one: %d",
633                                page, page_count(page));
634                 put_page(page);
635         }
638 /*
639  * release a reference to a region
640  * - the caller must hold the region semaphore for writing, which this releases
641  * - the region may not have been added to the tree yet, in which case vm_top
642  *   will equal vm_start
643  */
644 static void __put_nommu_region(struct vm_region *region)
645         __releases(nommu_region_sem)
647         kenter("%p{%d}", region, region->vm_usage);
649         BUG_ON(!nommu_region_tree.rb_node);
651         if (--region->vm_usage == 0) {
652                 if (region->vm_top > region->vm_start)
653                         delete_nommu_region(region);
654                 up_write(&nommu_region_sem);
656                 if (region->vm_file)
657                         fput(region->vm_file);
659                 /* IO memory and memory shared directly out of the pagecache
660                  * from ramfs/tmpfs mustn't be released here */
661                 if (region->vm_flags & VM_MAPPED_COPY) {
662                         kdebug("free series");
663                         free_page_series(region->vm_start, region->vm_top);
664                 }
665                 kmem_cache_free(vm_region_jar, region);
666         } else {
667                 up_write(&nommu_region_sem);
668         }
671 /*
672  * release a reference to a region
673  */
674 static void put_nommu_region(struct vm_region *region)
676         down_write(&nommu_region_sem);
677         __put_nommu_region(region);
680 /*
681  * update protection on a vma
682  */
683 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
685 #ifdef CONFIG_MPU
686         struct mm_struct *mm = vma->vm_mm;
687         long start = vma->vm_start & PAGE_MASK;
688         while (start < vma->vm_end) {
689                 protect_page(mm, start, flags);
690                 start += PAGE_SIZE;
691         }
692         update_protections(mm);
693 #endif
696 /*
697  * add a VMA into a process's mm_struct in the appropriate place in the list
698  * and tree and add to the address space's page tree also if not an anonymous
699  * page
700  * - should be called with mm->mmap_sem held writelocked
701  */
702 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
704         struct vm_area_struct *pvma, *prev;
705         struct address_space *mapping;
706         struct rb_node **p, *parent, *rb_prev;
708         kenter(",%p", vma);
710         BUG_ON(!vma->vm_region);
712         mm->map_count++;
713         vma->vm_mm = mm;
715         protect_vma(vma, vma->vm_flags);
717         /* add the VMA to the mapping */
718         if (vma->vm_file) {
719                 mapping = vma->vm_file->f_mapping;
721                 mutex_lock(&mapping->i_mmap_mutex);
722                 flush_dcache_mmap_lock(mapping);
723                 vma_interval_tree_insert(vma, &mapping->i_mmap);
724                 flush_dcache_mmap_unlock(mapping);
725                 mutex_unlock(&mapping->i_mmap_mutex);
726         }
728         /* add the VMA to the tree */
729         parent = rb_prev = NULL;
730         p = &mm->mm_rb.rb_node;
731         while (*p) {
732                 parent = *p;
733                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
735                 /* sort by: start addr, end addr, VMA struct addr in that order
736                  * (the latter is necessary as we may get identical VMAs) */
737                 if (vma->vm_start < pvma->vm_start)
738                         p = &(*p)->rb_left;
739                 else if (vma->vm_start > pvma->vm_start) {
740                         rb_prev = parent;
741                         p = &(*p)->rb_right;
742                 } else if (vma->vm_end < pvma->vm_end)
743                         p = &(*p)->rb_left;
744                 else if (vma->vm_end > pvma->vm_end) {
745                         rb_prev = parent;
746                         p = &(*p)->rb_right;
747                 } else if (vma < pvma)
748                         p = &(*p)->rb_left;
749                 else if (vma > pvma) {
750                         rb_prev = parent;
751                         p = &(*p)->rb_right;
752                 } else
753                         BUG();
754         }
756         rb_link_node(&vma->vm_rb, parent, p);
757         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
759         /* add VMA to the VMA list also */
760         prev = NULL;
761         if (rb_prev)
762                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
764         __vma_link_list(mm, vma, prev, parent);
767 /*
768  * delete a VMA from its owning mm_struct and address space
769  */
770 static void delete_vma_from_mm(struct vm_area_struct *vma)
772         int i;
773         struct address_space *mapping;
774         struct mm_struct *mm = vma->vm_mm;
775         struct task_struct *curr = current;
777         kenter("%p", vma);
779         protect_vma(vma, 0);
781         mm->map_count--;
782         for (i = 0; i < VMACACHE_SIZE; i++) {
783                 /* if the vma is cached, invalidate the entire cache */
784                 if (curr->vmacache[i] == vma) {
785                         vmacache_invalidate(curr->mm);
786                         break;
787                 }
788         }
790         /* remove the VMA from the mapping */
791         if (vma->vm_file) {
792                 mapping = vma->vm_file->f_mapping;
794                 mutex_lock(&mapping->i_mmap_mutex);
795                 flush_dcache_mmap_lock(mapping);
796                 vma_interval_tree_remove(vma, &mapping->i_mmap);
797                 flush_dcache_mmap_unlock(mapping);
798                 mutex_unlock(&mapping->i_mmap_mutex);
799         }
801         /* remove from the MM's tree and list */
802         rb_erase(&vma->vm_rb, &mm->mm_rb);
804         if (vma->vm_prev)
805                 vma->vm_prev->vm_next = vma->vm_next;
806         else
807                 mm->mmap = vma->vm_next;
809         if (vma->vm_next)
810                 vma->vm_next->vm_prev = vma->vm_prev;
813 /*
814  * destroy a VMA record
815  */
816 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
818         kenter("%p", vma);
819         if (vma->vm_ops && vma->vm_ops->close)
820                 vma->vm_ops->close(vma);
821         if (vma->vm_file)
822                 fput(vma->vm_file);
823         put_nommu_region(vma->vm_region);
824         kmem_cache_free(vm_area_cachep, vma);
827 /*
828  * look up the first VMA in which addr resides, NULL if none
829  * - should be called with mm->mmap_sem at least held readlocked
830  */
831 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
833         struct vm_area_struct *vma;
835         /* check the cache first */
836         vma = vmacache_find(mm, addr);
837         if (likely(vma))
838                 return vma;
840         /* trawl the list (there may be multiple mappings in which addr
841          * resides) */
842         for (vma = mm->mmap; vma; vma = vma->vm_next) {
843                 if (vma->vm_start > addr)
844                         return NULL;
845                 if (vma->vm_end > addr) {
846                         vmacache_update(addr, vma);
847                         return vma;
848                 }
849         }
851         return NULL;
853 EXPORT_SYMBOL(find_vma);
855 /*
856  * find a VMA
857  * - we don't extend stack VMAs under NOMMU conditions
858  */
859 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
861         return find_vma(mm, addr);
864 /*
865  * expand a stack to a given address
866  * - not supported under NOMMU conditions
867  */
868 int expand_stack(struct vm_area_struct *vma, unsigned long address)
870         return -ENOMEM;
873 /*
874  * look up the first VMA exactly that exactly matches addr
875  * - should be called with mm->mmap_sem at least held readlocked
876  */
877 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
878                                              unsigned long addr,
879                                              unsigned long len)
881         struct vm_area_struct *vma;
882         unsigned long end = addr + len;
884         /* check the cache first */
885         vma = vmacache_find_exact(mm, addr, end);
886         if (vma)
887                 return vma;
889         /* trawl the list (there may be multiple mappings in which addr
890          * resides) */
891         for (vma = mm->mmap; vma; vma = vma->vm_next) {
892                 if (vma->vm_start < addr)
893                         continue;
894                 if (vma->vm_start > addr)
895                         return NULL;
896                 if (vma->vm_end == end) {
897                         vmacache_update(addr, vma);
898                         return vma;
899                 }
900         }
902         return NULL;
905 /*
906  * determine whether a mapping should be permitted and, if so, what sort of
907  * mapping we're capable of supporting
908  */
909 static int validate_mmap_request(struct file *file,
910                                  unsigned long addr,
911                                  unsigned long len,
912                                  unsigned long prot,
913                                  unsigned long flags,
914                                  unsigned long pgoff,
915                                  unsigned long *_capabilities)
917         unsigned long capabilities, rlen;
918         int ret;
920         /* do the simple checks first */
921         if (flags & MAP_FIXED) {
922                 printk(KERN_DEBUG
923                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
924                        current->pid);
925                 return -EINVAL;
926         }
928         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
929             (flags & MAP_TYPE) != MAP_SHARED)
930                 return -EINVAL;
932         if (!len)
933                 return -EINVAL;
935         /* Careful about overflows.. */
936         rlen = PAGE_ALIGN(len);
937         if (!rlen || rlen > TASK_SIZE)
938                 return -ENOMEM;
940         /* offset overflow? */
941         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
942                 return -EOVERFLOW;
944         if (file) {
945                 /* validate file mapping requests */
946                 struct address_space *mapping;
948                 /* files must support mmap */
949                 if (!file->f_op->mmap)
950                         return -ENODEV;
952                 /* work out if what we've got could possibly be shared
953                  * - we support chardevs that provide their own "memory"
954                  * - we support files/blockdevs that are memory backed
955                  */
956                 mapping = file->f_mapping;
957                 if (!mapping)
958                         mapping = file_inode(file)->i_mapping;
960                 capabilities = 0;
961                 if (mapping && mapping->backing_dev_info)
962                         capabilities = mapping->backing_dev_info->capabilities;
964                 if (!capabilities) {
965                         /* no explicit capabilities set, so assume some
966                          * defaults */
967                         switch (file_inode(file)->i_mode & S_IFMT) {
968                         case S_IFREG:
969                         case S_IFBLK:
970                                 capabilities = BDI_CAP_MAP_COPY;
971                                 break;
973                         case S_IFCHR:
974                                 capabilities =
975                                         BDI_CAP_MAP_DIRECT |
976                                         BDI_CAP_READ_MAP |
977                                         BDI_CAP_WRITE_MAP;
978                                 break;
980                         default:
981                                 return -EINVAL;
982                         }
983                 }
985                 /* eliminate any capabilities that we can't support on this
986                  * device */
987                 if (!file->f_op->get_unmapped_area)
988                         capabilities &= ~BDI_CAP_MAP_DIRECT;
989                 if (!file->f_op->read)
990                         capabilities &= ~BDI_CAP_MAP_COPY;
992                 /* The file shall have been opened with read permission. */
993                 if (!(file->f_mode & FMODE_READ))
994                         return -EACCES;
996                 if (flags & MAP_SHARED) {
997                         /* do checks for writing, appending and locking */
998                         if ((prot & PROT_WRITE) &&
999                             !(file->f_mode & FMODE_WRITE))
1000                                 return -EACCES;
1002                         if (IS_APPEND(file_inode(file)) &&
1003                             (file->f_mode & FMODE_WRITE))
1004                                 return -EACCES;
1006                         if (locks_verify_locked(file_inode(file)))
1007                                 return -EAGAIN;
1009                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
1010                                 return -ENODEV;
1012                         /* we mustn't privatise shared mappings */
1013                         capabilities &= ~BDI_CAP_MAP_COPY;
1014                 }
1015                 else {
1016                         /* we're going to read the file into private memory we
1017                          * allocate */
1018                         if (!(capabilities & BDI_CAP_MAP_COPY))
1019                                 return -ENODEV;
1021                         /* we don't permit a private writable mapping to be
1022                          * shared with the backing device */
1023                         if (prot & PROT_WRITE)
1024                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1025                 }
1027                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1028                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1029                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1030                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1031                             ) {
1032                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1033                                 if (flags & MAP_SHARED) {
1034                                         printk(KERN_WARNING
1035                                                "MAP_SHARED not completely supported on !MMU\n");
1036                                         return -EINVAL;
1037                                 }
1038                         }
1039                 }
1041                 /* handle executable mappings and implied executable
1042                  * mappings */
1043                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1044                         if (prot & PROT_EXEC)
1045                                 return -EPERM;
1046                 }
1047                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1048                         /* handle implication of PROT_EXEC by PROT_READ */
1049                         if (current->personality & READ_IMPLIES_EXEC) {
1050                                 if (capabilities & BDI_CAP_EXEC_MAP)
1051                                         prot |= PROT_EXEC;
1052                         }
1053                 }
1054                 else if ((prot & PROT_READ) &&
1055                          (prot & PROT_EXEC) &&
1056                          !(capabilities & BDI_CAP_EXEC_MAP)
1057                          ) {
1058                         /* backing file is not executable, try to copy */
1059                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1060                 }
1061         }
1062         else {
1063                 /* anonymous mappings are always memory backed and can be
1064                  * privately mapped
1065                  */
1066                 capabilities = BDI_CAP_MAP_COPY;
1068                 /* handle PROT_EXEC implication by PROT_READ */
1069                 if ((prot & PROT_READ) &&
1070                     (current->personality & READ_IMPLIES_EXEC))
1071                         prot |= PROT_EXEC;
1072         }
1074         /* allow the security API to have its say */
1075         ret = security_mmap_addr(addr);
1076         if (ret < 0)
1077                 return ret;
1079         /* looks okay */
1080         *_capabilities = capabilities;
1081         return 0;
1084 /*
1085  * we've determined that we can make the mapping, now translate what we
1086  * now know into VMA flags
1087  */
1088 static unsigned long determine_vm_flags(struct file *file,
1089                                         unsigned long prot,
1090                                         unsigned long flags,
1091                                         unsigned long capabilities)
1093         unsigned long vm_flags;
1095         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1096         /* vm_flags |= mm->def_flags; */
1098         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1099                 /* attempt to share read-only copies of mapped file chunks */
1100                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1101                 if (file && !(prot & PROT_WRITE))
1102                         vm_flags |= VM_MAYSHARE;
1103         } else {
1104                 /* overlay a shareable mapping on the backing device or inode
1105                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1106                  * romfs/cramfs */
1107                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1108                 if (flags & MAP_SHARED)
1109                         vm_flags |= VM_SHARED;
1110         }
1112         /* refuse to let anyone share private mappings with this process if
1113          * it's being traced - otherwise breakpoints set in it may interfere
1114          * with another untraced process
1115          */
1116         if ((flags & MAP_PRIVATE) && current->ptrace)
1117                 vm_flags &= ~VM_MAYSHARE;
1119         return vm_flags;
1122 /*
1123  * set up a shared mapping on a file (the driver or filesystem provides and
1124  * pins the storage)
1125  */
1126 static int do_mmap_shared_file(struct vm_area_struct *vma)
1128         int ret;
1130         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1131         if (ret == 0) {
1132                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1133                 return 0;
1134         }
1135         if (ret != -ENOSYS)
1136                 return ret;
1138         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1139          * opposed to tried but failed) so we can only give a suitable error as
1140          * it's not possible to make a private copy if MAP_SHARED was given */
1141         return -ENODEV;
1144 /*
1145  * set up a private mapping or an anonymous shared mapping
1146  */
1147 static int do_mmap_private(struct vm_area_struct *vma,
1148                            struct vm_region *region,
1149                            unsigned long len,
1150                            unsigned long capabilities)
1152         struct page *pages;
1153         unsigned long total, point, n;
1154         void *base;
1155         int ret, order;
1157         /* invoke the file's mapping function so that it can keep track of
1158          * shared mappings on devices or memory
1159          * - VM_MAYSHARE will be set if it may attempt to share
1160          */
1161         if (capabilities & BDI_CAP_MAP_DIRECT) {
1162                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1163                 if (ret == 0) {
1164                         /* shouldn't return success if we're not sharing */
1165                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1166                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1167                         return 0;
1168                 }
1169                 if (ret != -ENOSYS)
1170                         return ret;
1172                 /* getting an ENOSYS error indicates that direct mmap isn't
1173                  * possible (as opposed to tried but failed) so we'll try to
1174                  * make a private copy of the data and map that instead */
1175         }
1178         /* allocate some memory to hold the mapping
1179          * - note that this may not return a page-aligned address if the object
1180          *   we're allocating is smaller than a page
1181          */
1182         order = get_order(len);
1183         kdebug("alloc order %d for %lx", order, len);
1185         pages = alloc_pages(GFP_KERNEL, order);
1186         if (!pages)
1187                 goto enomem;
1189         total = 1 << order;
1190         atomic_long_add(total, &mmap_pages_allocated);
1192         point = len >> PAGE_SHIFT;
1194         /* we allocated a power-of-2 sized page set, so we may want to trim off
1195          * the excess */
1196         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1197                 while (total > point) {
1198                         order = ilog2(total - point);
1199                         n = 1 << order;
1200                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1201                         atomic_long_sub(n, &mmap_pages_allocated);
1202                         total -= n;
1203                         set_page_refcounted(pages + total);
1204                         __free_pages(pages + total, order);
1205                 }
1206         }
1208         for (point = 1; point < total; point++)
1209                 set_page_refcounted(&pages[point]);
1211         base = page_address(pages);
1212         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1213         region->vm_start = (unsigned long) base;
1214         region->vm_end   = region->vm_start + len;
1215         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1217         vma->vm_start = region->vm_start;
1218         vma->vm_end   = region->vm_start + len;
1220         if (vma->vm_file) {
1221                 /* read the contents of a file into the copy */
1222                 mm_segment_t old_fs;
1223                 loff_t fpos;
1225                 fpos = vma->vm_pgoff;
1226                 fpos <<= PAGE_SHIFT;
1228                 old_fs = get_fs();
1229                 set_fs(KERNEL_DS);
1230                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1231                 set_fs(old_fs);
1233                 if (ret < 0)
1234                         goto error_free;
1236                 /* clear the last little bit */
1237                 if (ret < len)
1238                         memset(base + ret, 0, len - ret);
1240         }
1242         return 0;
1244 error_free:
1245         free_page_series(region->vm_start, region->vm_top);
1246         region->vm_start = vma->vm_start = 0;
1247         region->vm_end   = vma->vm_end = 0;
1248         region->vm_top   = 0;
1249         return ret;
1251 enomem:
1252         printk("Allocation of length %lu from process %d (%s) failed\n",
1253                len, current->pid, current->comm);
1254         show_free_areas(0);
1255         return -ENOMEM;
1258 /*
1259  * handle mapping creation for uClinux
1260  */
1261 unsigned long do_mmap_pgoff(struct file *file,
1262                             unsigned long addr,
1263                             unsigned long len,
1264                             unsigned long prot,
1265                             unsigned long flags,
1266                             unsigned long pgoff,
1267                             unsigned long *populate)
1269         struct vm_area_struct *vma;
1270         struct vm_region *region;
1271         struct rb_node *rb;
1272         unsigned long capabilities, vm_flags, result;
1273         int ret;
1275         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1277         *populate = 0;
1279         /* decide whether we should attempt the mapping, and if so what sort of
1280          * mapping */
1281         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1282                                     &capabilities);
1283         if (ret < 0) {
1284                 kleave(" = %d [val]", ret);
1285                 return ret;
1286         }
1288         /* we ignore the address hint */
1289         addr = 0;
1290         len = PAGE_ALIGN(len);
1292         /* we've determined that we can make the mapping, now translate what we
1293          * now know into VMA flags */
1294         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1296         /* we're going to need to record the mapping */
1297         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1298         if (!region)
1299                 goto error_getting_region;
1301         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1302         if (!vma)
1303                 goto error_getting_vma;
1305         region->vm_usage = 1;
1306         region->vm_flags = vm_flags;
1307         region->vm_pgoff = pgoff;
1309         INIT_LIST_HEAD(&vma->anon_vma_chain);
1310         vma->vm_flags = vm_flags;
1311         vma->vm_pgoff = pgoff;
1313         if (file) {
1314                 region->vm_file = get_file(file);
1315                 vma->vm_file = get_file(file);
1316         }
1318         down_write(&nommu_region_sem);
1320         /* if we want to share, we need to check for regions created by other
1321          * mmap() calls that overlap with our proposed mapping
1322          * - we can only share with a superset match on most regular files
1323          * - shared mappings on character devices and memory backed files are
1324          *   permitted to overlap inexactly as far as we are concerned for in
1325          *   these cases, sharing is handled in the driver or filesystem rather
1326          *   than here
1327          */
1328         if (vm_flags & VM_MAYSHARE) {
1329                 struct vm_region *pregion;
1330                 unsigned long pglen, rpglen, pgend, rpgend, start;
1332                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333                 pgend = pgoff + pglen;
1335                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1336                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1338                         if (!(pregion->vm_flags & VM_MAYSHARE))
1339                                 continue;
1341                         /* search for overlapping mappings on the same file */
1342                         if (file_inode(pregion->vm_file) !=
1343                             file_inode(file))
1344                                 continue;
1346                         if (pregion->vm_pgoff >= pgend)
1347                                 continue;
1349                         rpglen = pregion->vm_end - pregion->vm_start;
1350                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1351                         rpgend = pregion->vm_pgoff + rpglen;
1352                         if (pgoff >= rpgend)
1353                                 continue;
1355                         /* handle inexactly overlapping matches between
1356                          * mappings */
1357                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1358                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1359                                 /* new mapping is not a subset of the region */
1360                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1361                                         goto sharing_violation;
1362                                 continue;
1363                         }
1365                         /* we've found a region we can share */
1366                         pregion->vm_usage++;
1367                         vma->vm_region = pregion;
1368                         start = pregion->vm_start;
1369                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1370                         vma->vm_start = start;
1371                         vma->vm_end = start + len;
1373                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1374                                 kdebug("share copy");
1375                                 vma->vm_flags |= VM_MAPPED_COPY;
1376                         } else {
1377                                 kdebug("share mmap");
1378                                 ret = do_mmap_shared_file(vma);
1379                                 if (ret < 0) {
1380                                         vma->vm_region = NULL;
1381                                         vma->vm_start = 0;
1382                                         vma->vm_end = 0;
1383                                         pregion->vm_usage--;
1384                                         pregion = NULL;
1385                                         goto error_just_free;
1386                                 }
1387                         }
1388                         fput(region->vm_file);
1389                         kmem_cache_free(vm_region_jar, region);
1390                         region = pregion;
1391                         result = start;
1392                         goto share;
1393                 }
1395                 /* obtain the address at which to make a shared mapping
1396                  * - this is the hook for quasi-memory character devices to
1397                  *   tell us the location of a shared mapping
1398                  */
1399                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1400                         addr = file->f_op->get_unmapped_area(file, addr, len,
1401                                                              pgoff, flags);
1402                         if (IS_ERR_VALUE(addr)) {
1403                                 ret = addr;
1404                                 if (ret != -ENOSYS)
1405                                         goto error_just_free;
1407                                 /* the driver refused to tell us where to site
1408                                  * the mapping so we'll have to attempt to copy
1409                                  * it */
1410                                 ret = -ENODEV;
1411                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1412                                         goto error_just_free;
1414                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1415                         } else {
1416                                 vma->vm_start = region->vm_start = addr;
1417                                 vma->vm_end = region->vm_end = addr + len;
1418                         }
1419                 }
1420         }
1422         vma->vm_region = region;
1424         /* set up the mapping
1425          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1426          */
1427         if (file && vma->vm_flags & VM_SHARED)
1428                 ret = do_mmap_shared_file(vma);
1429         else
1430                 ret = do_mmap_private(vma, region, len, capabilities);
1431         if (ret < 0)
1432                 goto error_just_free;
1433         add_nommu_region(region);
1435         /* clear anonymous mappings that don't ask for uninitialized data */
1436         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1437                 memset((void *)region->vm_start, 0,
1438                        region->vm_end - region->vm_start);
1440         /* okay... we have a mapping; now we have to register it */
1441         result = vma->vm_start;
1443         current->mm->total_vm += len >> PAGE_SHIFT;
1445 share:
1446         add_vma_to_mm(current->mm, vma);
1448         /* we flush the region from the icache only when the first executable
1449          * mapping of it is made  */
1450         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1451                 flush_icache_range(region->vm_start, region->vm_end);
1452                 region->vm_icache_flushed = true;
1453         }
1455         up_write(&nommu_region_sem);
1457         kleave(" = %lx", result);
1458         return result;
1460 error_just_free:
1461         up_write(&nommu_region_sem);
1462 error:
1463         if (region->vm_file)
1464                 fput(region->vm_file);
1465         kmem_cache_free(vm_region_jar, region);
1466         if (vma->vm_file)
1467                 fput(vma->vm_file);
1468         kmem_cache_free(vm_area_cachep, vma);
1469         kleave(" = %d", ret);
1470         return ret;
1472 sharing_violation:
1473         up_write(&nommu_region_sem);
1474         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1475         ret = -EINVAL;
1476         goto error;
1478 error_getting_vma:
1479         kmem_cache_free(vm_region_jar, region);
1480         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1481                " from process %d failed\n",
1482                len, current->pid);
1483         show_free_areas(0);
1484         return -ENOMEM;
1486 error_getting_region:
1487         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1488                " from process %d failed\n",
1489                len, current->pid);
1490         show_free_areas(0);
1491         return -ENOMEM;
1494 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1495                 unsigned long, prot, unsigned long, flags,
1496                 unsigned long, fd, unsigned long, pgoff)
1498         struct file *file = NULL;
1499         unsigned long retval = -EBADF;
1501         audit_mmap_fd(fd, flags);
1502         if (!(flags & MAP_ANONYMOUS)) {
1503                 file = fget(fd);
1504                 if (!file)
1505                         goto out;
1506         }
1508         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1510         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1512         if (file)
1513                 fput(file);
1514 out:
1515         return retval;
1518 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1519 struct mmap_arg_struct {
1520         unsigned long addr;
1521         unsigned long len;
1522         unsigned long prot;
1523         unsigned long flags;
1524         unsigned long fd;
1525         unsigned long offset;
1526 };
1528 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1530         struct mmap_arg_struct a;
1532         if (copy_from_user(&a, arg, sizeof(a)))
1533                 return -EFAULT;
1534         if (a.offset & ~PAGE_MASK)
1535                 return -EINVAL;
1537         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1538                               a.offset >> PAGE_SHIFT);
1540 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1542 /*
1543  * split a vma into two pieces at address 'addr', a new vma is allocated either
1544  * for the first part or the tail.
1545  */
1546 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1547               unsigned long addr, int new_below)
1549         struct vm_area_struct *new;
1550         struct vm_region *region;
1551         unsigned long npages;
1553         kenter("");
1555         /* we're only permitted to split anonymous regions (these should have
1556          * only a single usage on the region) */
1557         if (vma->vm_file)
1558                 return -ENOMEM;
1560         if (mm->map_count >= sysctl_max_map_count)
1561                 return -ENOMEM;
1563         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1564         if (!region)
1565                 return -ENOMEM;
1567         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1568         if (!new) {
1569                 kmem_cache_free(vm_region_jar, region);
1570                 return -ENOMEM;
1571         }
1573         /* most fields are the same, copy all, and then fixup */
1574         *new = *vma;
1575         *region = *vma->vm_region;
1576         new->vm_region = region;
1578         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1580         if (new_below) {
1581                 region->vm_top = region->vm_end = new->vm_end = addr;
1582         } else {
1583                 region->vm_start = new->vm_start = addr;
1584                 region->vm_pgoff = new->vm_pgoff += npages;
1585         }
1587         if (new->vm_ops && new->vm_ops->open)
1588                 new->vm_ops->open(new);
1590         delete_vma_from_mm(vma);
1591         down_write(&nommu_region_sem);
1592         delete_nommu_region(vma->vm_region);
1593         if (new_below) {
1594                 vma->vm_region->vm_start = vma->vm_start = addr;
1595                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1596         } else {
1597                 vma->vm_region->vm_end = vma->vm_end = addr;
1598                 vma->vm_region->vm_top = addr;
1599         }
1600         add_nommu_region(vma->vm_region);
1601         add_nommu_region(new->vm_region);
1602         up_write(&nommu_region_sem);
1603         add_vma_to_mm(mm, vma);
1604         add_vma_to_mm(mm, new);
1605         return 0;
1608 /*
1609  * shrink a VMA by removing the specified chunk from either the beginning or
1610  * the end
1611  */
1612 static int shrink_vma(struct mm_struct *mm,
1613                       struct vm_area_struct *vma,
1614                       unsigned long from, unsigned long to)
1616         struct vm_region *region;
1618         kenter("");
1620         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1621          * and list */
1622         delete_vma_from_mm(vma);
1623         if (from > vma->vm_start)
1624                 vma->vm_end = from;
1625         else
1626                 vma->vm_start = to;
1627         add_vma_to_mm(mm, vma);
1629         /* cut the backing region down to size */
1630         region = vma->vm_region;
1631         BUG_ON(region->vm_usage != 1);
1633         down_write(&nommu_region_sem);
1634         delete_nommu_region(region);
1635         if (from > region->vm_start) {
1636                 to = region->vm_top;
1637                 region->vm_top = region->vm_end = from;
1638         } else {
1639                 region->vm_start = to;
1640         }
1641         add_nommu_region(region);
1642         up_write(&nommu_region_sem);
1644         free_page_series(from, to);
1645         return 0;
1648 /*
1649  * release a mapping
1650  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1651  *   VMA, though it need not cover the whole VMA
1652  */
1653 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1655         struct vm_area_struct *vma;
1656         unsigned long end;
1657         int ret;
1659         kenter(",%lx,%zx", start, len);
1661         len = PAGE_ALIGN(len);
1662         if (len == 0)
1663                 return -EINVAL;
1665         end = start + len;
1667         /* find the first potentially overlapping VMA */
1668         vma = find_vma(mm, start);
1669         if (!vma) {
1670                 static int limit = 0;
1671                 if (limit < 5) {
1672                         printk(KERN_WARNING
1673                                "munmap of memory not mmapped by process %d"
1674                                " (%s): 0x%lx-0x%lx\n",
1675                                current->pid, current->comm,
1676                                start, start + len - 1);
1677                         limit++;
1678                 }
1679                 return -EINVAL;
1680         }
1682         /* we're allowed to split an anonymous VMA but not a file-backed one */
1683         if (vma->vm_file) {
1684                 do {
1685                         if (start > vma->vm_start) {
1686                                 kleave(" = -EINVAL [miss]");
1687                                 return -EINVAL;
1688                         }
1689                         if (end == vma->vm_end)
1690                                 goto erase_whole_vma;
1691                         vma = vma->vm_next;
1692                 } while (vma);
1693                 kleave(" = -EINVAL [split file]");
1694                 return -EINVAL;
1695         } else {
1696                 /* the chunk must be a subset of the VMA found */
1697                 if (start == vma->vm_start && end == vma->vm_end)
1698                         goto erase_whole_vma;
1699                 if (start < vma->vm_start || end > vma->vm_end) {
1700                         kleave(" = -EINVAL [superset]");
1701                         return -EINVAL;
1702                 }
1703                 if (start & ~PAGE_MASK) {
1704                         kleave(" = -EINVAL [unaligned start]");
1705                         return -EINVAL;
1706                 }
1707                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1708                         kleave(" = -EINVAL [unaligned split]");
1709                         return -EINVAL;
1710                 }
1711                 if (start != vma->vm_start && end != vma->vm_end) {
1712                         ret = split_vma(mm, vma, start, 1);
1713                         if (ret < 0) {
1714                                 kleave(" = %d [split]", ret);
1715                                 return ret;
1716                         }
1717                 }
1718                 return shrink_vma(mm, vma, start, end);
1719         }
1721 erase_whole_vma:
1722         delete_vma_from_mm(vma);
1723         delete_vma(mm, vma);
1724         kleave(" = 0");
1725         return 0;
1727 EXPORT_SYMBOL(do_munmap);
1729 int vm_munmap(unsigned long addr, size_t len)
1731         struct mm_struct *mm = current->mm;
1732         int ret;
1734         down_write(&mm->mmap_sem);
1735         ret = do_munmap(mm, addr, len);
1736         up_write(&mm->mmap_sem);
1737         return ret;
1739 EXPORT_SYMBOL(vm_munmap);
1741 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1743         return vm_munmap(addr, len);
1746 /*
1747  * release all the mappings made in a process's VM space
1748  */
1749 void exit_mmap(struct mm_struct *mm)
1751         struct vm_area_struct *vma;
1753         if (!mm)
1754                 return;
1756         kenter("");
1758         mm->total_vm = 0;
1760         while ((vma = mm->mmap)) {
1761                 mm->mmap = vma->vm_next;
1762                 delete_vma_from_mm(vma);
1763                 delete_vma(mm, vma);
1764                 cond_resched();
1765         }
1767         kleave("");
1770 unsigned long vm_brk(unsigned long addr, unsigned long len)
1772         return -ENOMEM;
1775 /*
1776  * expand (or shrink) an existing mapping, potentially moving it at the same
1777  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1778  *
1779  * under NOMMU conditions, we only permit changing a mapping's size, and only
1780  * as long as it stays within the region allocated by do_mmap_private() and the
1781  * block is not shareable
1782  *
1783  * MREMAP_FIXED is not supported under NOMMU conditions
1784  */
1785 static unsigned long do_mremap(unsigned long addr,
1786                         unsigned long old_len, unsigned long new_len,
1787                         unsigned long flags, unsigned long new_addr)
1789         struct vm_area_struct *vma;
1791         /* insanity checks first */
1792         old_len = PAGE_ALIGN(old_len);
1793         new_len = PAGE_ALIGN(new_len);
1794         if (old_len == 0 || new_len == 0)
1795                 return (unsigned long) -EINVAL;
1797         if (addr & ~PAGE_MASK)
1798                 return -EINVAL;
1800         if (flags & MREMAP_FIXED && new_addr != addr)
1801                 return (unsigned long) -EINVAL;
1803         vma = find_vma_exact(current->mm, addr, old_len);
1804         if (!vma)
1805                 return (unsigned long) -EINVAL;
1807         if (vma->vm_end != vma->vm_start + old_len)
1808                 return (unsigned long) -EFAULT;
1810         if (vma->vm_flags & VM_MAYSHARE)
1811                 return (unsigned long) -EPERM;
1813         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1814                 return (unsigned long) -ENOMEM;
1816         /* all checks complete - do it */
1817         vma->vm_end = vma->vm_start + new_len;
1818         return vma->vm_start;
1821 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1822                 unsigned long, new_len, unsigned long, flags,
1823                 unsigned long, new_addr)
1825         unsigned long ret;
1827         down_write(&current->mm->mmap_sem);
1828         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1829         up_write(&current->mm->mmap_sem);
1830         return ret;
1833 struct page *follow_page_mask(struct vm_area_struct *vma,
1834                               unsigned long address, unsigned int flags,
1835                               unsigned int *page_mask)
1837         *page_mask = 0;
1838         return NULL;
1841 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1842                 unsigned long pfn, unsigned long size, pgprot_t prot)
1844         if (addr != (pfn << PAGE_SHIFT))
1845                 return -EINVAL;
1847         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1848         return 0;
1850 EXPORT_SYMBOL(remap_pfn_range);
1852 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1854         unsigned long pfn = start >> PAGE_SHIFT;
1855         unsigned long vm_len = vma->vm_end - vma->vm_start;
1857         pfn += vma->vm_pgoff;
1858         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1860 EXPORT_SYMBOL(vm_iomap_memory);
1862 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1863                         unsigned long pgoff)
1865         unsigned int size = vma->vm_end - vma->vm_start;
1867         if (!(vma->vm_flags & VM_USERMAP))
1868                 return -EINVAL;
1870         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1871         vma->vm_end = vma->vm_start + size;
1873         return 0;
1875 EXPORT_SYMBOL(remap_vmalloc_range);
1877 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1878         unsigned long len, unsigned long pgoff, unsigned long flags)
1880         return -ENOMEM;
1883 void unmap_mapping_range(struct address_space *mapping,
1884                          loff_t const holebegin, loff_t const holelen,
1885                          int even_cows)
1888 EXPORT_SYMBOL(unmap_mapping_range);
1890 /*
1891  * Check that a process has enough memory to allocate a new virtual
1892  * mapping. 0 means there is enough memory for the allocation to
1893  * succeed and -ENOMEM implies there is not.
1894  *
1895  * We currently support three overcommit policies, which are set via the
1896  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1897  *
1898  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1899  * Additional code 2002 Jul 20 by Robert Love.
1900  *
1901  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1902  *
1903  * Note this is a helper function intended to be used by LSMs which
1904  * wish to use this logic.
1905  */
1906 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1908         long free, allowed, reserve;
1910         vm_acct_memory(pages);
1912         /*
1913          * Sometimes we want to use more memory than we have
1914          */
1915         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1916                 return 0;
1918         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1919                 free = global_page_state(NR_FREE_PAGES);
1920                 free += global_page_state(NR_FILE_PAGES);
1922                 /*
1923                  * shmem pages shouldn't be counted as free in this
1924                  * case, they can't be purged, only swapped out, and
1925                  * that won't affect the overall amount of available
1926                  * memory in the system.
1927                  */
1928                 free -= global_page_state(NR_SHMEM);
1930                 free += get_nr_swap_pages();
1932                 /*
1933                  * Any slabs which are created with the
1934                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1935                  * which are reclaimable, under pressure.  The dentry
1936                  * cache and most inode caches should fall into this
1937                  */
1938                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1940                 /*
1941                  * Leave reserved pages. The pages are not for anonymous pages.
1942                  */
1943                 if (free <= totalreserve_pages)
1944                         goto error;
1945                 else
1946                         free -= totalreserve_pages;
1948                 /*
1949                  * Reserve some for root
1950                  */
1951                 if (!cap_sys_admin)
1952                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1954                 if (free > pages)
1955                         return 0;
1957                 goto error;
1958         }
1960         allowed = vm_commit_limit();
1961         /*
1962          * Reserve some 3% for root
1963          */
1964         if (!cap_sys_admin)
1965                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1967         /*
1968          * Don't let a single process grow so big a user can't recover
1969          */
1970         if (mm) {
1971                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1972                 allowed -= min_t(long, mm->total_vm / 32, reserve);
1973         }
1975         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1976                 return 0;
1978 error:
1979         vm_unacct_memory(pages);
1981         return -ENOMEM;
1984 int in_gate_area_no_mm(unsigned long addr)
1986         return 0;
1989 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1991         BUG();
1992         return 0;
1994 EXPORT_SYMBOL(filemap_fault);
1996 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1997                              unsigned long size, pgoff_t pgoff)
1999         BUG();
2000         return 0;
2002 EXPORT_SYMBOL(generic_file_remap_pages);
2004 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2005                 unsigned long addr, void *buf, int len, int write)
2007         struct vm_area_struct *vma;
2009         down_read(&mm->mmap_sem);
2011         /* the access must start within one of the target process's mappings */
2012         vma = find_vma(mm, addr);
2013         if (vma) {
2014                 /* don't overrun this mapping */
2015                 if (addr + len >= vma->vm_end)
2016                         len = vma->vm_end - addr;
2018                 /* only read or write mappings where it is permitted */
2019                 if (write && vma->vm_flags & VM_MAYWRITE)
2020                         copy_to_user_page(vma, NULL, addr,
2021                                          (void *) addr, buf, len);
2022                 else if (!write && vma->vm_flags & VM_MAYREAD)
2023                         copy_from_user_page(vma, NULL, addr,
2024                                             buf, (void *) addr, len);
2025                 else
2026                         len = 0;
2027         } else {
2028                 len = 0;
2029         }
2031         up_read(&mm->mmap_sem);
2033         return len;
2036 /**
2037  * @access_remote_vm - access another process' address space
2038  * @mm:         the mm_struct of the target address space
2039  * @addr:       start address to access
2040  * @buf:        source or destination buffer
2041  * @len:        number of bytes to transfer
2042  * @write:      whether the access is a write
2043  *
2044  * The caller must hold a reference on @mm.
2045  */
2046 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2047                 void *buf, int len, int write)
2049         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2052 /*
2053  * Access another process' address space.
2054  * - source/target buffer must be kernel space
2055  */
2056 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2058         struct mm_struct *mm;
2060         if (addr + len < addr)
2061                 return 0;
2063         mm = get_task_mm(tsk);
2064         if (!mm)
2065                 return 0;
2067         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2069         mmput(mm);
2070         return len;
2073 /**
2074  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2075  * @inode: The inode to check
2076  * @size: The current filesize of the inode
2077  * @newsize: The proposed filesize of the inode
2078  *
2079  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2080  * make sure that that any outstanding VMAs aren't broken and then shrink the
2081  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2082  * automatically grant mappings that are too large.
2083  */
2084 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2085                                 size_t newsize)
2087         struct vm_area_struct *vma;
2088         struct vm_region *region;
2089         pgoff_t low, high;
2090         size_t r_size, r_top;
2092         low = newsize >> PAGE_SHIFT;
2093         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2095         down_write(&nommu_region_sem);
2096         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2098         /* search for VMAs that fall within the dead zone */
2099         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2100                 /* found one - only interested if it's shared out of the page
2101                  * cache */
2102                 if (vma->vm_flags & VM_SHARED) {
2103                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2104                         up_write(&nommu_region_sem);
2105                         return -ETXTBSY; /* not quite true, but near enough */
2106                 }
2107         }
2109         /* reduce any regions that overlap the dead zone - if in existence,
2110          * these will be pointed to by VMAs that don't overlap the dead zone
2111          *
2112          * we don't check for any regions that start beyond the EOF as there
2113          * shouldn't be any
2114          */
2115         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2116                                   0, ULONG_MAX) {
2117                 if (!(vma->vm_flags & VM_SHARED))
2118                         continue;
2120                 region = vma->vm_region;
2121                 r_size = region->vm_top - region->vm_start;
2122                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2124                 if (r_top > newsize) {
2125                         region->vm_top -= r_top - newsize;
2126                         if (region->vm_end > region->vm_top)
2127                                 region->vm_end = region->vm_top;
2128                 }
2129         }
2131         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2132         up_write(&nommu_region_sem);
2133         return 0;
2136 /*
2137  * Initialise sysctl_user_reserve_kbytes.
2138  *
2139  * This is intended to prevent a user from starting a single memory hogging
2140  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2141  * mode.
2142  *
2143  * The default value is min(3% of free memory, 128MB)
2144  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2145  */
2146 static int __meminit init_user_reserve(void)
2148         unsigned long free_kbytes;
2150         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2152         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2153         return 0;
2155 module_init(init_user_reserve)
2157 /*
2158  * Initialise sysctl_admin_reserve_kbytes.
2159  *
2160  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2161  * to log in and kill a memory hogging process.
2162  *
2163  * Systems with more than 256MB will reserve 8MB, enough to recover
2164  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2165  * only reserve 3% of free pages by default.
2166  */
2167 static int __meminit init_admin_reserve(void)
2169         unsigned long free_kbytes;
2171         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2173         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2174         return 0;
2176 module_init(init_admin_reserve)