]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - android-sdk/platform-bionic.git/blob - libc/bionic/pthread_key.cpp
Merge "syslog needs a valid socket path for _PATH_LOG"
[android-sdk/platform-bionic.git] / libc / bionic / pthread_key.cpp
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
29 #include <pthread.h>
31 #include "bionic_tls.h"
32 #include "pthread_internal.h"
34 /* A technical note regarding our thread-local-storage (TLS) implementation:
35  *
36  * There can be up to BIONIC_TLS_SLOTS independent TLS keys in a given process,
37  * The keys below TLS_SLOT_FIRST_USER_SLOT are reserved for Bionic to hold
38  * special thread-specific variables like errno or a pointer to
39  * the current thread's descriptor. These entries cannot be accessed through
40  * pthread_getspecific() / pthread_setspecific() or pthread_key_delete()
41  *
42  * The 'tls_map_t' type defined below implements a shared global map of
43  * currently created/allocated TLS keys and the destructors associated
44  * with them.
45  *
46  * The global TLS map simply contains a bitmap of allocated keys, and
47  * an array of destructors.
48  *
49  * Each thread has a TLS area that is a simple array of BIONIC_TLS_SLOTS void*
50  * pointers. the TLS area of the main thread is stack-allocated in
51  * __libc_init_common, while the TLS area of other threads is placed at
52  * the top of their stack in pthread_create.
53  *
54  * When pthread_key_delete() is called it will erase the key's bitmap bit
55  * and its destructor, and will also clear the key data in the TLS area of
56  * all created threads. As mandated by Posix, it is the responsibility of
57  * the caller of pthread_key_delete() to properly reclaim the objects that
58  * were pointed to by these data fields (either before or after the call).
59  */
61 #define TLSMAP_BITS       32
62 #define TLSMAP_WORDS      ((BIONIC_TLS_SLOTS+TLSMAP_BITS-1)/TLSMAP_BITS)
63 #define TLSMAP_WORD(m,k)  (m).map[(k)/TLSMAP_BITS]
64 #define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
66 static inline bool IsValidUserKey(pthread_key_t key) {
67   return (key >= TLS_SLOT_FIRST_USER_SLOT && key < BIONIC_TLS_SLOTS);
68 }
70 typedef void (*key_destructor_t)(void*);
72 struct tls_map_t {
73   bool is_initialized;
75   /* bitmap of allocated keys */
76   uint32_t map[TLSMAP_WORDS];
78   key_destructor_t key_destructors[BIONIC_TLS_SLOTS];
79 };
81 class ScopedTlsMapAccess {
82  public:
83   ScopedTlsMapAccess() {
84     Lock();
86     // If this is the first time the TLS map has been accessed,
87     // mark the slots belonging to well-known keys as being in use.
88     // This isn't currently necessary because the well-known keys
89     // can only be accessed directly by bionic itself, do not have
90     // destructors, and all the functions that touch the TLS map
91     // start after the maximum well-known slot.
92     if (!s_tls_map_.is_initialized) {
93       for (pthread_key_t key = 0; key < TLS_SLOT_FIRST_USER_SLOT; ++key) {
94         SetInUse(key, NULL);
95       }
96       s_tls_map_.is_initialized = true;
97     }
98   }
100   ~ScopedTlsMapAccess() {
101     Unlock();
102   }
104   int CreateKey(pthread_key_t* result, void (*key_destructor)(void*)) {
105     // Take the first unallocated key.
106     for (int key = 0; key < BIONIC_TLS_SLOTS; ++key) {
107       if (!IsInUse(key)) {
108         SetInUse(key, key_destructor);
109         *result = key;
110         return 0;
111       }
112     }
114     // We hit PTHREAD_KEYS_MAX. POSIX says EAGAIN for this case.
115     return EAGAIN;
116   }
118   void DeleteKey(pthread_key_t key) {
119     TLSMAP_WORD(s_tls_map_, key) &= ~TLSMAP_MASK(key);
120     s_tls_map_.key_destructors[key] = NULL;
121   }
123   bool IsInUse(pthread_key_t key) {
124     return (TLSMAP_WORD(s_tls_map_, key) & TLSMAP_MASK(key)) != 0;
125   }
127   void SetInUse(pthread_key_t key, void (*key_destructor)(void*)) {
128     TLSMAP_WORD(s_tls_map_, key) |= TLSMAP_MASK(key);
129     s_tls_map_.key_destructors[key] = key_destructor;
130   }
132   // Called from pthread_exit() to remove all TLS key data
133   // from this thread's TLS area. This must call the destructor of all keys
134   // that have a non-NULL data value and a non-NULL destructor.
135   void CleanAll() {
136     void** tls = (void**)__get_tls();
138     // Because destructors can do funky things like deleting/creating other
139     // keys, we need to implement this in a loop.
140     for (int rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
141       size_t called_destructor_count = 0;
142       for (int key = 0; key < BIONIC_TLS_SLOTS; ++key) {
143         if (IsInUse(key)) {
144           void* data = tls[key];
145           void (*key_destructor)(void*) = s_tls_map_.key_destructors[key];
147           if (data != NULL && key_destructor != NULL) {
148             // we need to clear the key data now, this will prevent the
149             // destructor (or a later one) from seeing the old value if
150             // it calls pthread_getspecific() for some odd reason
152             // we do not do this if 'key_destructor == NULL' just in case another
153             // destructor function might be responsible for manually
154             // releasing the corresponding data.
155             tls[key] = NULL;
157             // because the destructor is free to call pthread_key_create
158             // and/or pthread_key_delete, we need to temporarily unlock
159             // the TLS map
160             Unlock();
161             (*key_destructor)(data);
162             Lock();
163             ++called_destructor_count;
164           }
165         }
166       }
168       // If we didn't call any destructors, there is no need to check the TLS data again.
169       if (called_destructor_count == 0) {
170         break;
171       }
172     }
173   }
175  private:
176   static tls_map_t s_tls_map_;
177   static pthread_mutex_t s_tls_map_lock_;
179   void Lock() {
180     pthread_mutex_lock(&s_tls_map_lock_);
181   }
183   void Unlock() {
184     pthread_mutex_unlock(&s_tls_map_lock_);
185   }
186 };
188 __LIBC_HIDDEN__ tls_map_t ScopedTlsMapAccess::s_tls_map_;
189 __LIBC_HIDDEN__ pthread_mutex_t ScopedTlsMapAccess::s_tls_map_lock_;
191 __LIBC_HIDDEN__ void pthread_key_clean_all() {
192   ScopedTlsMapAccess tls_map;
193   tls_map.CleanAll();
196 int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
197   ScopedTlsMapAccess tls_map;
198   return tls_map.CreateKey(key, key_destructor);
201 // Deletes a pthread_key_t. note that the standard mandates that this does
202 // not call the destructors for non-NULL key values. Instead, it is the
203 // responsibility of the caller to properly dispose of the corresponding data
204 // and resources, using any means it finds suitable.
205 int pthread_key_delete(pthread_key_t key) {
206   ScopedTlsMapAccess tls_map;
208   if (!IsValidUserKey(key) || !tls_map.IsInUse(key)) {
209     return EINVAL;
210   }
212   // Clear value in all threads.
213   pthread_mutex_lock(&gThreadListLock);
214   for (pthread_internal_t*  t = gThreadList; t != NULL; t = t->next) {
215     // Skip zombie threads. They don't have a valid TLS area any more.
216     // Similarly, it is possible to have t->tls == NULL for threads that
217     // were just recently created through pthread_create() but whose
218     // startup trampoline (__thread_entry) hasn't been run yet by the
219     // scheduler. t->tls will also be NULL after a thread's stack has been
220     // unmapped but before the ongoing pthread_join() is finished.
221     if ((t->attr.flags & PTHREAD_ATTR_FLAG_ZOMBIE) || t->tls == NULL) {
222       continue;
223     }
225     t->tls[key] = NULL;
226   }
227   tls_map.DeleteKey(key);
229   pthread_mutex_unlock(&gThreadListLock);
230   return 0;
233 void* pthread_getspecific(pthread_key_t key) {
234   if (!IsValidUserKey(key)) {
235     return NULL;
236   }
238   // For performance reasons, we do not lock/unlock the global TLS map
239   // to check that the key is properly allocated. If the key was not
240   // allocated, the value read from the TLS should always be NULL
241   // due to pthread_key_delete() clearing the values for all threads.
242   return (void *)(((unsigned *)__get_tls())[key]);
245 int pthread_setspecific(pthread_key_t key, const void* ptr) {
246   ScopedTlsMapAccess tls_map;
248   if (!IsValidUserKey(key) || !tls_map.IsInUse(key)) {
249     return EINVAL;
250   }
252   ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
253   return 0;