/* * Copyright (C) 2012 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug_mapinfo.h" #include "debug_stacktrace.h" #include "malloc_debug_backtrace.h" #include "malloc_debug_common.h" #include "malloc_debug_disable.h" #include "private/bionic_macros.h" #include "private/libc_logging.h" #include "private/ScopedPthreadMutexLocker.h" #define MAX_BACKTRACE_DEPTH 16 #define ALLOCATION_TAG 0x1ee7d00d #define BACKLOG_TAG 0xbabecafe #define FREE_POISON 0xa5 #define FRONT_GUARD 0xaa #define FRONT_GUARD_LEN (1<<5) #define REAR_GUARD 0xbb #define REAR_GUARD_LEN (1<<5) static void log_message(const char* format, ...) { va_list args; va_start(args, format); __libc_format_log_va_list(ANDROID_LOG_ERROR, "libc", format, args); va_end(args); } struct hdr_t { uint32_t tag; void* base; // Always points to the memory allocated using malloc. // For memory allocated in chk_memalign, this value will // not be the same as the location of the start of this // structure. hdr_t* prev; hdr_t* next; uintptr_t bt[MAX_BACKTRACE_DEPTH]; int bt_depth; uintptr_t freed_bt[MAX_BACKTRACE_DEPTH]; int freed_bt_depth; size_t size; uint8_t front_guard[FRONT_GUARD_LEN]; } __attribute__((packed, aligned(MALLOC_ALIGNMENT))); struct ftr_t { uint8_t rear_guard[REAR_GUARD_LEN]; } __attribute__((packed)); static inline ftr_t* to_ftr(hdr_t* hdr) { return reinterpret_cast(reinterpret_cast(hdr + 1) + hdr->size); } static inline void* user(hdr_t* hdr) { return hdr + 1; } static inline hdr_t* meta(void* user) { return reinterpret_cast(user) - 1; } static inline const hdr_t* const_meta(const void* user) { return reinterpret_cast(user) - 1; } // TODO: introduce a struct for this global state. // There are basically two lists here, the regular list and the backlog list. // We should be able to remove the duplication. static unsigned g_allocated_block_count; static hdr_t* tail; static hdr_t* head; static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; static unsigned backlog_num; static hdr_t* backlog_tail; static hdr_t* backlog_head; static pthread_mutex_t backlog_lock = PTHREAD_MUTEX_INITIALIZER; // This variable is set to the value of property libc.debug.malloc.backlog. // It determines the size of the backlog we use to detect multiple frees. static unsigned g_malloc_debug_backlog = 100; // This variable is set to false if the property libc.debug.malloc.nobacktrace // is set to non-zero. __LIBC_HIDDEN__ bool g_backtrace_enabled = true; __LIBC_HIDDEN__ HashTable* g_hash_table; __LIBC_HIDDEN__ const MallocDebug* g_malloc_dispatch; static inline void init_front_guard(hdr_t* hdr) { memset(hdr->front_guard, FRONT_GUARD, FRONT_GUARD_LEN); } static inline bool is_front_guard_valid(hdr_t* hdr) { for (size_t i = 0; i < FRONT_GUARD_LEN; i++) { if (hdr->front_guard[i] != FRONT_GUARD) { return false; } } return true; } static inline void init_rear_guard(hdr_t* hdr) { ftr_t* ftr = to_ftr(hdr); memset(ftr->rear_guard, REAR_GUARD, REAR_GUARD_LEN); } static inline bool is_rear_guard_valid(hdr_t* hdr) { unsigned i; int valid = 1; int first_mismatch = -1; ftr_t* ftr = to_ftr(hdr); for (i = 0; i < REAR_GUARD_LEN; i++) { if (ftr->rear_guard[i] != REAR_GUARD) { if (first_mismatch < 0) first_mismatch = i; valid = 0; } else if (first_mismatch >= 0) { log_message("+++ REAR GUARD MISMATCH [%d, %d)\n", first_mismatch, i); first_mismatch = -1; } } if (first_mismatch >= 0) log_message("+++ REAR GUARD MISMATCH [%d, %d)\n", first_mismatch, i); return valid; } static inline void add_locked(hdr_t* hdr, hdr_t** tail, hdr_t** head) { hdr->prev = NULL; hdr->next = *head; if (*head) (*head)->prev = hdr; else *tail = hdr; *head = hdr; } static inline int del_locked(hdr_t* hdr, hdr_t** tail, hdr_t** head) { if (hdr->prev) { hdr->prev->next = hdr->next; } else { *head = hdr->next; } if (hdr->next) { hdr->next->prev = hdr->prev; } else { *tail = hdr->prev; } return 0; } static inline void add(hdr_t* hdr, size_t size) { ScopedPthreadMutexLocker locker(&lock); hdr->tag = ALLOCATION_TAG; hdr->size = size; init_front_guard(hdr); init_rear_guard(hdr); ++g_allocated_block_count; add_locked(hdr, &tail, &head); } static inline int del(hdr_t* hdr) { if (hdr->tag != ALLOCATION_TAG) { return -1; } ScopedPthreadMutexLocker locker(&lock); del_locked(hdr, &tail, &head); --g_allocated_block_count; return 0; } static inline void poison(hdr_t* hdr) { memset(user(hdr), FREE_POISON, hdr->size); } static bool was_used_after_free(hdr_t* hdr) { const uint8_t* data = reinterpret_cast(user(hdr)); for (size_t i = 0; i < hdr->size; i++) { if (data[i] != FREE_POISON) { return true; } } return false; } /* returns 1 if valid, *safe == 1 if safe to dump stack */ static inline int check_guards(hdr_t* hdr, int* safe) { *safe = 1; if (!is_front_guard_valid(hdr)) { if (hdr->front_guard[0] == FRONT_GUARD) { log_message("+++ ALLOCATION %p SIZE %d HAS A CORRUPTED FRONT GUARD\n", user(hdr), hdr->size); } else { log_message("+++ ALLOCATION %p HAS A CORRUPTED FRONT GUARD "\ "(NOT DUMPING STACKTRACE)\n", user(hdr)); /* Allocation header is probably corrupt, do not print stack trace */ *safe = 0; } return 0; } if (!is_rear_guard_valid(hdr)) { log_message("+++ ALLOCATION %p SIZE %d HAS A CORRUPTED REAR GUARD\n", user(hdr), hdr->size); return 0; } return 1; } /* returns 1 if valid, *safe == 1 if safe to dump stack */ static inline int check_allocation_locked(hdr_t* hdr, int* safe) { int valid = 1; *safe = 1; if (hdr->tag != ALLOCATION_TAG && hdr->tag != BACKLOG_TAG) { log_message("+++ ALLOCATION %p HAS INVALID TAG %08x (NOT DUMPING STACKTRACE)\n", user(hdr), hdr->tag); // Allocation header is probably corrupt, do not dequeue or dump stack // trace. *safe = 0; return 0; } if (hdr->tag == BACKLOG_TAG && was_used_after_free(hdr)) { log_message("+++ ALLOCATION %p SIZE %d WAS USED AFTER BEING FREED\n", user(hdr), hdr->size); valid = 0; /* check the guards to see if it's safe to dump a stack trace */ check_guards(hdr, safe); } else { valid = check_guards(hdr, safe); } if (!valid && *safe && g_backtrace_enabled) { log_message("+++ ALLOCATION %p SIZE %d ALLOCATED HERE:\n", user(hdr), hdr->size); log_backtrace(hdr->bt, hdr->bt_depth); if (hdr->tag == BACKLOG_TAG) { log_message("+++ ALLOCATION %p SIZE %d FREED HERE:\n", user(hdr), hdr->size); log_backtrace(hdr->freed_bt, hdr->freed_bt_depth); } } return valid; } static inline int del_and_check_locked(hdr_t* hdr, hdr_t** tail, hdr_t** head, unsigned* cnt, int* safe) { int valid = check_allocation_locked(hdr, safe); if (safe) { (*cnt)--; del_locked(hdr, tail, head); } return valid; } static inline void del_from_backlog_locked(hdr_t* hdr) { int safe; del_and_check_locked(hdr, &backlog_tail, &backlog_head, &backlog_num, &safe); hdr->tag = 0; /* clear the tag */ } static inline void del_from_backlog(hdr_t* hdr) { ScopedPthreadMutexLocker locker(&backlog_lock); del_from_backlog_locked(hdr); } static inline int del_leak(hdr_t* hdr, int* safe) { ScopedPthreadMutexLocker locker(&lock); return del_and_check_locked(hdr, &tail, &head, &g_allocated_block_count, safe); } static inline void add_to_backlog(hdr_t* hdr) { ScopedPthreadMutexLocker locker(&backlog_lock); hdr->tag = BACKLOG_TAG; backlog_num++; add_locked(hdr, &backlog_tail, &backlog_head); poison(hdr); /* If we've exceeded the maximum backlog, clear it up */ while (backlog_num > g_malloc_debug_backlog) { hdr_t* gone = backlog_tail; del_from_backlog_locked(gone); g_malloc_dispatch->free(gone->base); } } extern "C" void* chk_malloc(size_t bytes) { // log_message("%s: %s\n", __FILE__, __FUNCTION__); if (DebugCallsDisabled()) { return g_malloc_dispatch->malloc(bytes); } size_t size = sizeof(hdr_t) + bytes + sizeof(ftr_t); if (size < bytes) { // Overflow errno = ENOMEM; return NULL; } hdr_t* hdr = static_cast(g_malloc_dispatch->malloc(size)); if (hdr) { hdr->base = hdr; hdr->bt_depth = GET_BACKTRACE(hdr->bt, MAX_BACKTRACE_DEPTH); add(hdr, bytes); return user(hdr); } return NULL; } extern "C" void* chk_memalign(size_t alignment, size_t bytes) { if (DebugCallsDisabled()) { return g_malloc_dispatch->memalign(alignment, bytes); } if (alignment <= MALLOC_ALIGNMENT) { return chk_malloc(bytes); } // Make the alignment a power of two. if (!powerof2(alignment)) { alignment = BIONIC_ROUND_UP_POWER_OF_2(alignment); } // here, alignment is at least MALLOC_ALIGNMENT<<1 bytes // we will align by at least MALLOC_ALIGNMENT bytes // and at most alignment-MALLOC_ALIGNMENT bytes size_t size = (alignment-MALLOC_ALIGNMENT) + bytes; if (size < bytes) { // Overflow. return NULL; } void* base = g_malloc_dispatch->malloc(sizeof(hdr_t) + size + sizeof(ftr_t)); if (base != NULL) { // Check that the actual pointer that will be returned is aligned // properly. uintptr_t ptr = reinterpret_cast(user(reinterpret_cast(base))); if ((ptr % alignment) != 0) { // Align the pointer. ptr += ((-ptr) % alignment); } hdr_t* hdr = meta(reinterpret_cast(ptr)); hdr->base = base; hdr->bt_depth = GET_BACKTRACE(hdr->bt, MAX_BACKTRACE_DEPTH); add(hdr, bytes); return user(hdr); } return base; } extern "C" void chk_free(void* ptr) { // log_message("%s: %s\n", __FILE__, __FUNCTION__); if (DebugCallsDisabled()) { return g_malloc_dispatch->free(ptr); } if (!ptr) /* ignore free(NULL) */ return; hdr_t* hdr = meta(ptr); if (del(hdr) < 0) { uintptr_t bt[MAX_BACKTRACE_DEPTH]; int depth = GET_BACKTRACE(bt, MAX_BACKTRACE_DEPTH); if (hdr->tag == BACKLOG_TAG) { log_message("+++ ALLOCATION %p SIZE %d BYTES MULTIPLY FREED!\n", user(hdr), hdr->size); if (g_backtrace_enabled) { log_message("+++ ALLOCATION %p SIZE %d ALLOCATED HERE:\n", user(hdr), hdr->size); log_backtrace(hdr->bt, hdr->bt_depth); /* hdr->freed_bt_depth should be nonzero here */ log_message("+++ ALLOCATION %p SIZE %d FIRST FREED HERE:\n", user(hdr), hdr->size); log_backtrace(hdr->freed_bt, hdr->freed_bt_depth); log_message("+++ ALLOCATION %p SIZE %d NOW BEING FREED HERE:\n", user(hdr), hdr->size); log_backtrace(bt, depth); } } else { log_message("+++ ALLOCATION %p IS CORRUPTED OR NOT ALLOCATED VIA TRACKER!\n", user(hdr)); if (g_backtrace_enabled) { log_backtrace(bt, depth); } } } else { hdr->freed_bt_depth = GET_BACKTRACE(hdr->freed_bt, MAX_BACKTRACE_DEPTH); add_to_backlog(hdr); } } extern "C" void* chk_realloc(void* ptr, size_t bytes) { // log_message("%s: %s\n", __FILE__, __FUNCTION__); if (DebugCallsDisabled()) { return g_malloc_dispatch->realloc(ptr, bytes); } if (!ptr) { return chk_malloc(bytes); } #ifdef REALLOC_ZERO_BYTES_FREE if (!bytes) { chk_free(ptr); return NULL; } #endif hdr_t* hdr = meta(ptr); if (del(hdr) < 0) { uintptr_t bt[MAX_BACKTRACE_DEPTH]; int depth = GET_BACKTRACE(bt, MAX_BACKTRACE_DEPTH); if (hdr->tag == BACKLOG_TAG) { log_message("+++ REALLOCATION %p SIZE %d OF FREED MEMORY!\n", user(hdr), bytes, hdr->size); if (g_backtrace_enabled) { log_message("+++ ALLOCATION %p SIZE %d ALLOCATED HERE:\n", user(hdr), hdr->size); log_backtrace(hdr->bt, hdr->bt_depth); /* hdr->freed_bt_depth should be nonzero here */ log_message("+++ ALLOCATION %p SIZE %d FIRST FREED HERE:\n", user(hdr), hdr->size); log_backtrace(hdr->freed_bt, hdr->freed_bt_depth); log_message("+++ ALLOCATION %p SIZE %d NOW BEING REALLOCATED HERE:\n", user(hdr), hdr->size); log_backtrace(bt, depth); } /* We take the memory out of the backlog and fall through so the * reallocation below succeeds. Since we didn't really free it, we * can default to this behavior. */ del_from_backlog(hdr); } else { log_message("+++ REALLOCATION %p SIZE %d IS CORRUPTED OR NOT ALLOCATED VIA TRACKER!\n", user(hdr), bytes); if (g_backtrace_enabled) { log_backtrace(bt, depth); } // just get a whole new allocation and leak the old one return g_malloc_dispatch->realloc(0, bytes); // return realloc(user(hdr), bytes); // assuming it was allocated externally } } size_t size = sizeof(hdr_t) + bytes + sizeof(ftr_t); if (size < bytes) { // Overflow errno = ENOMEM; return NULL; } if (hdr->base != hdr) { // An allocation from memalign, so create another allocation and // copy the data out. void* newMem = g_malloc_dispatch->malloc(size); if (newMem == NULL) { return NULL; } memcpy(newMem, hdr, sizeof(hdr_t) + hdr->size); g_malloc_dispatch->free(hdr->base); hdr = static_cast(newMem); } else { hdr = static_cast(g_malloc_dispatch->realloc(hdr, size)); } if (hdr) { hdr->base = hdr; hdr->bt_depth = GET_BACKTRACE(hdr->bt, MAX_BACKTRACE_DEPTH); add(hdr, bytes); return user(hdr); } return NULL; } extern "C" void* chk_calloc(size_t nmemb, size_t bytes) { // log_message("%s: %s\n", __FILE__, __FUNCTION__); if (DebugCallsDisabled()) { return g_malloc_dispatch->calloc(nmemb, bytes); } size_t total_bytes = nmemb * bytes; size_t size = sizeof(hdr_t) + total_bytes + sizeof(ftr_t); if (size < total_bytes || (nmemb && SIZE_MAX / nmemb < bytes)) { // Overflow errno = ENOMEM; return NULL; } hdr_t* hdr = static_cast(g_malloc_dispatch->calloc(1, size)); if (hdr) { hdr->base = hdr; hdr->bt_depth = GET_BACKTRACE(hdr->bt, MAX_BACKTRACE_DEPTH); add(hdr, total_bytes); return user(hdr); } return NULL; } extern "C" size_t chk_malloc_usable_size(const void* ptr) { if (DebugCallsDisabled()) { return g_malloc_dispatch->malloc_usable_size(ptr); } // malloc_usable_size returns 0 for NULL and unknown blocks. if (ptr == NULL) return 0; const hdr_t* hdr = const_meta(ptr); // The sentinel tail is written just after the request block bytes // so there is no extra room we can report here. return hdr->size; } extern "C" struct mallinfo chk_mallinfo() { return g_malloc_dispatch->mallinfo(); } extern "C" int chk_posix_memalign(void** memptr, size_t alignment, size_t size) { if (DebugCallsDisabled()) { return g_malloc_dispatch->posix_memalign(memptr, alignment, size); } if (!powerof2(alignment)) { return EINVAL; } int saved_errno = errno; *memptr = chk_memalign(alignment, size); errno = saved_errno; return (*memptr != NULL) ? 0 : ENOMEM; } #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) extern "C" void* chk_pvalloc(size_t bytes) { if (DebugCallsDisabled()) { return g_malloc_dispatch->pvalloc(bytes); } size_t pagesize = getpagesize(); size_t size = BIONIC_ALIGN(bytes, pagesize); if (size < bytes) { // Overflow return NULL; } return chk_memalign(pagesize, size); } extern "C" void* chk_valloc(size_t size) { if (DebugCallsDisabled()) { return g_malloc_dispatch->valloc(size); } return chk_memalign(getpagesize(), size); } #endif static void ReportMemoryLeaks() { ScopedDisableDebugCalls disable; // Use /proc/self/exe link to obtain the program name for logging // purposes. If it's not available, we set it to "". char exe[PATH_MAX]; int count; if ((count = readlink("/proc/self/exe", exe, sizeof(exe) - 1)) == -1) { strlcpy(exe, "", sizeof(exe)); } else { exe[count] = '\0'; } if (g_allocated_block_count == 0) { log_message("+++ %s did not leak", exe); return; } size_t index = 1; const size_t total = g_allocated_block_count; while (head != NULL) { int safe; hdr_t* block = head; log_message("+++ %s leaked block of size %d at %p (leak %d of %d)", exe, block->size, user(block), index++, total); if (del_leak(block, &safe) && g_backtrace_enabled) { /* safe == 1, because the allocation is valid */ log_backtrace(block->bt, block->bt_depth); } } while (backlog_head != NULL) { del_from_backlog(backlog_tail); } } pthread_key_t g_debug_calls_disabled; extern "C" bool malloc_debug_initialize(HashTable* hash_table, const MallocDebug* malloc_dispatch) { g_hash_table = hash_table; g_malloc_dispatch = malloc_dispatch; pthread_key_create(&g_debug_calls_disabled, NULL); char debug_backlog[PROP_VALUE_MAX]; if (__system_property_get("libc.debug.malloc.backlog", debug_backlog)) { g_malloc_debug_backlog = atoi(debug_backlog); info_log("%s: setting backlog length to %d\n", getprogname(), g_malloc_debug_backlog); } // Check if backtracing should be disabled. char env[PROP_VALUE_MAX]; if (__system_property_get("libc.debug.malloc.nobacktrace", env) && atoi(env) != 0) { g_backtrace_enabled = false; __libc_format_log(ANDROID_LOG_INFO, "libc", "not gathering backtrace information\n"); } if (g_backtrace_enabled) { backtrace_startup(); } return true; } extern "C" void malloc_debug_finalize(int malloc_debug_level) { // We only track leaks at level 10. if (malloc_debug_level == 10) { ReportMemoryLeaks(); } if (g_backtrace_enabled) { backtrace_shutdown(); } pthread_setspecific(g_debug_calls_disabled, NULL); }