/* * Copyright (C) 2008, 2009 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include // Private C library headers. #include "private/bionic_tls.h" #include "private/KernelArgumentBlock.h" #include "private/ScopedPthreadMutexLocker.h" #include "private/ScopedFd.h" #include "private/ScopeGuard.h" #include "private/UniquePtr.h" #include "linker.h" #include "linker_debug.h" #include "linker_environ.h" #include "linker_phdr.h" #include "linker_allocator.h" /* >>> IMPORTANT NOTE - READ ME BEFORE MODIFYING <<< * * Do NOT use malloc() and friends or pthread_*() code here. * Don't use printf() either; it's caused mysterious memory * corruption in the past. * The linker runs before we bring up libc and it's easiest * to make sure it does not depend on any complex libc features * * open issues / todo: * * - cleaner error reporting * - after linking, set as much stuff as possible to READONLY * and NOEXEC */ #if defined(__LP64__) #define SEARCH_NAME(x) x #else // Nvidia drivers are relying on the bug: // http://code.google.com/p/android/issues/detail?id=6670 // so we continue to use base-name lookup for lp32 static const char* get_base_name(const char* name) { const char* bname = strrchr(name, '/'); return bname ? bname + 1 : name; } #define SEARCH_NAME(x) get_base_name(x) #endif static ElfW(Addr) get_elf_exec_load_bias(const ElfW(Ehdr)* elf); static LinkerAllocator g_soinfo_allocator; static LinkerAllocator> g_soinfo_links_allocator; static soinfo* solist; static soinfo* sonext; static soinfo* somain; // main process, always the one after libdl_info static const char* const kDefaultLdPaths[] = { #if defined(__LP64__) "/vendor/lib64", "/system/lib64", #else "/vendor/lib", "/system/lib", #endif nullptr }; #define LDPATH_BUFSIZE (LDPATH_MAX*64) #define LDPATH_MAX 8 #define LDPRELOAD_BUFSIZE (LDPRELOAD_MAX*64) #define LDPRELOAD_MAX 8 static char g_ld_library_paths_buffer[LDPATH_BUFSIZE]; static const char* g_ld_library_paths[LDPATH_MAX + 1]; static char g_ld_preloads_buffer[LDPRELOAD_BUFSIZE]; static const char* g_ld_preload_names[LDPRELOAD_MAX + 1]; static soinfo* g_ld_preloads[LDPRELOAD_MAX + 1]; __LIBC_HIDDEN__ int g_ld_debug_verbosity; __LIBC_HIDDEN__ abort_msg_t* g_abort_message = nullptr; // For debuggerd. enum RelocationKind { kRelocAbsolute = 0, kRelocRelative, kRelocCopy, kRelocSymbol, kRelocMax }; #if STATS struct linker_stats_t { int count[kRelocMax]; }; static linker_stats_t linker_stats; static void count_relocation(RelocationKind kind) { ++linker_stats.count[kind]; } #else static void count_relocation(RelocationKind) { } #endif #if COUNT_PAGES static unsigned bitmask[4096]; #if defined(__LP64__) #define MARK(offset) \ do { \ if ((((offset) >> 12) >> 5) < 4096) \ bitmask[((offset) >> 12) >> 5] |= (1 << (((offset) >> 12) & 31)); \ } while (0) #else #define MARK(offset) \ do { \ bitmask[((offset) >> 12) >> 3] |= (1 << (((offset) >> 12) & 7)); \ } while (0) #endif #else #define MARK(x) do {} while (0) #endif // You shouldn't try to call memory-allocating functions in the dynamic linker. // Guard against the most obvious ones. #define DISALLOW_ALLOCATION(return_type, name, ...) \ return_type name __VA_ARGS__ \ { \ __libc_fatal("ERROR: " #name " called from the dynamic linker!\n"); \ } DISALLOW_ALLOCATION(void*, malloc, (size_t u __unused)); DISALLOW_ALLOCATION(void, free, (void* u __unused)); DISALLOW_ALLOCATION(void*, realloc, (void* u1 __unused, size_t u2 __unused)); DISALLOW_ALLOCATION(void*, calloc, (size_t u1 __unused, size_t u2 __unused)); static char __linker_dl_err_buf[768]; char* linker_get_error_buffer() { return &__linker_dl_err_buf[0]; } size_t linker_get_error_buffer_size() { return sizeof(__linker_dl_err_buf); } // This function is an empty stub where GDB locates a breakpoint to get notified // about linker activity. extern "C" void __attribute__((noinline)) __attribute__((visibility("default"))) rtld_db_dlactivity(); static pthread_mutex_t g__r_debug_mutex = PTHREAD_MUTEX_INITIALIZER; static r_debug _r_debug = {1, nullptr, reinterpret_cast(&rtld_db_dlactivity), r_debug::RT_CONSISTENT, 0}; static link_map* r_debug_tail = 0; static void insert_soinfo_into_debug_map(soinfo* info) { // Copy the necessary fields into the debug structure. link_map* map = &(info->link_map_head); map->l_addr = info->load_bias; map->l_name = info->name; map->l_ld = info->dynamic; // Stick the new library at the end of the list. // gdb tends to care more about libc than it does // about leaf libraries, and ordering it this way // reduces the back-and-forth over the wire. if (r_debug_tail) { r_debug_tail->l_next = map; map->l_prev = r_debug_tail; map->l_next = 0; } else { _r_debug.r_map = map; map->l_prev = 0; map->l_next = 0; } r_debug_tail = map; } static void remove_soinfo_from_debug_map(soinfo* info) { link_map* map = &(info->link_map_head); if (r_debug_tail == map) { r_debug_tail = map->l_prev; } if (map->l_prev) { map->l_prev->l_next = map->l_next; } if (map->l_next) { map->l_next->l_prev = map->l_prev; } } static void notify_gdb_of_load(soinfo* info) { if (info->is_main_executable()) { // GDB already knows about the main executable return; } ScopedPthreadMutexLocker locker(&g__r_debug_mutex); _r_debug.r_state = r_debug::RT_ADD; rtld_db_dlactivity(); insert_soinfo_into_debug_map(info); _r_debug.r_state = r_debug::RT_CONSISTENT; rtld_db_dlactivity(); } static void notify_gdb_of_unload(soinfo* info) { if (info->is_main_executable()) { // GDB already knows about the main executable return; } ScopedPthreadMutexLocker locker(&g__r_debug_mutex); _r_debug.r_state = r_debug::RT_DELETE; rtld_db_dlactivity(); remove_soinfo_from_debug_map(info); _r_debug.r_state = r_debug::RT_CONSISTENT; rtld_db_dlactivity(); } void notify_gdb_of_libraries() { _r_debug.r_state = r_debug::RT_ADD; rtld_db_dlactivity(); _r_debug.r_state = r_debug::RT_CONSISTENT; rtld_db_dlactivity(); } LinkedListEntry* SoinfoListAllocator::alloc() { return g_soinfo_links_allocator.alloc(); } void SoinfoListAllocator::free(LinkedListEntry* entry) { g_soinfo_links_allocator.free(entry); } static void protect_data(int protection) { g_soinfo_allocator.protect_all(protection); g_soinfo_links_allocator.protect_all(protection); } static soinfo* soinfo_alloc(const char* name, struct stat* file_stat, off64_t file_offset, uint32_t rtld_flags) { if (strlen(name) >= SOINFO_NAME_LEN) { DL_ERR("library name \"%s\" too long", name); return nullptr; } soinfo* si = new (g_soinfo_allocator.alloc()) soinfo(name, file_stat, file_offset, rtld_flags); sonext->next = si; sonext = si; TRACE("name %s: allocated soinfo @ %p", name, si); return si; } static void soinfo_free(soinfo* si) { if (si == nullptr) { return; } if (si->base != 0 && si->size != 0) { munmap(reinterpret_cast(si->base), si->size); } soinfo *prev = nullptr, *trav; TRACE("name %s: freeing soinfo @ %p", si->name, si); for (trav = solist; trav != nullptr; trav = trav->next) { if (trav == si) { break; } prev = trav; } if (trav == nullptr) { // si was not in solist DL_ERR("name \"%s\" is not in solist!", si->name); return; } // clear links to/from si si->remove_all_links(); // prev will never be null, because the first entry in solist is // always the static libdl_info. prev->next = si->next; if (si == sonext) { sonext = prev; } g_soinfo_allocator.free(si); } static void parse_path(const char* path, const char* delimiters, const char** array, char* buf, size_t buf_size, size_t max_count) { if (path == nullptr) { return; } size_t len = strlcpy(buf, path, buf_size); size_t i = 0; char* buf_p = buf; while (i < max_count && (array[i] = strsep(&buf_p, delimiters))) { if (*array[i] != '\0') { ++i; } } // Forget the last path if we had to truncate; this occurs if the 2nd to // last char isn't '\0' (i.e. wasn't originally a delimiter). if (i > 0 && len >= buf_size && buf[buf_size - 2] != '\0') { array[i - 1] = nullptr; } else { array[i] = nullptr; } } static void parse_LD_LIBRARY_PATH(const char* path) { parse_path(path, ":", g_ld_library_paths, g_ld_library_paths_buffer, sizeof(g_ld_library_paths_buffer), LDPATH_MAX); } static void parse_LD_PRELOAD(const char* path) { // We have historically supported ':' as well as ' ' in LD_PRELOAD. parse_path(path, " :", g_ld_preload_names, g_ld_preloads_buffer, sizeof(g_ld_preloads_buffer), LDPRELOAD_MAX); } #if defined(__arm__) // For a given PC, find the .so that it belongs to. // Returns the base address of the .ARM.exidx section // for that .so, and the number of 8-byte entries // in that section (via *pcount). // // Intended to be called by libc's __gnu_Unwind_Find_exidx(). // // This function is exposed via dlfcn.cpp and libdl.so. _Unwind_Ptr dl_unwind_find_exidx(_Unwind_Ptr pc, int* pcount) { unsigned addr = (unsigned)pc; for (soinfo* si = solist; si != 0; si = si->next) { if ((addr >= si->base) && (addr < (si->base + si->size))) { *pcount = si->ARM_exidx_count; return (_Unwind_Ptr)si->ARM_exidx; } } *pcount = 0; return nullptr; } #endif // Here, we only have to provide a callback to iterate across all the // loaded libraries. gcc_eh does the rest. int dl_iterate_phdr(int (*cb)(dl_phdr_info* info, size_t size, void* data), void* data) { int rv = 0; for (soinfo* si = solist; si != nullptr; si = si->next) { dl_phdr_info dl_info; dl_info.dlpi_addr = si->link_map_head.l_addr; dl_info.dlpi_name = si->link_map_head.l_name; dl_info.dlpi_phdr = si->phdr; dl_info.dlpi_phnum = si->phnum; rv = cb(&dl_info, sizeof(dl_phdr_info), data); if (rv != 0) { break; } } return rv; } ElfW(Sym)* soinfo::find_symbol_by_name(SymbolName& symbol_name) { return is_gnu_hash() ? gnu_lookup(symbol_name) : elf_lookup(symbol_name); } static bool is_symbol_global_and_defined(const soinfo* si, const ElfW(Sym)* s) { if (ELF_ST_BIND(s->st_info) == STB_GLOBAL || ELF_ST_BIND(s->st_info) == STB_WEAK) { return s->st_shndx != SHN_UNDEF; } else if (ELF_ST_BIND(s->st_info) != STB_LOCAL) { DL_WARN("unexpected ST_BIND value: %d for '%s' in '%s'", ELF_ST_BIND(s->st_info), si->get_string(s->st_name), si->name); } return false; } ElfW(Sym)* soinfo::gnu_lookup(SymbolName& symbol_name) { uint32_t hash = symbol_name.gnu_hash(); uint32_t h2 = hash >> gnu_shift2_; uint32_t bloom_mask_bits = sizeof(ElfW(Addr))*8; uint32_t word_num = (hash / bloom_mask_bits) & gnu_maskwords_; ElfW(Addr) bloom_word = gnu_bloom_filter_[word_num]; // test against bloom filter if ((1 & (bloom_word >> (hash % bloom_mask_bits)) & (bloom_word >> (h2 % bloom_mask_bits))) == 0) { return nullptr; } // bloom test says "probably yes"... uint32_t n = bucket_[hash % nbucket_]; if (n == 0) { return nullptr; } do { ElfW(Sym)* s = symtab_ + n; if (((chain_[n] ^ hash) >> 1) == 0 && strcmp(get_string(s->st_name), symbol_name.get_name()) == 0 && is_symbol_global_and_defined(this, s)) { return s; } } while ((chain_[n++] & 1) == 0); return nullptr; } ElfW(Sym)* soinfo::elf_lookup(SymbolName& symbol_name) { uint32_t hash = symbol_name.elf_hash(); TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p h=%x(elf) %zd", symbol_name.get_name(), name, reinterpret_cast(base), hash, hash % nbucket_); for (uint32_t n = bucket_[hash % nbucket_]; n != 0; n = chain_[n]) { ElfW(Sym)* s = symtab_ + n; if (strcmp(get_string(s->st_name), symbol_name.get_name()) == 0 && is_symbol_global_and_defined(this, s)) { TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd", symbol_name.get_name(), name, reinterpret_cast(s->st_value), static_cast(s->st_size)); return s; } } TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p %x %zd", symbol_name.get_name(), name, reinterpret_cast(base), hash, hash % nbucket_); return nullptr; } soinfo::soinfo(const char* name, const struct stat* file_stat, off64_t file_offset, int rtld_flags) { memset(this, 0, sizeof(*this)); strlcpy(this->name, name, sizeof(this->name)); flags_ = FLAG_NEW_SOINFO; version_ = SOINFO_VERSION; if (file_stat != nullptr) { this->st_dev_ = file_stat->st_dev; this->st_ino_ = file_stat->st_ino; this->file_offset_ = file_offset; } this->rtld_flags_ = rtld_flags; } uint32_t SymbolName::elf_hash() { if (!has_elf_hash_) { const unsigned char* name = reinterpret_cast(name_); uint32_t h = 0, g; while (*name) { h = (h << 4) + *name++; g = h & 0xf0000000; h ^= g; h ^= g >> 24; } elf_hash_ = h; has_elf_hash_ = true; } return elf_hash_; } uint32_t SymbolName::gnu_hash() { if (!has_gnu_hash_) { uint32_t h = 5381; const unsigned char* name = reinterpret_cast(name_); while (*name != 0) { h += (h << 5) + *name++; // h*33 + c = h + h * 32 + c = h + h << 5 + c } gnu_hash_ = h; has_gnu_hash_ = true; } return gnu_hash_; } static ElfW(Sym)* soinfo_do_lookup(soinfo* si_from, const char* name, soinfo** si_found_in, const soinfo::soinfo_list_t& global_group, const soinfo::soinfo_list_t& local_group) { SymbolName symbol_name(name); ElfW(Sym)* s = nullptr; /* "This element's presence in a shared object library alters the dynamic linker's * symbol resolution algorithm for references within the library. Instead of starting * a symbol search with the executable file, the dynamic linker starts from the shared * object itself. If the shared object fails to supply the referenced symbol, the * dynamic linker then searches the executable file and other shared objects as usual." * * http://www.sco.com/developers/gabi/2012-12-31/ch5.dynamic.html * * Note that this is unlikely since static linker avoids generating * relocations for -Bsymbolic linked dynamic executables. */ if (si_from->has_DT_SYMBOLIC) { DEBUG("%s: looking up %s in local scope (DT_SYMBOLIC)", si_from->name, name); s = si_from->find_symbol_by_name(symbol_name); if (s != nullptr) { *si_found_in = si_from; } } // 1. Look for it in global_group if (s == nullptr) { global_group.visit([&](soinfo* global_si) { DEBUG("%s: looking up %s in %s (from global group)", si_from->name, name, global_si->name); s = global_si->find_symbol_by_name(symbol_name); if (s != nullptr) { *si_found_in = global_si; return false; } return true; }); } // 2. Look for it in the local group if (s == nullptr) { local_group.visit([&](soinfo* local_si) { if (local_si == si_from && si_from->has_DT_SYMBOLIC) { // we already did this - skip return true; } DEBUG("%s: looking up %s in %s (from local group)", si_from->name, name, local_si->name); s = local_si->find_symbol_by_name(symbol_name); if (s != nullptr) { *si_found_in = local_si; return false; } return true; }); } if (s != nullptr) { TRACE_TYPE(LOOKUP, "si %s sym %s s->st_value = %p, " "found in %s, base = %p, load bias = %p", si_from->name, name, reinterpret_cast(s->st_value), (*si_found_in)->name, reinterpret_cast((*si_found_in)->base), reinterpret_cast((*si_found_in)->load_bias)); } return s; } // Each size has it's own allocator. template class SizeBasedAllocator { public: static void* alloc() { return allocator_.alloc(); } static void free(void* ptr) { allocator_.free(ptr); } private: static LinkerBlockAllocator allocator_; }; template LinkerBlockAllocator SizeBasedAllocator::allocator_(size); template class TypeBasedAllocator { public: static T* alloc() { return reinterpret_cast(SizeBasedAllocator::alloc()); } static void free(T* ptr) { SizeBasedAllocator::free(ptr); } }; class LoadTask { public: struct deleter_t { void operator()(LoadTask* t) { TypeBasedAllocator::free(t); } }; typedef UniquePtr unique_ptr; static deleter_t deleter; static LoadTask* create(const char* name, soinfo* needed_by) { LoadTask* ptr = TypeBasedAllocator::alloc(); return new (ptr) LoadTask(name, needed_by); } const char* get_name() const { return name_; } soinfo* get_needed_by() const { return needed_by_; } private: LoadTask(const char* name, soinfo* needed_by) : name_(name), needed_by_(needed_by) {} const char* name_; soinfo* needed_by_; DISALLOW_IMPLICIT_CONSTRUCTORS(LoadTask); }; LoadTask::deleter_t LoadTask::deleter; template using linked_list_t = LinkedList>>; typedef linked_list_t SoinfoLinkedList; typedef linked_list_t StringLinkedList; typedef linked_list_t LoadTaskList; // This function walks down the tree of soinfo dependencies // in breadth-first order and // * calls action(soinfo* si) for each node, and // * terminates walk if action returns false. // // walk_dependencies_tree returns false if walk was terminated // by the action and true otherwise. template static bool walk_dependencies_tree(soinfo* root_soinfos[], size_t root_soinfos_size, F action) { SoinfoLinkedList visit_list; SoinfoLinkedList visited; for (size_t i = 0; i < root_soinfos_size; ++i) { visit_list.push_back(root_soinfos[i]); } soinfo* si; while ((si = visit_list.pop_front()) != nullptr) { if (visited.contains(si)) { continue; } if (!action(si)) { return false; } visited.push_back(si); si->get_children().for_each([&](soinfo* child) { visit_list.push_back(child); }); } return true; } // This is used by dlsym(3). It performs symbol lookup only within the // specified soinfo object and its dependencies in breadth first order. ElfW(Sym)* dlsym_handle_lookup(soinfo* si, soinfo** found, const char* name) { ElfW(Sym)* result = nullptr; SymbolName symbol_name(name); walk_dependencies_tree(&si, 1, [&](soinfo* current_soinfo) { result = current_soinfo->find_symbol_by_name(symbol_name); if (result != nullptr) { *found = current_soinfo; return false; } return true; }); return result; } /* This is used by dlsym(3) to performs a global symbol lookup. If the start value is null (for RTLD_DEFAULT), the search starts at the beginning of the global solist. Otherwise the search starts at the specified soinfo (for RTLD_NEXT). */ ElfW(Sym)* dlsym_linear_lookup(const char* name, soinfo** found, soinfo* start) { SymbolName symbol_name(name); if (start == nullptr) { start = solist; } ElfW(Sym)* s = nullptr; for (soinfo* si = start; (s == nullptr) && (si != nullptr); si = si->next) { if ((si->get_rtld_flags() & RTLD_GLOBAL) == 0) { continue; } s = si->find_symbol_by_name(symbol_name); if (s != nullptr) { *found = si; break; } } if (s != nullptr) { TRACE_TYPE(LOOKUP, "%s s->st_value = %p, found->base = %p", name, reinterpret_cast(s->st_value), reinterpret_cast((*found)->base)); } return s; } soinfo* find_containing_library(const void* p) { ElfW(Addr) address = reinterpret_cast(p); for (soinfo* si = solist; si != nullptr; si = si->next) { if (address >= si->base && address - si->base < si->size) { return si; } } return nullptr; } ElfW(Sym)* soinfo::find_symbol_by_address(const void* addr) { return is_gnu_hash() ? gnu_addr_lookup(addr) : elf_addr_lookup(addr); } static bool symbol_matches_soaddr(const ElfW(Sym)* sym, ElfW(Addr) soaddr) { return sym->st_shndx != SHN_UNDEF && soaddr >= sym->st_value && soaddr < sym->st_value + sym->st_size; } ElfW(Sym)* soinfo::gnu_addr_lookup(const void* addr) { ElfW(Addr) soaddr = reinterpret_cast(addr) - base; for (size_t i = 0; i < nbucket_; ++i) { uint32_t n = bucket_[i]; if (n == 0) { continue; } do { ElfW(Sym)* sym = symtab_ + n; if (symbol_matches_soaddr(sym, soaddr)) { return sym; } } while ((chain_[n++] & 1) == 0); } return nullptr; } ElfW(Sym)* soinfo::elf_addr_lookup(const void* addr) { ElfW(Addr) soaddr = reinterpret_cast(addr) - base; // Search the library's symbol table for any defined symbol which // contains this address. for (size_t i = 0; i < nchain_; ++i) { ElfW(Sym)* sym = symtab_ + i; if (symbol_matches_soaddr(sym, soaddr)) { return sym; } } return nullptr; } static int open_library_on_path(const char* name, const char* const paths[]) { char buf[512]; for (size_t i = 0; paths[i] != nullptr; ++i) { int n = __libc_format_buffer(buf, sizeof(buf), "%s/%s", paths[i], name); if (n < 0 || n >= static_cast(sizeof(buf))) { PRINT("Warning: ignoring very long library path: %s/%s", paths[i], name); continue; } int fd = TEMP_FAILURE_RETRY(open(buf, O_RDONLY | O_CLOEXEC)); if (fd != -1) { return fd; } } return -1; } static int open_library(const char* name) { TRACE("[ opening %s ]", name); // If the name contains a slash, we should attempt to open it directly and not search the paths. if (strchr(name, '/') != nullptr) { int fd = TEMP_FAILURE_RETRY(open(name, O_RDONLY | O_CLOEXEC)); if (fd != -1) { return fd; } // ...but nvidia binary blobs (at least) rely on this behavior, so fall through for now. #if defined(__LP64__) return -1; #endif } // Otherwise we try LD_LIBRARY_PATH first, and fall back to the built-in well known paths. int fd = open_library_on_path(name, g_ld_library_paths); if (fd == -1) { fd = open_library_on_path(name, kDefaultLdPaths); } return fd; } template static void for_each_dt_needed(const soinfo* si, F action) { for (ElfW(Dyn)* d = si->dynamic; d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_NEEDED) { action(si->get_string(d->d_un.d_val)); } } } static soinfo* load_library(LoadTaskList& load_tasks, const char* name, int rtld_flags, const android_dlextinfo* extinfo) { int fd = -1; off64_t file_offset = 0; ScopedFd file_guard(-1); if (extinfo != nullptr && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) != 0) { fd = extinfo->library_fd; if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) { file_offset = extinfo->library_fd_offset; } } else { // Open the file. fd = open_library(name); if (fd == -1) { DL_ERR("library \"%s\" not found", name); return nullptr; } file_guard.reset(fd); } if ((file_offset % PAGE_SIZE) != 0) { DL_ERR("file offset for the library \"%s\" is not page-aligned: %" PRId64, name, file_offset); return nullptr; } if (file_offset < 0) { DL_ERR("file offset for the library \"%s\" is negative: %" PRId64, name, file_offset); return nullptr; } struct stat file_stat; if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) { DL_ERR("unable to stat file for the library \"%s\": %s", name, strerror(errno)); return nullptr; } if (file_offset >= file_stat.st_size) { DL_ERR("file offset for the library \"%s\" >= file size: %" PRId64 " >= %" PRId64, name, file_offset, file_stat.st_size); return nullptr; } // Check for symlink and other situations where // file can have different names. for (soinfo* si = solist; si != nullptr; si = si->next) { if (si->get_st_dev() != 0 && si->get_st_ino() != 0 && si->get_st_dev() == file_stat.st_dev && si->get_st_ino() == file_stat.st_ino && si->get_file_offset() == file_offset) { TRACE("library \"%s\" is already loaded under different name/path \"%s\" - will return existing soinfo", name, si->name); return si; } } if ((rtld_flags & RTLD_NOLOAD) != 0) { DL_ERR("library \"%s\" wasn't loaded and RTLD_NOLOAD prevented it", name); return nullptr; } // Read the ELF header and load the segments. ElfReader elf_reader(name, fd, file_offset); if (!elf_reader.Load(extinfo)) { return nullptr; } soinfo* si = soinfo_alloc(SEARCH_NAME(name), &file_stat, file_offset, rtld_flags); if (si == nullptr) { return nullptr; } si->base = elf_reader.load_start(); si->size = elf_reader.load_size(); si->load_bias = elf_reader.load_bias(); si->phnum = elf_reader.phdr_count(); si->phdr = elf_reader.loaded_phdr(); if (!si->prelink_image()) { soinfo_free(si); return nullptr; } for_each_dt_needed(si, [&] (const char* name) { load_tasks.push_back(LoadTask::create(name, si)); }); return si; } static soinfo *find_loaded_library_by_name(const char* name) { const char* search_name = SEARCH_NAME(name); for (soinfo* si = solist; si != nullptr; si = si->next) { if (!strcmp(search_name, si->name)) { return si; } } return nullptr; } static soinfo* find_library_internal(LoadTaskList& load_tasks, const char* name, int rtld_flags, const android_dlextinfo* extinfo) { soinfo* si = find_loaded_library_by_name(name); // Library might still be loaded, the accurate detection // of this fact is done by load_library. if (si == nullptr) { TRACE("[ '%s' has not been found by name. Trying harder...]", name); si = load_library(load_tasks, name, rtld_flags, extinfo); } return si; } static void soinfo_unload(soinfo* si); // TODO: this is slightly unusual way to construct // the global group for relocation. Not every RTLD_GLOBAL // library is included in this group for backwards-compatibility // reasons. // // This group consists of the main executable, LD_PRELOADs // and libraries with the DF_1_GLOBAL flag set. static soinfo::soinfo_list_t make_global_group() { soinfo::soinfo_list_t global_group; for (soinfo* si = somain; si != nullptr; si = si->next) { if ((si->get_dt_flags_1() & DF_1_GLOBAL) != 0) { global_group.push_back(si); } } return global_group; } static bool find_libraries(soinfo* start_with, const char* const library_names[], size_t library_names_count, soinfo* soinfos[], soinfo* ld_preloads[], size_t ld_preloads_count, int rtld_flags, const android_dlextinfo* extinfo) { // Step 0: prepare. LoadTaskList load_tasks; for (size_t i = 0; i < library_names_count; ++i) { const char* name = library_names[i]; load_tasks.push_back(LoadTask::create(name, start_with)); } // Construct global_group. soinfo::soinfo_list_t global_group = make_global_group(); // If soinfos array is null allocate one on stack. // The array is needed in case of failure; for example // when library_names[] = {libone.so, libtwo.so} and libone.so // is loaded correctly but libtwo.so failed for some reason. // In this case libone.so should be unloaded on return. // See also implementation of failure_guard below. if (soinfos == nullptr) { size_t soinfos_size = sizeof(soinfo*)*library_names_count; soinfos = reinterpret_cast(alloca(soinfos_size)); memset(soinfos, 0, soinfos_size); } // list of libraries to link - see step 2. size_t soinfos_count = 0; auto failure_guard = make_scope_guard([&]() { // Housekeeping load_tasks.for_each([] (LoadTask* t) { LoadTask::deleter(t); }); for (size_t i = 0; iget_name(), rtld_flags, extinfo); if (si == nullptr) { return false; } soinfo* needed_by = task->get_needed_by(); if (needed_by != nullptr) { needed_by->add_child(si); } if (si->is_linked()) { si->increment_ref_count(); } // When ld_preloads is not null, the first // ld_preloads_count libs are in fact ld_preloads. if (ld_preloads != nullptr && soinfos_count < ld_preloads_count) { // Add LD_PRELOADed libraries to the global group for future runs. // There is no need to explicitly add them to the global group // for this run because they are going to appear in the local // group in the correct order. si->set_dt_flags_1(si->get_dt_flags_1() | DF_1_GLOBAL); ld_preloads[soinfos_count] = si; } if (soinfos_count < library_names_count) { soinfos[soinfos_count++] = si; } } // Step 2: link libraries. soinfo::soinfo_list_t local_group; walk_dependencies_tree( start_with == nullptr ? soinfos : &start_with, start_with == nullptr ? soinfos_count : 1, [&] (soinfo* si) { local_group.push_back(si); return true; }); // We need to increment ref_count in case // the root of the local group was not linked. bool was_local_group_root_linked = local_group.front()->is_linked(); bool linked = local_group.visit([&](soinfo* si) { if (!si->is_linked()) { if (!si->link_image(global_group, local_group, extinfo)) { return false; } si->set_linked(); } return true; }); if (linked) { failure_guard.disable(); } if (!was_local_group_root_linked) { local_group.front()->increment_ref_count(); } return linked; } static soinfo* find_library(const char* name, int rtld_flags, const android_dlextinfo* extinfo) { soinfo* si; if (name == nullptr) { si = somain; } else if (!find_libraries(nullptr, &name, 1, &si, nullptr, 0, rtld_flags, extinfo)) { return nullptr; } return si; } static void soinfo_unload(soinfo* root) { // Note that the library can be loaded but not linked; // in which case there is no root but we still need // to walk the tree and unload soinfos involved. // // This happens on unsuccessful dlopen, when one of // the DT_NEEDED libraries could not be linked/found. if (root->is_linked()) { root = root->get_local_group_root(); } if (!root->can_unload()) { TRACE("not unloading '%s' - the binary is flagged with NODELETE", root->name); return; } size_t ref_count = root->is_linked() ? root->decrement_ref_count() : 0; if (ref_count == 0) { soinfo::soinfo_list_t local_unload_list; soinfo::soinfo_list_t external_unload_list; soinfo::soinfo_list_t depth_first_list; depth_first_list.push_back(root); soinfo* si = nullptr; while ((si = depth_first_list.pop_front()) != nullptr) { local_unload_list.push_back(si); if (si->has_min_version(0)) { soinfo* child = nullptr; while ((child = si->get_children().pop_front()) != nullptr) { TRACE("%s needs to unload %s", si->name, child->name); if (local_unload_list.contains(child)) { continue; } else if (child->get_local_group_root() != root) { external_unload_list.push_back(child); } else { depth_first_list.push_front(child); } } } else { for_each_dt_needed(si, [&] (const char* library_name) { TRACE("deprecated (old format of soinfo): %s needs to unload %s", si->name, library_name); soinfo* needed = find_library(library_name, RTLD_NOLOAD, nullptr); if (needed != nullptr) { // Not found: for example if symlink was deleted between dlopen and dlclose // Since we cannot really handle errors at this point - print and continue. PRINT("warning: couldn't find %s needed by %s on unload.", library_name, si->name); return; } else if (local_unload_list.contains(needed)) { // already visited return; } else if (needed->get_local_group_root() != root) { // external group external_unload_list.push_back(needed); } else { // local group depth_first_list.push_front(needed); } }); } } local_unload_list.for_each([](soinfo* si) { si->call_destructors(); }); while ((si = local_unload_list.pop_front()) != nullptr) { notify_gdb_of_unload(si); soinfo_free(si); } while ((si = external_unload_list.pop_front()) != nullptr) { soinfo_unload(si); } } else { TRACE("not unloading '%s' group, decrementing ref_count to %zd", root->name, ref_count); } } void do_android_get_LD_LIBRARY_PATH(char* buffer, size_t buffer_size) { // Use basic string manipulation calls to avoid snprintf. // snprintf indirectly calls pthread_getspecific to get the size of a buffer. // When debug malloc is enabled, this call returns 0. This in turn causes // snprintf to do nothing, which causes libraries to fail to load. // See b/17302493 for further details. // Once the above bug is fixed, this code can be modified to use // snprintf again. size_t required_len = strlen(kDefaultLdPaths[0]) + strlen(kDefaultLdPaths[1]) + 2; if (buffer_size < required_len) { __libc_fatal("android_get_LD_LIBRARY_PATH failed, buffer too small: buffer len %zu, required len %zu", buffer_size, required_len); } char* end = stpcpy(buffer, kDefaultLdPaths[0]); *end = ':'; strcpy(end + 1, kDefaultLdPaths[1]); } void do_android_update_LD_LIBRARY_PATH(const char* ld_library_path) { if (!get_AT_SECURE()) { parse_LD_LIBRARY_PATH(ld_library_path); } } soinfo* do_dlopen(const char* name, int flags, const android_dlextinfo* extinfo) { if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL|RTLD_NODELETE|RTLD_NOLOAD)) != 0) { DL_ERR("invalid flags to dlopen: %x", flags); return nullptr; } if (extinfo != nullptr) { if ((extinfo->flags & ~(ANDROID_DLEXT_VALID_FLAG_BITS)) != 0) { DL_ERR("invalid extended flags to android_dlopen_ext: 0x%" PRIx64, extinfo->flags); return nullptr; } if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) == 0 && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) { DL_ERR("invalid extended flag combination (ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET without ANDROID_DLEXT_USE_LIBRARY_FD): 0x%" PRIx64, extinfo->flags); return nullptr; } } protect_data(PROT_READ | PROT_WRITE); soinfo* si = find_library(name, flags, extinfo); if (si != nullptr) { si->call_constructors(); } protect_data(PROT_READ); return si; } void do_dlclose(soinfo* si) { protect_data(PROT_READ | PROT_WRITE); soinfo_unload(si); protect_data(PROT_READ); } static ElfW(Addr) call_ifunc_resolver(ElfW(Addr) resolver_addr) { typedef ElfW(Addr) (*ifunc_resolver_t)(void); ifunc_resolver_t ifunc_resolver = reinterpret_cast(resolver_addr); ElfW(Addr) ifunc_addr = ifunc_resolver(); TRACE_TYPE(RELO, "Called ifunc_resolver@%p. The result is %p", ifunc_resolver, reinterpret_cast(ifunc_addr)); return ifunc_addr; } #if defined(USE_RELA) int soinfo::relocate(ElfW(Rela)* rela, unsigned count, const soinfo_list_t& global_group, const soinfo_list_t& local_group) { for (size_t idx = 0; idx < count; ++idx, ++rela) { unsigned type = ELFW(R_TYPE)(rela->r_info); unsigned sym = ELFW(R_SYM)(rela->r_info); ElfW(Addr) reloc = static_cast(rela->r_offset + load_bias); ElfW(Addr) sym_addr = 0; const char* sym_name = nullptr; DEBUG("Processing '%s' relocation at index %zd", name, idx); if (type == 0) { // R_*_NONE continue; } ElfW(Sym)* s = nullptr; soinfo* lsi = nullptr; if (sym != 0) { sym_name = get_string(symtab_[sym].st_name); s = soinfo_do_lookup(this, sym_name, &lsi, global_group,local_group); if (s == nullptr) { // We only allow an undefined symbol if this is a weak reference... s = &symtab_[sym]; if (ELF_ST_BIND(s->st_info) != STB_WEAK) { DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, name); return -1; } /* IHI0044C AAELF 4.5.1.1: Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain unsatisfied. During linking, the value of an undefined weak reference is: - Zero if the relocation type is absolute - The address of the place if the relocation is pc-relative - The address of nominal base address if the relocation type is base-relative. */ switch (type) { #if defined(__aarch64__) case R_AARCH64_JUMP_SLOT: case R_AARCH64_GLOB_DAT: case R_AARCH64_ABS64: case R_AARCH64_ABS32: case R_AARCH64_ABS16: case R_AARCH64_RELATIVE: case R_AARCH64_IRELATIVE: /* * The sym_addr was initialized to be zero above, or the relocation * code below does not care about value of sym_addr. * No need to do anything. */ break; #elif defined(__x86_64__) case R_X86_64_JUMP_SLOT: case R_X86_64_GLOB_DAT: case R_X86_64_32: case R_X86_64_64: case R_X86_64_RELATIVE: case R_X86_64_IRELATIVE: // No need to do anything. break; case R_X86_64_PC32: sym_addr = reloc; break; #endif default: DL_ERR("unknown weak reloc type %d @ %p (%zu)", type, rela, idx); return -1; } } else { // We got a definition. sym_addr = lsi->resolve_symbol_address(s); } count_relocation(kRelocSymbol); } switch (type) { #if defined(__aarch64__) case R_AARCH64_JUMP_SLOT: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO JMP_SLOT %16llx <- %16llx %s\n", reloc, (sym_addr + rela->r_addend), sym_name); *reinterpret_cast(reloc) = (sym_addr + rela->r_addend); break; case R_AARCH64_GLOB_DAT: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO GLOB_DAT %16llx <- %16llx %s\n", reloc, (sym_addr + rela->r_addend), sym_name); *reinterpret_cast(reloc) = (sym_addr + rela->r_addend); break; case R_AARCH64_ABS64: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO ABS64 %16llx <- %16llx %s\n", reloc, (sym_addr + rela->r_addend), sym_name); *reinterpret_cast(reloc) += (sym_addr + rela->r_addend); break; case R_AARCH64_ABS32: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO ABS32 %16llx <- %16llx %s\n", reloc, (sym_addr + rela->r_addend), sym_name); if ((static_cast(INT32_MIN) <= (*reinterpret_cast(reloc) + (sym_addr + rela->r_addend))) && ((*reinterpret_cast(reloc) + (sym_addr + rela->r_addend)) <= static_cast(UINT32_MAX))) { *reinterpret_cast(reloc) += (sym_addr + rela->r_addend); } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", (*reinterpret_cast(reloc) + (sym_addr + rela->r_addend)), static_cast(INT32_MIN), static_cast(UINT32_MAX)); return -1; } break; case R_AARCH64_ABS16: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO ABS16 %16llx <- %16llx %s\n", reloc, (sym_addr + rela->r_addend), sym_name); if ((static_cast(INT16_MIN) <= (*reinterpret_cast(reloc) + (sym_addr + rela->r_addend))) && ((*reinterpret_cast(reloc) + (sym_addr + rela->r_addend)) <= static_cast(UINT16_MAX))) { *reinterpret_cast(reloc) += (sym_addr + rela->r_addend); } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", (*reinterpret_cast(reloc) + (sym_addr + rela->r_addend)), static_cast(INT16_MIN), static_cast(UINT16_MAX)); return -1; } break; case R_AARCH64_PREL64: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO REL64 %16llx <- %16llx - %16llx %s\n", reloc, (sym_addr + rela->r_addend), rela->r_offset, sym_name); *reinterpret_cast(reloc) += (sym_addr + rela->r_addend) - rela->r_offset; break; case R_AARCH64_PREL32: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO REL32 %16llx <- %16llx - %16llx %s\n", reloc, (sym_addr + rela->r_addend), rela->r_offset, sym_name); if ((static_cast(INT32_MIN) <= (*reinterpret_cast(reloc) + ((sym_addr + rela->r_addend) - rela->r_offset))) && ((*reinterpret_cast(reloc) + ((sym_addr + rela->r_addend) - rela->r_offset)) <= static_cast(UINT32_MAX))) { *reinterpret_cast(reloc) += ((sym_addr + rela->r_addend) - rela->r_offset); } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", (*reinterpret_cast(reloc) + ((sym_addr + rela->r_addend) - rela->r_offset)), static_cast(INT32_MIN), static_cast(UINT32_MAX)); return -1; } break; case R_AARCH64_PREL16: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO REL16 %16llx <- %16llx - %16llx %s\n", reloc, (sym_addr + rela->r_addend), rela->r_offset, sym_name); if ((static_cast(INT16_MIN) <= (*reinterpret_cast(reloc) + ((sym_addr + rela->r_addend) - rela->r_offset))) && ((*reinterpret_cast(reloc) + ((sym_addr + rela->r_addend) - rela->r_offset)) <= static_cast(UINT16_MAX))) { *reinterpret_cast(reloc) += ((sym_addr + rela->r_addend) - rela->r_offset); } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", (*reinterpret_cast(reloc) + ((sym_addr + rela->r_addend) - rela->r_offset)), static_cast(INT16_MIN), static_cast(UINT16_MAX)); return -1; } break; case R_AARCH64_RELATIVE: count_relocation(kRelocRelative); MARK(rela->r_offset); if (sym) { DL_ERR("odd RELATIVE form..."); return -1; } TRACE_TYPE(RELO, "RELO RELATIVE %16llx <- %16llx\n", reloc, (base + rela->r_addend)); *reinterpret_cast(reloc) = (base + rela->r_addend); break; case R_AARCH64_IRELATIVE: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO IRELATIVE %16llx <- %16llx\n", reloc, (base + rela->r_addend)); *reinterpret_cast(reloc) = call_ifunc_resolver(base + rela->r_addend); break; case R_AARCH64_COPY: /* * ET_EXEC is not supported so this should not happen. * * http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044d/IHI0044D_aaelf.pdf * * Section 4.7.1.10 "Dynamic relocations" * R_AARCH64_COPY may only appear in executable objects where e_type is * set to ET_EXEC. */ DL_ERR("%s R_AARCH64_COPY relocations are not supported", name); return -1; case R_AARCH64_TLS_TPREL64: TRACE_TYPE(RELO, "RELO TLS_TPREL64 *** %16llx <- %16llx - %16llx\n", reloc, (sym_addr + rela->r_addend), rela->r_offset); break; case R_AARCH64_TLS_DTPREL32: TRACE_TYPE(RELO, "RELO TLS_DTPREL32 *** %16llx <- %16llx - %16llx\n", reloc, (sym_addr + rela->r_addend), rela->r_offset); break; #elif defined(__x86_64__) case R_X86_64_JUMP_SLOT: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO JMP_SLOT %08zx <- %08zx %s", static_cast(reloc), static_cast(sym_addr + rela->r_addend), sym_name); *reinterpret_cast(reloc) = sym_addr + rela->r_addend; break; case R_X86_64_GLOB_DAT: count_relocation(kRelocAbsolute); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO GLOB_DAT %08zx <- %08zx %s", static_cast(reloc), static_cast(sym_addr + rela->r_addend), sym_name); *reinterpret_cast(reloc) = sym_addr + rela->r_addend; break; case R_X86_64_RELATIVE: count_relocation(kRelocRelative); MARK(rela->r_offset); if (sym) { DL_ERR("odd RELATIVE form..."); return -1; } TRACE_TYPE(RELO, "RELO RELATIVE %08zx <- +%08zx", static_cast(reloc), static_cast(base)); *reinterpret_cast(reloc) = base + rela->r_addend; break; case R_X86_64_IRELATIVE: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO IRELATIVE %16llx <- %16llx\n", reloc, (base + rela->r_addend)); *reinterpret_cast(reloc) = call_ifunc_resolver(base + rela->r_addend); break; case R_X86_64_32: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO R_X86_64_32 %08zx <- +%08zx %s", static_cast(reloc), static_cast(sym_addr), sym_name); *reinterpret_cast(reloc) = sym_addr + rela->r_addend; break; case R_X86_64_64: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO R_X86_64_64 %08zx <- +%08zx %s", static_cast(reloc), static_cast(sym_addr), sym_name); *reinterpret_cast(reloc) = sym_addr + rela->r_addend; break; case R_X86_64_PC32: count_relocation(kRelocRelative); MARK(rela->r_offset); TRACE_TYPE(RELO, "RELO R_X86_64_PC32 %08zx <- +%08zx (%08zx - %08zx) %s", static_cast(reloc), static_cast(sym_addr - reloc), static_cast(sym_addr), static_cast(reloc), sym_name); *reinterpret_cast(reloc) = sym_addr + rela->r_addend - reloc; break; #endif default: DL_ERR("unknown reloc type %d @ %p (%zu)", type, rela, idx); return -1; } } return 0; } #else // REL, not RELA. int soinfo::relocate(ElfW(Rel)* rel, unsigned count, const soinfo_list_t& global_group, const soinfo_list_t& local_group) { for (size_t idx = 0; idx < count; ++idx, ++rel) { unsigned type = ELFW(R_TYPE)(rel->r_info); // TODO: don't use unsigned for 'sym'. Use uint32_t or ElfW(Addr) instead. unsigned sym = ELFW(R_SYM)(rel->r_info); ElfW(Addr) reloc = static_cast(rel->r_offset + load_bias); ElfW(Addr) sym_addr = 0; const char* sym_name = nullptr; DEBUG("Processing '%s' relocation at index %zd", name, idx); if (type == 0) { // R_*_NONE continue; } ElfW(Sym)* s = nullptr; soinfo* lsi = nullptr; if (sym != 0) { sym_name = get_string(symtab_[sym].st_name); s = soinfo_do_lookup(this, sym_name, &lsi, global_group, local_group); if (s == nullptr) { // We only allow an undefined symbol if this is a weak reference... s = &symtab_[sym]; if (ELF_ST_BIND(s->st_info) != STB_WEAK) { DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, name); return -1; } /* IHI0044C AAELF 4.5.1.1: Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain unsatisfied. During linking, the value of an undefined weak reference is: - Zero if the relocation type is absolute - The address of the place if the relocation is pc-relative - The address of nominal base address if the relocation type is base-relative. */ switch (type) { #if defined(__arm__) case R_ARM_JUMP_SLOT: case R_ARM_GLOB_DAT: case R_ARM_ABS32: case R_ARM_RELATIVE: /* Don't care. */ // sym_addr was initialized to be zero above or relocation // code below does not care about value of sym_addr. // No need to do anything. break; #elif defined(__i386__) case R_386_JMP_SLOT: case R_386_GLOB_DAT: case R_386_32: case R_386_RELATIVE: /* Don't care. */ case R_386_IRELATIVE: // sym_addr was initialized to be zero above or relocation // code below does not care about value of sym_addr. // No need to do anything. break; case R_386_PC32: sym_addr = reloc; break; #endif #if defined(__arm__) case R_ARM_COPY: // Fall through. Can't really copy if weak symbol is not found at run-time. #endif default: DL_ERR("unknown weak reloc type %d @ %p (%zu)", type, rel, idx); return -1; } } else { // We got a definition. sym_addr = lsi->resolve_symbol_address(s); } count_relocation(kRelocSymbol); } switch (type) { #if defined(__arm__) case R_ARM_JUMP_SLOT: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO JMP_SLOT %08x <- %08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) = sym_addr; break; case R_ARM_GLOB_DAT: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO GLOB_DAT %08x <- %08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) = sym_addr; break; case R_ARM_ABS32: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO ABS %08x <- %08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) += sym_addr; break; case R_ARM_REL32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO REL32 %08x <- %08x - %08x %s", reloc, sym_addr, rel->r_offset, sym_name); *reinterpret_cast(reloc) += sym_addr - rel->r_offset; break; case R_ARM_COPY: /* * ET_EXEC is not supported so this should not happen. * * http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044d/IHI0044D_aaelf.pdf * * Section 4.7.1.10 "Dynamic relocations" * R_ARM_COPY may only appear in executable objects where e_type is * set to ET_EXEC. */ DL_ERR("%s R_ARM_COPY relocations are not supported", name); return -1; #elif defined(__i386__) case R_386_JMP_SLOT: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO JMP_SLOT %08x <- %08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) = sym_addr; break; case R_386_GLOB_DAT: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO GLOB_DAT %08x <- %08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) = sym_addr; break; case R_386_32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_386_32 %08x <- +%08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) += sym_addr; break; case R_386_PC32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_386_PC32 %08x <- +%08x (%08x - %08x) %s", reloc, (sym_addr - reloc), sym_addr, reloc, sym_name); *reinterpret_cast(reloc) += (sym_addr - reloc); break; #elif defined(__mips__) case R_MIPS_REL32: #if defined(__LP64__) // MIPS Elf64_Rel entries contain compound relocations // We only handle the R_MIPS_NONE|R_MIPS_64|R_MIPS_REL32 case if (ELF64_R_TYPE2(rel->r_info) != R_MIPS_64 || ELF64_R_TYPE3(rel->r_info) != R_MIPS_NONE) { DL_ERR("Unexpected compound relocation type:%d type2:%d type3:%d @ %p (%zu)", type, (unsigned)ELF64_R_TYPE2(rel->r_info), (unsigned)ELF64_R_TYPE3(rel->r_info), rel, idx); return -1; } #endif count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO REL32 %08zx <- %08zx %s", static_cast(reloc), static_cast(sym_addr), sym_name ? sym_name : "*SECTIONHDR*"); if (s) { *reinterpret_cast(reloc) += sym_addr; } else { *reinterpret_cast(reloc) += base; } break; #endif #if defined(__arm__) case R_ARM_RELATIVE: #elif defined(__i386__) case R_386_RELATIVE: #endif count_relocation(kRelocRelative); MARK(rel->r_offset); if (sym) { DL_ERR("odd RELATIVE form..."); return -1; } TRACE_TYPE(RELO, "RELO RELATIVE %p <- +%p", reinterpret_cast(reloc), reinterpret_cast(base)); *reinterpret_cast(reloc) += base; break; #if defined(__i386__) case R_386_IRELATIVE: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO IRELATIVE %p <- %p", reinterpret_cast(reloc), reinterpret_cast(base)); *reinterpret_cast(reloc) = call_ifunc_resolver(base + *reinterpret_cast(reloc)); break; #endif default: DL_ERR("unknown reloc type %d @ %p (%zu)", type, rel, idx); return -1; } } return 0; } #endif #if defined(__mips__) bool soinfo::mips_relocate_got(const soinfo_list_t& global_group, const soinfo_list_t& local_group) { ElfW(Addr)** got = plt_got_; if (got == nullptr) { return true; } // got[0] is the address of the lazy resolver function. // got[1] may be used for a GNU extension. // Set it to a recognizable address in case someone calls it (should be _rtld_bind_start). // FIXME: maybe this should be in a separate routine? if ((flags & FLAG_LINKER) == 0) { size_t g = 0; got[g++] = reinterpret_cast(0xdeadbeef); if (reinterpret_cast(got[g]) < 0) { got[g++] = reinterpret_cast(0xdeadfeed); } // Relocate the local GOT entries. for (; g < mips_local_gotno_; g++) { got[g] = reinterpret_cast(reinterpret_cast(got[g]) + load_bias); } } // Now for the global GOT entries... ElfW(Sym)* sym = symtab_ + mips_gotsym_; got = plt_got_ + mips_local_gotno_; for (size_t g = mips_gotsym_; g < mips_symtabno_; g++, sym++, got++) { // This is an undefined reference... try to locate it. const char* sym_name = get_string(sym->st_name); soinfo* lsi = nullptr; ElfW(Sym)* s = soinfo_do_lookup(this, sym_name, &lsi, global_group, local_group); if (s == nullptr) { // We only allow an undefined symbol if this is a weak reference. s = &symtab_[g]; if (ELF_ST_BIND(s->st_info) != STB_WEAK) { DL_ERR("cannot locate \"%s\"...", sym_name); return false; } *got = 0; } else { // FIXME: is this sufficient? // For reference see NetBSD link loader // http://cvsweb.netbsd.org/bsdweb.cgi/src/libexec/ld.elf_so/arch/mips/mips_reloc.c?rev=1.53&content-type=text/x-cvsweb-markup *got = reinterpret_cast(lsi->resolve_symbol_address(s)); } } return true; } #endif void soinfo::call_array(const char* array_name __unused, linker_function_t* functions, size_t count, bool reverse) { if (functions == nullptr) { return; } TRACE("[ Calling %s (size %zd) @ %p for '%s' ]", array_name, count, functions, name); int begin = reverse ? (count - 1) : 0; int end = reverse ? -1 : count; int step = reverse ? -1 : 1; for (int i = begin; i != end; i += step) { TRACE("[ %s[%d] == %p ]", array_name, i, functions[i]); call_function("function", functions[i]); } TRACE("[ Done calling %s for '%s' ]", array_name, name); } void soinfo::call_function(const char* function_name __unused, linker_function_t function) { if (function == nullptr || reinterpret_cast(function) == static_cast(-1)) { return; } TRACE("[ Calling %s @ %p for '%s' ]", function_name, function, name); function(); TRACE("[ Done calling %s @ %p for '%s' ]", function_name, function, name); // The function may have called dlopen(3) or dlclose(3), so we need to ensure our data structures // are still writable. This happens with our debug malloc (see http://b/7941716). protect_data(PROT_READ | PROT_WRITE); } void soinfo::call_pre_init_constructors() { // DT_PREINIT_ARRAY functions are called before any other constructors for executables, // but ignored in a shared library. call_array("DT_PREINIT_ARRAY", preinit_array_, preinit_array_count_, false); } void soinfo::call_constructors() { if (constructors_called) { return; } // We set constructors_called before actually calling the constructors, otherwise it doesn't // protect against recursive constructor calls. One simple example of constructor recursion // is the libc debug malloc, which is implemented in libc_malloc_debug_leak.so: // 1. The program depends on libc, so libc's constructor is called here. // 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so. // 3. dlopen() calls the constructors on the newly created // soinfo for libc_malloc_debug_leak.so. // 4. The debug .so depends on libc, so CallConstructors is // called again with the libc soinfo. If it doesn't trigger the early- // out above, the libc constructor will be called again (recursively!). constructors_called = true; if (!is_main_executable() && preinit_array_ != nullptr) { // The GNU dynamic linker silently ignores these, but we warn the developer. PRINT("\"%s\": ignoring %zd-entry DT_PREINIT_ARRAY in shared library!", name, preinit_array_count_); } get_children().for_each([] (soinfo* si) { si->call_constructors(); }); TRACE("\"%s\": calling constructors", name); // DT_INIT should be called before DT_INIT_ARRAY if both are present. call_function("DT_INIT", init_func_); call_array("DT_INIT_ARRAY", init_array_, init_array_count_, false); } void soinfo::call_destructors() { if (!constructors_called) { return; } TRACE("\"%s\": calling destructors", name); // DT_FINI_ARRAY must be parsed in reverse order. call_array("DT_FINI_ARRAY", fini_array_, fini_array_count_, true); // DT_FINI should be called after DT_FINI_ARRAY if both are present. call_function("DT_FINI", fini_func_); // This is needed on second call to dlopen // after library has been unloaded with RTLD_NODELETE constructors_called = false; } void soinfo::add_child(soinfo* child) { if (has_min_version(0)) { child->parents_.push_back(this); this->children_.push_back(child); } } void soinfo::remove_all_links() { if (!has_min_version(0)) { return; } // 1. Untie connected soinfos from 'this'. children_.for_each([&] (soinfo* child) { child->parents_.remove_if([&] (const soinfo* parent) { return parent == this; }); }); parents_.for_each([&] (soinfo* parent) { parent->children_.remove_if([&] (const soinfo* child) { return child == this; }); }); // 2. Once everything untied - clear local lists. parents_.clear(); children_.clear(); } dev_t soinfo::get_st_dev() const { if (has_min_version(0)) { return st_dev_; } return 0; }; ino_t soinfo::get_st_ino() const { if (has_min_version(0)) { return st_ino_; } return 0; } off64_t soinfo::get_file_offset() const { if (has_min_version(1)) { return file_offset_; } return 0; } uint32_t soinfo::get_rtld_flags() const { if (has_min_version(1)) { return rtld_flags_; } return 0; } uint32_t soinfo::get_dt_flags_1() const { if (has_min_version(1)) { return dt_flags_1_; } return 0; } void soinfo::set_dt_flags_1(uint32_t dt_flags_1) { if (has_min_version(1)) { if ((dt_flags_1 & DF_1_GLOBAL) != 0) { rtld_flags_ |= RTLD_GLOBAL; } if ((dt_flags_1 & DF_1_NODELETE) != 0) { rtld_flags_ |= RTLD_NODELETE; } dt_flags_1_ = dt_flags_1; } } // This is a return on get_children()/get_parents() if // 'this->flags' does not have FLAG_NEW_SOINFO set. static soinfo::soinfo_list_t g_empty_list; soinfo::soinfo_list_t& soinfo::get_children() { if (has_min_version(0)) { return children_; } return g_empty_list; } soinfo::soinfo_list_t& soinfo::get_parents() { if (has_min_version(0)) { return parents_; } return g_empty_list; } ElfW(Addr) soinfo::resolve_symbol_address(ElfW(Sym)* s) { if (ELF_ST_TYPE(s->st_info) == STT_GNU_IFUNC) { return call_ifunc_resolver(s->st_value + load_bias); } return static_cast(s->st_value + load_bias); } const char* soinfo::get_string(ElfW(Word) index) const { if (has_min_version(1) && (index >= strtab_size_)) { __libc_fatal("%s: strtab out of bounds error; STRSZ=%zd, name=%d", name, strtab_size_, index); } return strtab_ + index; } bool soinfo::is_gnu_hash() const { return (flags_ & FLAG_GNU_HASH) != 0; } bool soinfo::can_unload() const { return (get_rtld_flags() & (RTLD_NODELETE | RTLD_GLOBAL)) == 0; } bool soinfo::is_linked() const { return (flags_ & FLAG_LINKED) != 0; } bool soinfo::is_main_executable() const { return (flags_ & FLAG_EXE) != 0; } void soinfo::set_linked() { flags_ |= FLAG_LINKED; } void soinfo::set_linker_flag() { flags_ |= FLAG_LINKER; } void soinfo::set_main_executable() { flags_ |= FLAG_EXE; } void soinfo::increment_ref_count() { local_group_root_->ref_count_++; } size_t soinfo::decrement_ref_count() { return --local_group_root_->ref_count_; } soinfo* soinfo::get_local_group_root() const { return local_group_root_; } /* Force any of the closed stdin, stdout and stderr to be associated with /dev/null. */ static int nullify_closed_stdio() { int dev_null, i, status; int return_value = 0; dev_null = TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR)); if (dev_null < 0) { DL_ERR("cannot open /dev/null: %s", strerror(errno)); return -1; } TRACE("[ Opened /dev/null file-descriptor=%d]", dev_null); /* If any of the stdio file descriptors is valid and not associated with /dev/null, dup /dev/null to it. */ for (i = 0; i < 3; i++) { /* If it is /dev/null already, we are done. */ if (i == dev_null) { continue; } TRACE("[ Nullifying stdio file descriptor %d]", i); status = TEMP_FAILURE_RETRY(fcntl(i, F_GETFL)); /* If file is opened, we are good. */ if (status != -1) { continue; } /* The only error we allow is that the file descriptor does not exist, in which case we dup /dev/null to it. */ if (errno != EBADF) { DL_ERR("fcntl failed: %s", strerror(errno)); return_value = -1; continue; } /* Try dupping /dev/null to this stdio file descriptor and repeat if there is a signal. Note that any errors in closing the stdio descriptor are lost. */ status = TEMP_FAILURE_RETRY(dup2(dev_null, i)); if (status < 0) { DL_ERR("dup2 failed: %s", strerror(errno)); return_value = -1; continue; } } /* If /dev/null is not one of the stdio file descriptors, close it. */ if (dev_null > 2) { TRACE("[ Closing /dev/null file-descriptor=%d]", dev_null); status = TEMP_FAILURE_RETRY(close(dev_null)); if (status == -1) { DL_ERR("close failed: %s", strerror(errno)); return_value = -1; } } return return_value; } bool soinfo::prelink_image() { /* Extract dynamic section */ ElfW(Word) dynamic_flags = 0; phdr_table_get_dynamic_section(phdr, phnum, load_bias, &dynamic, &dynamic_flags); /* We can't log anything until the linker is relocated */ bool relocating_linker = (flags_ & FLAG_LINKER) != 0; if (!relocating_linker) { INFO("[ linking %s ]", name); DEBUG("si->base = %p si->flags = 0x%08x", reinterpret_cast(base), flags_); } if (dynamic == nullptr) { if (!relocating_linker) { DL_ERR("missing PT_DYNAMIC in \"%s\"", name); } return false; } else { if (!relocating_linker) { DEBUG("dynamic = %p", dynamic); } } #if defined(__arm__) (void) phdr_table_get_arm_exidx(phdr, phnum, load_bias, &ARM_exidx, &ARM_exidx_count); #endif // Extract useful information from dynamic section. uint32_t needed_count = 0; for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) { DEBUG("d = %p, d[0](tag) = %p d[1](val) = %p", d, reinterpret_cast(d->d_tag), reinterpret_cast(d->d_un.d_val)); switch (d->d_tag) { case DT_SONAME: // TODO: glibc dynamic linker uses this name for // initial library lookup; consider doing the same here. break; case DT_HASH: if (nbucket_ != 0) { // in case of --hash-style=both, we prefer gnu break; } nbucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[0]; nchain_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[1]; bucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 8); chain_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 8 + nbucket_ * 4); break; case DT_GNU_HASH: if (nbucket_ != 0) { // in case of --hash-style=both, we prefer gnu nchain_ = 0; } nbucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[0]; // skip symndx gnu_maskwords_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[2]; gnu_shift2_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[3]; gnu_bloom_filter_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 16); bucket_ = reinterpret_cast(gnu_bloom_filter_ + gnu_maskwords_); // amend chain for symndx = header[1] chain_ = bucket_ + nbucket_ - reinterpret_cast(load_bias + d->d_un.d_ptr)[1]; if (!powerof2(gnu_maskwords_)) { DL_ERR("invalid maskwords for gnu_hash = 0x%x, in \"%s\" expecting power to two", gnu_maskwords_, name); return false; } --gnu_maskwords_; flags_ |= FLAG_GNU_HASH; break; case DT_STRTAB: strtab_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_STRSZ: strtab_size_ = d->d_un.d_val; break; case DT_SYMTAB: symtab_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_SYMENT: if (d->d_un.d_val != sizeof(ElfW(Sym))) { DL_ERR("invalid DT_SYMENT: %zd in \"%s\"", static_cast(d->d_un.d_val), name); return false; } break; case DT_PLTREL: #if defined(USE_RELA) if (d->d_un.d_val != DT_RELA) { DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_RELA", name); return false; } #else if (d->d_un.d_val != DT_REL) { DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_REL", name); return false; } #endif break; case DT_JMPREL: #if defined(USE_RELA) plt_rela_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #else plt_rel_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #endif break; case DT_PLTRELSZ: #if defined(USE_RELA) plt_rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela)); #else plt_rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel)); #endif break; case DT_PLTGOT: #if defined(__mips__) // Used by mips and mips64. plt_got_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #endif // Ignore for other platforms... (because RTLD_LAZY is not supported) break; case DT_DEBUG: // Set the DT_DEBUG entry to the address of _r_debug for GDB // if the dynamic table is writable // FIXME: not working currently for N64 // The flags for the LOAD and DYNAMIC program headers do not agree. // The LOAD section containing the dynamic table has been mapped as // read-only, but the DYNAMIC header claims it is writable. #if !(defined(__mips__) && defined(__LP64__)) if ((dynamic_flags & PF_W) != 0) { d->d_un.d_val = reinterpret_cast(&_r_debug); } break; #endif #if defined(USE_RELA) case DT_RELA: rela_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELASZ: rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela)); break; case DT_RELAENT: if (d->d_un.d_val != sizeof(ElfW(Rela))) { DL_ERR("invalid DT_RELAENT: %zd", static_cast(d->d_un.d_val)); return false; } break; // ignored (see DT_RELCOUNT comments for details) case DT_RELACOUNT: break; case DT_REL: DL_ERR("unsupported DT_REL in \"%s\"", name); return false; case DT_RELSZ: DL_ERR("unsupported DT_RELSZ in \"%s\"", name); return false; #else case DT_REL: rel_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELSZ: rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel)); break; case DT_RELENT: if (d->d_un.d_val != sizeof(ElfW(Rel))) { DL_ERR("invalid DT_RELENT: %zd", static_cast(d->d_un.d_val)); return false; } break; // "Indicates that all RELATIVE relocations have been concatenated together, // and specifies the RELATIVE relocation count." // // TODO: Spec also mentions that this can be used to optimize relocation process; // Not currently used by bionic linker - ignored. case DT_RELCOUNT: break; case DT_RELA: DL_ERR("unsupported DT_RELA in \"%s\"", name); return false; #endif case DT_INIT: init_func_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT) found at %p", name, init_func_); break; case DT_FINI: fini_func_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI) found at %p", name, fini_func_); break; case DT_INIT_ARRAY: init_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", name, init_array_); break; case DT_INIT_ARRAYSZ: init_array_count_ = ((unsigned)d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_FINI_ARRAY: fini_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", name, fini_array_); break; case DT_FINI_ARRAYSZ: fini_array_count_ = ((unsigned)d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_PREINIT_ARRAY: preinit_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", name, preinit_array_); break; case DT_PREINIT_ARRAYSZ: preinit_array_count_ = ((unsigned)d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_TEXTREL: #if defined(__LP64__) DL_ERR("text relocations (DT_TEXTREL) found in 64-bit ELF file \"%s\"", name); return false; #else has_text_relocations = true; break; #endif case DT_SYMBOLIC: has_DT_SYMBOLIC = true; break; case DT_NEEDED: ++needed_count; break; case DT_FLAGS: if (d->d_un.d_val & DF_TEXTREL) { #if defined(__LP64__) DL_ERR("text relocations (DF_TEXTREL) found in 64-bit ELF file \"%s\"", name); return false; #else has_text_relocations = true; #endif } if (d->d_un.d_val & DF_SYMBOLIC) { has_DT_SYMBOLIC = true; } break; case DT_FLAGS_1: set_dt_flags_1(d->d_un.d_val); if ((d->d_un.d_val & ~SUPPORTED_DT_FLAGS_1) != 0) { DL_WARN("Unsupported flags DT_FLAGS_1=%p", reinterpret_cast(d->d_un.d_val)); } break; #if defined(__mips__) case DT_MIPS_RLD_MAP: // Set the DT_MIPS_RLD_MAP entry to the address of _r_debug for GDB. { r_debug** dp = reinterpret_cast(load_bias + d->d_un.d_ptr); *dp = &_r_debug; } break; case DT_MIPS_RLD_VERSION: case DT_MIPS_FLAGS: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_UNREFEXTNO: break; case DT_MIPS_SYMTABNO: mips_symtabno_ = d->d_un.d_val; break; case DT_MIPS_LOCAL_GOTNO: mips_local_gotno_ = d->d_un.d_val; break; case DT_MIPS_GOTSYM: mips_gotsym_ = d->d_un.d_val; break; #endif // Ignored: "Its use has been superseded by the DF_BIND_NOW flag" case DT_BIND_NOW: break; // Ignore: bionic does not support symbol versioning... case DT_VERSYM: case DT_VERDEF: case DT_VERDEFNUM: case DT_VERNEED: case DT_VERNEEDNUM: break; default: if (!relocating_linker) { DL_WARN("%s: unused DT entry: type %p arg %p", name, reinterpret_cast(d->d_tag), reinterpret_cast(d->d_un.d_val)); } break; } } DEBUG("si->base = %p, si->strtab = %p, si->symtab = %p", reinterpret_cast(base), strtab_, symtab_); // Sanity checks. if (relocating_linker && needed_count != 0) { DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries"); return false; } if (nbucket_ == 0) { DL_ERR("empty/missing DT_HASH/DT_GNU_HASH in \"%s\" (new hash type from the future?)", name); return false; } if (strtab_ == 0) { DL_ERR("empty/missing DT_STRTAB in \"%s\"", name); return false; } if (symtab_ == 0) { DL_ERR("empty/missing DT_SYMTAB in \"%s\"", name); return false; } return true; } bool soinfo::link_image(const soinfo_list_t& global_group, const soinfo_list_t& local_group, const android_dlextinfo* extinfo) { local_group_root_ = local_group.front(); if (local_group_root_ == nullptr) { local_group_root_ = this; } #if !defined(__LP64__) if (has_text_relocations) { // Make segments writable to allow text relocations to work properly. We will later call // phdr_table_protect_segments() after all of them are applied and all constructors are run. DL_WARN("%s has text relocations. This is wasting memory and prevents " "security hardening. Please fix.", name); if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't unprotect loadable segments for \"%s\": %s", name, strerror(errno)); return false; } } #endif #if defined(USE_RELA) if (rela_ != nullptr) { DEBUG("[ relocating %s ]", name); if (relocate(rela_, rela_count_, global_group, local_group)) { return false; } } if (plt_rela_ != nullptr) { DEBUG("[ relocating %s plt ]", name); if (relocate(plt_rela_, plt_rela_count_, global_group, local_group)) { return false; } } #else if (rel_ != nullptr) { DEBUG("[ relocating %s ]", name); if (relocate(rel_, rel_count_, global_group, local_group)) { return false; } } if (plt_rel_ != nullptr) { DEBUG("[ relocating %s plt ]", name); if (relocate(plt_rel_, plt_rel_count_, global_group, local_group)) { return false; } } #endif #if defined(__mips__) if (!mips_relocate_got(global_group, local_group)) { return false; } #endif DEBUG("[ finished linking %s ]", name); #if !defined(__LP64__) if (has_text_relocations) { // All relocations are done, we can protect our segments back to read-only. if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't protect segments for \"%s\": %s", name, strerror(errno)); return false; } } #endif /* We can also turn on GNU RELRO protection */ if (phdr_table_protect_gnu_relro(phdr, phnum, load_bias) < 0) { DL_ERR("can't enable GNU RELRO protection for \"%s\": %s", name, strerror(errno)); return false; } /* Handle serializing/sharing the RELRO segment */ if (extinfo && (extinfo->flags & ANDROID_DLEXT_WRITE_RELRO)) { if (phdr_table_serialize_gnu_relro(phdr, phnum, load_bias, extinfo->relro_fd) < 0) { DL_ERR("failed serializing GNU RELRO section for \"%s\": %s", name, strerror(errno)); return false; } } else if (extinfo && (extinfo->flags & ANDROID_DLEXT_USE_RELRO)) { if (phdr_table_map_gnu_relro(phdr, phnum, load_bias, extinfo->relro_fd) < 0) { DL_ERR("failed mapping GNU RELRO section for \"%s\": %s", name, strerror(errno)); return false; } } notify_gdb_of_load(this); return true; } /* * This function add vdso to internal dso list. * It helps to stack unwinding through signal handlers. * Also, it makes bionic more like glibc. */ static void add_vdso(KernelArgumentBlock& args __unused) { #if defined(AT_SYSINFO_EHDR) ElfW(Ehdr)* ehdr_vdso = reinterpret_cast(args.getauxval(AT_SYSINFO_EHDR)); if (ehdr_vdso == nullptr) { return; } soinfo* si = soinfo_alloc("[vdso]", nullptr, 0, 0); si->phdr = reinterpret_cast(reinterpret_cast(ehdr_vdso) + ehdr_vdso->e_phoff); si->phnum = ehdr_vdso->e_phnum; si->base = reinterpret_cast(ehdr_vdso); si->size = phdr_table_get_load_size(si->phdr, si->phnum); si->load_bias = get_elf_exec_load_bias(ehdr_vdso); si->prelink_image(); si->link_image(g_empty_list, soinfo::soinfo_list_t::make_list(si), nullptr); #endif } /* * This is linker soinfo for GDB. See details below. */ #if defined(__LP64__) #define LINKER_PATH "/system/bin/linker64" #else #define LINKER_PATH "/system/bin/linker" #endif static soinfo linker_soinfo_for_gdb(LINKER_PATH, nullptr, 0, 0); /* gdb expects the linker to be in the debug shared object list. * Without this, gdb has trouble locating the linker's ".text" * and ".plt" sections. Gdb could also potentially use this to * relocate the offset of our exported 'rtld_db_dlactivity' symbol. * Don't use soinfo_alloc(), because the linker shouldn't * be on the soinfo list. */ static void init_linker_info_for_gdb(ElfW(Addr) linker_base) { linker_soinfo_for_gdb.base = linker_base; /* * Set the dynamic field in the link map otherwise gdb will complain with * the following: * warning: .dynamic section for "/system/bin/linker" is not at the * expected address (wrong library or version mismatch?) */ ElfW(Ehdr)* elf_hdr = reinterpret_cast(linker_base); ElfW(Phdr)* phdr = reinterpret_cast(linker_base + elf_hdr->e_phoff); phdr_table_get_dynamic_section(phdr, elf_hdr->e_phnum, linker_base, &linker_soinfo_for_gdb.dynamic, nullptr); insert_soinfo_into_debug_map(&linker_soinfo_for_gdb); } /* * This code is called after the linker has linked itself and * fixed it's own GOT. It is safe to make references to externs * and other non-local data at this point. */ static ElfW(Addr) __linker_init_post_relocation(KernelArgumentBlock& args, ElfW(Addr) linker_base) { #if TIMING struct timeval t0, t1; gettimeofday(&t0, 0); #endif // Initialize environment functions, and get to the ELF aux vectors table. linker_env_init(args); // If this is a setuid/setgid program, close the security hole described in // ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories/FreeBSD-SA-02:23.stdio.asc if (get_AT_SECURE()) { nullify_closed_stdio(); } debuggerd_init(); // Get a few environment variables. const char* LD_DEBUG = linker_env_get("LD_DEBUG"); if (LD_DEBUG != nullptr) { g_ld_debug_verbosity = atoi(LD_DEBUG); } // Normally, these are cleaned by linker_env_init, but the test // doesn't cost us anything. const char* ldpath_env = nullptr; const char* ldpreload_env = nullptr; if (!get_AT_SECURE()) { ldpath_env = linker_env_get("LD_LIBRARY_PATH"); ldpreload_env = linker_env_get("LD_PRELOAD"); } INFO("[ android linker & debugger ]"); soinfo* si = soinfo_alloc(args.argv[0], nullptr, 0, RTLD_GLOBAL); if (si == nullptr) { exit(EXIT_FAILURE); } /* bootstrap the link map, the main exe always needs to be first */ si->set_main_executable(); link_map* map = &(si->link_map_head); map->l_addr = 0; map->l_name = args.argv[0]; map->l_prev = nullptr; map->l_next = nullptr; _r_debug.r_map = map; r_debug_tail = map; init_linker_info_for_gdb(linker_base); // Extract information passed from the kernel. si->phdr = reinterpret_cast(args.getauxval(AT_PHDR)); si->phnum = args.getauxval(AT_PHNUM); si->entry = args.getauxval(AT_ENTRY); /* Compute the value of si->base. We can't rely on the fact that * the first entry is the PHDR because this will not be true * for certain executables (e.g. some in the NDK unit test suite) */ si->base = 0; si->size = phdr_table_get_load_size(si->phdr, si->phnum); si->load_bias = 0; for (size_t i = 0; i < si->phnum; ++i) { if (si->phdr[i].p_type == PT_PHDR) { si->load_bias = reinterpret_cast(si->phdr) - si->phdr[i].p_vaddr; si->base = reinterpret_cast(si->phdr) - si->phdr[i].p_offset; break; } } si->dynamic = nullptr; ElfW(Ehdr)* elf_hdr = reinterpret_cast(si->base); if (elf_hdr->e_type != ET_DYN) { __libc_format_fd(2, "error: only position independent executables (PIE) are supported.\n"); exit(EXIT_FAILURE); } // Use LD_LIBRARY_PATH and LD_PRELOAD (but only if we aren't setuid/setgid). parse_LD_LIBRARY_PATH(ldpath_env); parse_LD_PRELOAD(ldpreload_env); somain = si; si->prelink_image(); // add somain to global group si->set_dt_flags_1(si->get_dt_flags_1() | DF_1_GLOBAL); // Load ld_preloads and dependencies. StringLinkedList needed_library_name_list; size_t needed_libraries_count = 0; size_t ld_preloads_count = 0; while (g_ld_preload_names[ld_preloads_count] != nullptr) { needed_library_name_list.push_back(g_ld_preload_names[ld_preloads_count++]); ++needed_libraries_count; } for_each_dt_needed(si, [&](const char* name) { needed_library_name_list.push_back(name); ++needed_libraries_count; }); const char* needed_library_names[needed_libraries_count]; memset(needed_library_names, 0, sizeof(needed_library_names)); needed_library_name_list.copy_to_array(needed_library_names, needed_libraries_count); if (needed_libraries_count > 0 && !find_libraries(si, needed_library_names, needed_libraries_count, nullptr, g_ld_preloads, ld_preloads_count, RTLD_GLOBAL, nullptr)) { __libc_format_fd(2, "CANNOT LINK EXECUTABLE: %s\n", linker_get_error_buffer()); exit(EXIT_FAILURE); } else if (needed_libraries_count == 0) { if (!si->link_image(g_empty_list, soinfo::soinfo_list_t::make_list(si), nullptr)) { __libc_format_fd(2, "CANNOT LINK EXECUTABLE: %s\n", linker_get_error_buffer()); exit(EXIT_FAILURE); } si->increment_ref_count(); } add_vdso(args); si->call_pre_init_constructors(); /* After the prelink_image, the si->load_bias is initialized. * For so lib, the map->l_addr will be updated in notify_gdb_of_load. * We need to update this value for so exe here. So Unwind_Backtrace * for some arch like x86 could work correctly within so exe. */ map->l_addr = si->load_bias; si->call_constructors(); #if TIMING gettimeofday(&t1, nullptr); PRINT("LINKER TIME: %s: %d microseconds", args.argv[0], (int) ( (((long long)t1.tv_sec * 1000000LL) + (long long)t1.tv_usec) - (((long long)t0.tv_sec * 1000000LL) + (long long)t0.tv_usec))); #endif #if STATS PRINT("RELO STATS: %s: %d abs, %d rel, %d copy, %d symbol", args.argv[0], linker_stats.count[kRelocAbsolute], linker_stats.count[kRelocRelative], linker_stats.count[kRelocCopy], linker_stats.count[kRelocSymbol]); #endif #if COUNT_PAGES { unsigned n; unsigned i; unsigned count = 0; for (n = 0; n < 4096; n++) { if (bitmask[n]) { unsigned x = bitmask[n]; #if defined(__LP64__) for (i = 0; i < 32; i++) { #else for (i = 0; i < 8; i++) { #endif if (x & 1) { count++; } x >>= 1; } } } PRINT("PAGES MODIFIED: %s: %d (%dKB)", args.argv[0], count, count * 4); } #endif #if TIMING || STATS || COUNT_PAGES fflush(stdout); #endif TRACE("[ Ready to execute '%s' @ %p ]", si->name, reinterpret_cast(si->entry)); return si->entry; } /* Compute the load-bias of an existing executable. This shall only * be used to compute the load bias of an executable or shared library * that was loaded by the kernel itself. * * Input: * elf -> address of ELF header, assumed to be at the start of the file. * Return: * load bias, i.e. add the value of any p_vaddr in the file to get * the corresponding address in memory. */ static ElfW(Addr) get_elf_exec_load_bias(const ElfW(Ehdr)* elf) { ElfW(Addr) offset = elf->e_phoff; const ElfW(Phdr)* phdr_table = reinterpret_cast(reinterpret_cast(elf) + offset); const ElfW(Phdr)* phdr_end = phdr_table + elf->e_phnum; for (const ElfW(Phdr)* phdr = phdr_table; phdr < phdr_end; phdr++) { if (phdr->p_type == PT_LOAD) { return reinterpret_cast(elf) + phdr->p_offset - phdr->p_vaddr; } } return 0; } extern "C" void _start(); /* * This is the entry point for the linker, called from begin.S. This * method is responsible for fixing the linker's own relocations, and * then calling __linker_init_post_relocation(). * * Because this method is called before the linker has fixed it's own * relocations, any attempt to reference an extern variable, extern * function, or other GOT reference will generate a segfault. */ extern "C" ElfW(Addr) __linker_init(void* raw_args) { KernelArgumentBlock args(raw_args); ElfW(Addr) linker_addr = args.getauxval(AT_BASE); ElfW(Addr) entry_point = args.getauxval(AT_ENTRY); ElfW(Ehdr)* elf_hdr = reinterpret_cast(linker_addr); ElfW(Phdr)* phdr = reinterpret_cast(linker_addr + elf_hdr->e_phoff); soinfo linker_so("[dynamic linker]", nullptr, 0, 0); // If the linker is not acting as PT_INTERP entry_point is equal to // _start. Which means that the linker is running as an executable and // already linked by PT_INTERP. // // This happens when user tries to run 'adb shell /system/bin/linker' // see also https://code.google.com/p/android/issues/detail?id=63174 if (reinterpret_cast(&_start) == entry_point) { __libc_fatal("This is %s, the helper program for shared library executables.\n", args.argv[0]); } linker_so.base = linker_addr; linker_so.size = phdr_table_get_load_size(phdr, elf_hdr->e_phnum); linker_so.load_bias = get_elf_exec_load_bias(elf_hdr); linker_so.dynamic = nullptr; linker_so.phdr = phdr; linker_so.phnum = elf_hdr->e_phnum; linker_so.set_linker_flag(); // This might not be obvious... The reasons why we pass g_empty_list // in place of local_group here are (1) we do not really need it, because // linker is built with DT_SYMBOLIC and therefore relocates its symbols against // itself without having to look into local_group and (2) allocators // are not yet initialized, and therefore we cannot use linked_list.push_* // functions at this point. if (!(linker_so.prelink_image() && linker_so.link_image(g_empty_list, g_empty_list, nullptr))) { // It would be nice to print an error message, but if the linker // can't link itself, there's no guarantee that we'll be able to // call write() (because it involves a GOT reference). We may as // well try though... const char* msg = "CANNOT LINK EXECUTABLE: "; write(2, msg, strlen(msg)); write(2, __linker_dl_err_buf, strlen(__linker_dl_err_buf)); write(2, "\n", 1); _exit(EXIT_FAILURE); } __libc_init_tls(args); // Initialize the linker's own global variables linker_so.call_constructors(); // Initialize static variables. Note that in order to // get correct libdl_info we need to call constructors // before get_libdl_info(). solist = get_libdl_info(); sonext = get_libdl_info(); // We have successfully fixed our own relocations. It's safe to run // the main part of the linker now. args.abort_message_ptr = &g_abort_message; ElfW(Addr) start_address = __linker_init_post_relocation(args, linker_addr); protect_data(PROT_READ); // Return the address that the calling assembly stub should jump to. return start_address; }