/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "ScopedSignalHandler.h" static size_t SIGNAL_MIN() { return 1; // Signals start at 1 (SIGHUP), not 0. } static size_t SIGNAL_MAX() { size_t result = SIGRTMAX; #if defined(__BIONIC__) && !defined(__mips__) && !defined(__LP64__) // 32-bit bionic's sigset_t is too small for ARM and x86: 32 bits instead of 64. // This means you can't refer to any of the real-time signals. // See http://b/3038348 and http://b/5828899. result = 32; #else // Otherwise, C libraries should be perfectly capable of using their largest signal. if (sizeof(sigset_t) * 8 < static_cast(SIGRTMAX)) { abort(); } #endif return result; } template static void TestSigSet1(Fn fn) { // NULL sigset_t*. sigset_t* set_ptr = NULL; errno = 0; ASSERT_EQ(-1, fn(set_ptr)); ASSERT_EQ(EINVAL, errno); // Non-NULL. sigset_t set; errno = 0; ASSERT_EQ(0, fn(&set)); ASSERT_EQ(0, errno); } template static void TestSigSet2(Fn fn) { // NULL sigset_t*. sigset_t* set_ptr = NULL; errno = 0; ASSERT_EQ(-1, fn(set_ptr, SIGSEGV)); ASSERT_EQ(EINVAL, errno); sigset_t set; sigemptyset(&set); // Bad signal number: too small. errno = 0; ASSERT_EQ(-1, fn(&set, 0)); ASSERT_EQ(EINVAL, errno); // Bad signal number: too high. errno = 0; ASSERT_EQ(-1, fn(&set, SIGNAL_MAX() + 1)); ASSERT_EQ(EINVAL, errno); // Good signal numbers, low and high ends of range. errno = 0; ASSERT_EQ(0, fn(&set, SIGNAL_MIN())); ASSERT_EQ(0, errno); ASSERT_EQ(0, fn(&set, SIGNAL_MAX())); ASSERT_EQ(0, errno); } TEST(signal, sigismember_invalid) { TestSigSet2(sigismember); } TEST(signal, sigaddset_invalid) { TestSigSet2(sigaddset); } TEST(signal, sigdelset_invalid) { TestSigSet2(sigdelset); } TEST(signal, sigemptyset_invalid) { TestSigSet1(sigemptyset); } TEST(signal, sigfillset_invalid) { TestSigSet1(sigfillset); } TEST(signal, raise_invalid) { errno = 0; ASSERT_EQ(-1, raise(-1)); ASSERT_EQ(EINVAL, errno); } static void raise_in_signal_handler_helper(int signal_number) { ASSERT_EQ(SIGALRM, signal_number); static int count = 0; if (++count == 1) { raise(SIGALRM); } } TEST(signal, raise_in_signal_handler) { ScopedSignalHandler ssh(SIGALRM, raise_in_signal_handler_helper); raise(SIGALRM); } static void HandleSIGALRM(int signal_number) { ASSERT_EQ(SIGALRM, signal_number); } TEST(signal, sigwait) { ScopedSignalHandler ssh(SIGALRM, HandleSIGALRM); sigset_t wait_set; sigemptyset(&wait_set); sigaddset(&wait_set, SIGALRM); alarm(1); int received_signal; errno = 0; ASSERT_EQ(0, sigwait(&wait_set, &received_signal)); ASSERT_EQ(0, errno); ASSERT_EQ(SIGALRM, received_signal); } static int g_sigsuspend_test_helper_call_count = 0; static void SigSuspendTestHelper(int) { ++g_sigsuspend_test_helper_call_count; } TEST(signal, sigsuspend_sigpending) { // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); sigset_t original_set; ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set)); ScopedSignalHandler ssh(SIGALRM, SigSuspendTestHelper); // There should be no pending signals. sigset_t pending; sigemptyset(&pending); ASSERT_EQ(0, sigpending(&pending)); for (size_t i = SIGNAL_MIN(); i <= SIGNAL_MAX(); ++i) { EXPECT_FALSE(sigismember(&pending, i)) << i; } // Raise SIGALRM and check our signal handler wasn't called. raise(SIGALRM); ASSERT_EQ(0, g_sigsuspend_test_helper_call_count); // We should now have a pending SIGALRM but nothing else. sigemptyset(&pending); ASSERT_EQ(0, sigpending(&pending)); for (size_t i = SIGNAL_MIN(); i <= SIGNAL_MAX(); ++i) { EXPECT_EQ((i == SIGALRM), sigismember(&pending, i)); } // Use sigsuspend to block everything except SIGALRM... sigset_t not_SIGALRM; sigfillset(¬_SIGALRM); sigdelset(¬_SIGALRM, SIGALRM); ASSERT_EQ(-1, sigsuspend(¬_SIGALRM)); ASSERT_EQ(EINTR, errno); // ...and check that we now receive our pending SIGALRM. ASSERT_EQ(1, g_sigsuspend_test_helper_call_count); // Restore the original set. ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL)); } static void EmptySignalHandler(int) {} static void EmptySignalAction(int, siginfo_t*, void*) {} TEST(signal, sigaction) { // Both bionic and glibc set SA_RESTORER when talking to the kernel on arm, // arm64, x86, and x86-64. The version of glibc we're using also doesn't // define SA_RESTORER, but luckily it's the same value everywhere, and mips // doesn't use the bit for anything. static const unsigned sa_restorer = 0x4000000; // See what's currently set for SIGALRM. struct sigaction original_sa; memset(&original_sa, 0, sizeof(original_sa)); ASSERT_EQ(0, sigaction(SIGALRM, NULL, &original_sa)); ASSERT_TRUE(original_sa.sa_handler == NULL); ASSERT_TRUE(original_sa.sa_sigaction == NULL); ASSERT_EQ(0U, original_sa.sa_flags & ~sa_restorer); // Set a traditional sa_handler signal handler. struct sigaction sa; memset(&sa, 0, sizeof(sa)); sigaddset(&sa.sa_mask, SIGALRM); sa.sa_flags = SA_ONSTACK; sa.sa_handler = EmptySignalHandler; ASSERT_EQ(0, sigaction(SIGALRM, &sa, NULL)); // Check that we can read it back. memset(&sa, 0, sizeof(sa)); ASSERT_EQ(0, sigaction(SIGALRM, NULL, &sa)); ASSERT_TRUE(sa.sa_handler == EmptySignalHandler); ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler); ASSERT_EQ(static_cast(SA_ONSTACK), sa.sa_flags & ~sa_restorer); // Set a new-style sa_sigaction signal handler. memset(&sa, 0, sizeof(sa)); sigaddset(&sa.sa_mask, SIGALRM); sa.sa_flags = SA_ONSTACK | SA_SIGINFO; sa.sa_sigaction = EmptySignalAction; ASSERT_EQ(0, sigaction(SIGALRM, &sa, NULL)); // Check that we can read it back. memset(&sa, 0, sizeof(sa)); ASSERT_EQ(0, sigaction(SIGALRM, NULL, &sa)); ASSERT_TRUE(sa.sa_sigaction == EmptySignalAction); ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler); ASSERT_EQ(static_cast(SA_ONSTACK | SA_SIGINFO), sa.sa_flags & ~sa_restorer); // Put everything back how it was. ASSERT_EQ(0, sigaction(SIGALRM, &original_sa, NULL)); } TEST(signal, sys_signame) { #if defined(__BIONIC__) ASSERT_TRUE(sys_signame[0] == NULL); ASSERT_STREQ("HUP", sys_signame[SIGHUP]); #else GTEST_LOG_(INFO) << "This test does nothing.\n"; #endif } TEST(signal, sys_siglist) { ASSERT_TRUE(sys_siglist[0] == NULL); ASSERT_STREQ("Hangup", sys_siglist[SIGHUP]); } TEST(signal, limits) { // This comes from the kernel. ASSERT_EQ(32, __SIGRTMIN); // We reserve a non-zero number at the bottom for ourselves. ASSERT_GT(SIGRTMIN, __SIGRTMIN); // MIPS has more signals than everyone else. #if defined(__mips__) ASSERT_EQ(128, __SIGRTMAX); #else ASSERT_EQ(64, __SIGRTMAX); #endif // We don't currently reserve any at the top. ASSERT_EQ(SIGRTMAX, __SIGRTMAX); } static int g_sigqueue_signal_handler_call_count = 0; static void SigqueueSignalHandler(int signum, siginfo_t* info, void*) { ASSERT_EQ(SIGALRM, signum); ASSERT_EQ(SIGALRM, info->si_signo); ASSERT_EQ(SI_QUEUE, info->si_code); ASSERT_EQ(1, info->si_value.sival_int); ++g_sigqueue_signal_handler_call_count; } TEST(signal, sigqueue) { ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO); sigval_t sigval; sigval.sival_int = 1; errno = 0; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); ASSERT_EQ(0, errno); ASSERT_EQ(1, g_sigqueue_signal_handler_call_count); } TEST(signal, sigwaitinfo) { // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); sigset_t original_set; ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set)); // Raise SIGALRM. sigval_t sigval; sigval.sival_int = 1; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); // Get pending SIGALRM. siginfo_t info; errno = 0; ASSERT_EQ(SIGALRM, sigwaitinfo(&just_SIGALRM, &info)); ASSERT_EQ(0, errno); ASSERT_EQ(SIGALRM, info.si_signo); ASSERT_EQ(1, info.si_value.sival_int); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL)); } TEST(signal, sigtimedwait) { // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); sigset_t original_set; ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set)); // Raise SIGALRM. sigval_t sigval; sigval.sival_int = 1; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); // Get pending SIGALRM. siginfo_t info; struct timespec timeout; timeout.tv_sec = 2; timeout.tv_nsec = 0; errno = 0; ASSERT_EQ(SIGALRM, sigtimedwait(&just_SIGALRM, &info, &timeout)); ASSERT_EQ(0, errno); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL)); } static int64_t NanoTime() { struct timespec t; t.tv_sec = t.tv_nsec = 0; clock_gettime(CLOCK_MONOTONIC, &t); return static_cast(t.tv_sec) * 1000000000LL + t.tv_nsec; } TEST(signal, sigtimedwait_timeout) { // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); sigset_t original_set; ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set)); // Wait timeout. int64_t start_time = NanoTime(); siginfo_t info; struct timespec timeout; timeout.tv_sec = 0; timeout.tv_nsec = 1000000; errno = 0; ASSERT_EQ(-1, sigtimedwait(&just_SIGALRM, &info, &timeout)); ASSERT_EQ(EAGAIN, errno); ASSERT_GE(NanoTime() - start_time, 1000000); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL)); }