]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - android/platform-hardware-interfaces.git/commitdiff
Add VTS tests for NeuralNetworks v1.2
authorSlava Shklyaev <slavash@google.com>
Wed, 12 Sep 2018 13:52:02 +0000 (14:52 +0100)
committerPrzemyslaw Szczepaniak <pszczepaniak@google.com>
Fri, 21 Sep 2018 13:46:24 +0000 (14:46 +0100)
This is a copy the v1.1 tests since we don't have any new ops
implemented in v1.2 yet.

Bug: 114365802
Test: mm
Test: NNAPI VTS
Change-Id: Ida7525fcd3ae0fd6f88ff9591e06aba922bdae64
Merged-In: Ida7525fcd3ae0fd6f88ff9591e06aba922bdae64
(cherry-picked from 871be9477032e595f685e02f256b2909ea524fc0)

13 files changed:
neuralnetworks/1.0/vts/functional/Android.bp
neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
neuralnetworks/1.1/vts/functional/Android.bp
neuralnetworks/1.2/vts/OWNERS [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/Android.bp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/BasicTests.cpp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/GeneratedTests.cpp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/Models.h [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/ValidateModel.cpp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/ValidateRequest.cpp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/ValidationTests.cpp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.cpp [new file with mode: 0644]
neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.h [new file with mode: 0644]

index e28113bcdc2096d017ddb516a5743d0ce2aab90d..18f35c1a167174ce18a19a4e67a9bcb802e64da7 100644 (file)
@@ -25,6 +25,7 @@ cc_library_static {
     static_libs: [
         "android.hardware.neuralnetworks@1.0",
         "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
         "android.hidl.allocator@1.0",
         "android.hidl.memory@1.0",
         "libhidlmemory",
@@ -49,8 +50,9 @@ cc_test {
     ],
     defaults: ["VtsHalTargetTestDefaults"],
     static_libs: [
-        "android.hardware.neuralnetworks@1.1",
         "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
         "android.hidl.allocator@1.0",
         "android.hidl.memory@1.0",
         "libhidlmemory",
index 64495cf7639c0f48bf82c7f5bdf9d5cedc85b7fd..b8046c79b2365499300ea684e6abe1ef778fd59f 100644 (file)
@@ -275,6 +275,58 @@ void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> c
     EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
 }
 
+// TODO: Reduce code duplication.
+void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
+             std::function<bool(int)> is_ignored,
+             const std::vector<MixedTypedExampleType>& examples) {
+    V1_2::Model model = create_model();
+
+    // see if service can handle model
+    bool fullySupportsModel = false;
+    Return<void> supportedCall = device->getSupportedOperations_1_2(
+        model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+            ASSERT_EQ(ErrorStatus::NONE, status);
+            ASSERT_NE(0ul, supported.size());
+            fullySupportsModel =
+                std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
+        });
+    ASSERT_TRUE(supportedCall.isOk());
+
+    // launch prepare model
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
+        model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    // retrieve prepared model
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
+
+    // early termination if vendor service cannot fully prepare model
+    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+        ASSERT_EQ(nullptr, preparedModel.get());
+        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+                     "prepare model that it does not support.";
+        std::cout << "[          ]   Early termination of test because vendor service cannot "
+                     "prepare model that it does not support."
+                  << std::endl;
+        return;
+    }
+    EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+    ASSERT_NE(nullptr, preparedModel.get());
+
+    // TODO: Adjust the error limit based on testing.
+    // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
+    float fpAtol = !model.relaxComputationFloat32toFloat16 ? 1e-5f : 5.0f * 0.0009765625f;
+    // Set the relative tolerance to be 5ULP of the corresponding FP precision.
+    float fpRtol = !model.relaxComputationFloat32toFloat16 ? 5.0f * 1.1920928955078125e-7f
+                                                           : 5.0f * 0.0009765625f;
+    EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
+}
+
 }  // namespace generated_tests
 
 }  // namespace neuralnetworks
index f755c20be5a9bdd531909105f3c3a88a67e5e43a..52a804a8a3aa37d98f9180e33eab749ac873ff05 100644 (file)
@@ -28,6 +28,7 @@ cc_test {
     static_libs: [
         "android.hardware.neuralnetworks@1.0",
         "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
         "android.hidl.allocator@1.0",
         "android.hidl.memory@1.0",
         "libhidlmemory",
diff --git a/neuralnetworks/1.2/vts/OWNERS b/neuralnetworks/1.2/vts/OWNERS
new file mode 100644 (file)
index 0000000..8f25436
--- /dev/null
@@ -0,0 +1,14 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+mikie@google.com
+mks@google.com
+pszczepaniak@google.com
+slavash@google.com
+
+# VTS team
+yim@google.com
+yuexima@google.com
diff --git a/neuralnetworks/1.2/vts/functional/Android.bp b/neuralnetworks/1.2/vts/functional/Android.bp
new file mode 100644 (file)
index 0000000..2dc19cc
--- /dev/null
@@ -0,0 +1,52 @@
+//
+// Copyright (C) 2018 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_test {
+    name: "VtsHalNeuralnetworksV1_2TargetTest",
+    srcs: [
+        "BasicTests.cpp",
+        "GeneratedTests.cpp",
+        "ValidateModel.cpp",
+        "ValidateRequest.cpp",
+        "ValidationTests.cpp",
+        "VtsHalNeuralnetworks.cpp",
+    ],
+    defaults: ["VtsHalTargetTestDefaults"],
+    static_libs: [
+        "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
+        "android.hidl.allocator@1.0",
+        "android.hidl.memory@1.0",
+        "libhidlmemory",
+        "libneuralnetworks_utils",
+        "VtsHalNeuralnetworksTest_utils",
+    ],
+    header_libs: [
+        "libneuralnetworks_headers",
+        "libneuralnetworks_generated_test_harness_headers",
+        "libneuralnetworks_generated_tests",
+    ],
+    // Bug: http://b/74200014 - Disable arm32 asan since it triggers internal
+    // error in ld.gold.
+    arch: {
+        arm: {
+            sanitize: {
+                never: true,
+            },
+        },
+    },
+}
diff --git a/neuralnetworks/1.2/vts/functional/BasicTests.cpp b/neuralnetworks/1.2/vts/functional/BasicTests.cpp
new file mode 100644 (file)
index 0000000..d2dea1d
--- /dev/null
@@ -0,0 +1,45 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using V1_1::Capabilities;
+
+// create device test
+TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
+
+// status test
+TEST_F(NeuralnetworksHidlTest, StatusTest) {
+    Return<DeviceStatus> status = device->getStatus();
+    ASSERT_TRUE(status.isOk());
+    EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
+}
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/GeneratedTests.cpp b/neuralnetworks/1.2/vts/functional/GeneratedTests.cpp
new file mode 100644 (file)
index 0000000..662c531
--- /dev/null
@@ -0,0 +1,60 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+
+namespace generated_tests {
+using ::test_helper::MixedTypedExampleType;
+extern void Execute(const sp<V1_2::IDevice>&, std::function<V1_2::Model(void)>,
+                    std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
+}  // namespace generated_tests
+
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::nn::allocateSharedMemory;
+
+// Mixed-typed examples
+typedef generated_tests::MixedTypedExampleType MixedTypedExample;
+
+// in frameworks/ml/nn/runtime/tests/generated/
+#include "all_generated_V1_0_vts_tests.cpp"
+#include "all_generated_V1_1_vts_tests.cpp"
+#include "all_generated_V1_2_vts_tests.cpp"
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/Models.h b/neuralnetworks/1.2/vts/functional/Models.h
new file mode 100644 (file)
index 0000000..f3769bc
--- /dev/null
@@ -0,0 +1,378 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
+#define VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "TestHarness.h"
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using MixedTypedExample = test_helper::MixedTypedExampleType;
+
+#define FOR_EACH_TEST_MODEL(FN)                                  \
+    FN(add)                                                      \
+    FN(add_broadcast_quant8)                                     \
+    FN(add_quant8)                                               \
+    FN(add_relaxed)                                              \
+    FN(avg_pool_float_1)                                         \
+    FN(avg_pool_float_1_relaxed)                                 \
+    FN(avg_pool_float_2)                                         \
+    FN(avg_pool_float_2_relaxed)                                 \
+    FN(avg_pool_float_3)                                         \
+    FN(avg_pool_float_3_relaxed)                                 \
+    FN(avg_pool_float_4)                                         \
+    FN(avg_pool_float_4_relaxed)                                 \
+    FN(avg_pool_float_5)                                         \
+    FN(avg_pool_float_5_relaxed)                                 \
+    FN(avg_pool_quant8_1)                                        \
+    FN(avg_pool_quant8_2)                                        \
+    FN(avg_pool_quant8_3)                                        \
+    FN(avg_pool_quant8_4)                                        \
+    FN(avg_pool_quant8_5)                                        \
+    FN(batch_to_space)                                           \
+    FN(batch_to_space_float_1)                                   \
+    FN(batch_to_space_float_1_relaxed)                           \
+    FN(batch_to_space_quant8_1)                                  \
+    FN(batch_to_space_relaxed)                                   \
+    FN(concat_float_1)                                           \
+    FN(concat_float_1_relaxed)                                   \
+    FN(concat_float_2)                                           \
+    FN(concat_float_2_relaxed)                                   \
+    FN(concat_float_3)                                           \
+    FN(concat_float_3_relaxed)                                   \
+    FN(concat_quant8_1)                                          \
+    FN(concat_quant8_2)                                          \
+    FN(concat_quant8_3)                                          \
+    FN(conv_1_h3_w2_SAME)                                        \
+    FN(conv_1_h3_w2_SAME_relaxed)                                \
+    FN(conv_1_h3_w2_VALID)                                       \
+    FN(conv_1_h3_w2_VALID_relaxed)                               \
+    FN(conv_3_h3_w2_SAME)                                        \
+    FN(conv_3_h3_w2_SAME_relaxed)                                \
+    FN(conv_3_h3_w2_VALID)                                       \
+    FN(conv_3_h3_w2_VALID_relaxed)                               \
+    FN(conv_float)                                               \
+    FN(conv_float_2)                                             \
+    FN(conv_float_2_relaxed)                                     \
+    FN(conv_float_channels)                                      \
+    FN(conv_float_channels_relaxed)                              \
+    FN(conv_float_channels_weights_as_inputs)                    \
+    FN(conv_float_channels_weights_as_inputs_relaxed)            \
+    FN(conv_float_large)                                         \
+    FN(conv_float_large_relaxed)                                 \
+    FN(conv_float_large_weights_as_inputs)                       \
+    FN(conv_float_large_weights_as_inputs_relaxed)               \
+    FN(conv_float_relaxed)                                       \
+    FN(conv_float_weights_as_inputs)                             \
+    FN(conv_float_weights_as_inputs_relaxed)                     \
+    FN(conv_quant8)                                              \
+    FN(conv_quant8_2)                                            \
+    FN(conv_quant8_channels)                                     \
+    FN(conv_quant8_channels_weights_as_inputs)                   \
+    FN(conv_quant8_large)                                        \
+    FN(conv_quant8_large_weights_as_inputs)                      \
+    FN(conv_quant8_overflow)                                     \
+    FN(conv_quant8_overflow_weights_as_inputs)                   \
+    FN(conv_quant8_weights_as_inputs)                            \
+    FN(depth_to_space_float_1)                                   \
+    FN(depth_to_space_float_1_relaxed)                           \
+    FN(depth_to_space_float_2)                                   \
+    FN(depth_to_space_float_2_relaxed)                           \
+    FN(depth_to_space_float_3)                                   \
+    FN(depth_to_space_float_3_relaxed)                           \
+    FN(depth_to_space_quant8_1)                                  \
+    FN(depth_to_space_quant8_2)                                  \
+    FN(depthwise_conv)                                           \
+    FN(depthwise_conv2d_float)                                   \
+    FN(depthwise_conv2d_float_2)                                 \
+    FN(depthwise_conv2d_float_2_relaxed)                         \
+    FN(depthwise_conv2d_float_large)                             \
+    FN(depthwise_conv2d_float_large_2)                           \
+    FN(depthwise_conv2d_float_large_2_relaxed)                   \
+    FN(depthwise_conv2d_float_large_2_weights_as_inputs)         \
+    FN(depthwise_conv2d_float_large_2_weights_as_inputs_relaxed) \
+    FN(depthwise_conv2d_float_large_relaxed)                     \
+    FN(depthwise_conv2d_float_large_weights_as_inputs)           \
+    FN(depthwise_conv2d_float_large_weights_as_inputs_relaxed)   \
+    FN(depthwise_conv2d_float_relaxed)                           \
+    FN(depthwise_conv2d_float_weights_as_inputs)                 \
+    FN(depthwise_conv2d_float_weights_as_inputs_relaxed)         \
+    FN(depthwise_conv2d_quant8)                                  \
+    FN(depthwise_conv2d_quant8_2)                                \
+    FN(depthwise_conv2d_quant8_large)                            \
+    FN(depthwise_conv2d_quant8_large_weights_as_inputs)          \
+    FN(depthwise_conv2d_quant8_weights_as_inputs)                \
+    FN(depthwise_conv_relaxed)                                   \
+    FN(dequantize)                                               \
+    FN(dequantize_relaxed)                                       \
+    FN(div)                                                      \
+    FN(div_broadcast_float)                                      \
+    FN(div_broadcast_float_relaxed)                              \
+    FN(div_relaxed)                                              \
+    FN(embedding_lookup)                                         \
+    FN(embedding_lookup_relaxed)                                 \
+    FN(floor)                                                    \
+    FN(floor_relaxed)                                            \
+    FN(fully_connected_float)                                    \
+    FN(fully_connected_float_2)                                  \
+    FN(fully_connected_float_2_relaxed)                          \
+    FN(fully_connected_float_4d_simple)                          \
+    FN(fully_connected_float_4d_simple_relaxed)                  \
+    FN(fully_connected_float_large)                              \
+    FN(fully_connected_float_large_relaxed)                      \
+    FN(fully_connected_float_large_weights_as_inputs)            \
+    FN(fully_connected_float_large_weights_as_inputs_relaxed)    \
+    FN(fully_connected_float_relaxed)                            \
+    FN(fully_connected_float_weights_as_inputs)                  \
+    FN(fully_connected_float_weights_as_inputs_relaxed)          \
+    FN(fully_connected_quant8)                                   \
+    FN(fully_connected_quant8_2)                                 \
+    FN(fully_connected_quant8_large)                             \
+    FN(fully_connected_quant8_large_weights_as_inputs)           \
+    FN(fully_connected_quant8_weights_as_inputs)                 \
+    FN(hashtable_lookup_float)                                   \
+    FN(hashtable_lookup_float_relaxed)                           \
+    FN(hashtable_lookup_quant8)                                  \
+    FN(l2_normalization)                                         \
+    FN(l2_normalization_2)                                       \
+    FN(l2_normalization_2_relaxed)                               \
+    FN(l2_normalization_large)                                   \
+    FN(l2_normalization_large_relaxed)                           \
+    FN(l2_normalization_relaxed)                                 \
+    FN(l2_pool_float)                                            \
+    FN(l2_pool_float_2)                                          \
+    FN(l2_pool_float_2_relaxed)                                  \
+    FN(l2_pool_float_large)                                      \
+    FN(l2_pool_float_large_relaxed)                              \
+    FN(l2_pool_float_relaxed)                                    \
+    FN(local_response_norm_float_1)                              \
+    FN(local_response_norm_float_1_relaxed)                      \
+    FN(local_response_norm_float_2)                              \
+    FN(local_response_norm_float_2_relaxed)                      \
+    FN(local_response_norm_float_3)                              \
+    FN(local_response_norm_float_3_relaxed)                      \
+    FN(local_response_norm_float_4)                              \
+    FN(local_response_norm_float_4_relaxed)                      \
+    FN(logistic_float_1)                                         \
+    FN(logistic_float_1_relaxed)                                 \
+    FN(logistic_float_2)                                         \
+    FN(logistic_float_2_relaxed)                                 \
+    FN(logistic_quant8_1)                                        \
+    FN(logistic_quant8_2)                                        \
+    FN(lsh_projection)                                           \
+    FN(lsh_projection_2)                                         \
+    FN(lsh_projection_2_relaxed)                                 \
+    FN(lsh_projection_relaxed)                                   \
+    FN(lsh_projection_weights_as_inputs)                         \
+    FN(lsh_projection_weights_as_inputs_relaxed)                 \
+    FN(lstm)                                                     \
+    FN(lstm2)                                                    \
+    FN(lstm2_relaxed)                                            \
+    FN(lstm2_state)                                              \
+    FN(lstm2_state2)                                             \
+    FN(lstm2_state2_relaxed)                                     \
+    FN(lstm2_state_relaxed)                                      \
+    FN(lstm3)                                                    \
+    FN(lstm3_relaxed)                                            \
+    FN(lstm3_state)                                              \
+    FN(lstm3_state2)                                             \
+    FN(lstm3_state2_relaxed)                                     \
+    FN(lstm3_state3)                                             \
+    FN(lstm3_state3_relaxed)                                     \
+    FN(lstm3_state_relaxed)                                      \
+    FN(lstm_relaxed)                                             \
+    FN(lstm_state)                                               \
+    FN(lstm_state2)                                              \
+    FN(lstm_state2_relaxed)                                      \
+    FN(lstm_state_relaxed)                                       \
+    FN(max_pool_float_1)                                         \
+    FN(max_pool_float_1_relaxed)                                 \
+    FN(max_pool_float_2)                                         \
+    FN(max_pool_float_2_relaxed)                                 \
+    FN(max_pool_float_3)                                         \
+    FN(max_pool_float_3_relaxed)                                 \
+    FN(max_pool_float_4)                                         \
+    FN(max_pool_float_4_relaxed)                                 \
+    FN(max_pool_quant8_1)                                        \
+    FN(max_pool_quant8_2)                                        \
+    FN(max_pool_quant8_3)                                        \
+    FN(max_pool_quant8_4)                                        \
+    FN(mean)                                                     \
+    FN(mean_float_1)                                             \
+    FN(mean_float_1_relaxed)                                     \
+    FN(mean_float_2)                                             \
+    FN(mean_float_2_relaxed)                                     \
+    FN(mean_quant8_1)                                            \
+    FN(mean_quant8_2)                                            \
+    FN(mean_relaxed)                                             \
+    FN(mobilenet_224_gender_basic_fixed)                         \
+    FN(mobilenet_224_gender_basic_fixed_relaxed)                 \
+    FN(mobilenet_quantized)                                      \
+    FN(mul)                                                      \
+    FN(mul_broadcast_quant8)                                     \
+    FN(mul_quant8)                                               \
+    FN(mul_relaxed)                                              \
+    FN(mul_relu)                                                 \
+    FN(mul_relu_relaxed)                                         \
+    FN(pad)                                                      \
+    FN(pad_float_1)                                              \
+    FN(pad_float_1_relaxed)                                      \
+    FN(pad_relaxed)                                              \
+    FN(relu1_float_1)                                            \
+    FN(relu1_float_1_relaxed)                                    \
+    FN(relu1_float_2)                                            \
+    FN(relu1_float_2_relaxed)                                    \
+    FN(relu1_quant8_1)                                           \
+    FN(relu1_quant8_2)                                           \
+    FN(relu6_float_1)                                            \
+    FN(relu6_float_1_relaxed)                                    \
+    FN(relu6_float_2)                                            \
+    FN(relu6_float_2_relaxed)                                    \
+    FN(relu6_quant8_1)                                           \
+    FN(relu6_quant8_2)                                           \
+    FN(relu_float_1)                                             \
+    FN(relu_float_1_relaxed)                                     \
+    FN(relu_float_2)                                             \
+    FN(relu_float_2_relaxed)                                     \
+    FN(relu_quant8_1)                                            \
+    FN(relu_quant8_2)                                            \
+    FN(reshape)                                                  \
+    FN(reshape_quant8)                                           \
+    FN(reshape_quant8_weights_as_inputs)                         \
+    FN(reshape_relaxed)                                          \
+    FN(reshape_weights_as_inputs)                                \
+    FN(reshape_weights_as_inputs_relaxed)                        \
+    FN(resize_bilinear)                                          \
+    FN(resize_bilinear_2)                                        \
+    FN(resize_bilinear_2_relaxed)                                \
+    FN(resize_bilinear_relaxed)                                  \
+    FN(rnn)                                                      \
+    FN(rnn_relaxed)                                              \
+    FN(rnn_state)                                                \
+    FN(rnn_state_relaxed)                                        \
+    FN(softmax_float_1)                                          \
+    FN(softmax_float_1_relaxed)                                  \
+    FN(softmax_float_2)                                          \
+    FN(softmax_float_2_relaxed)                                  \
+    FN(softmax_quant8_1)                                         \
+    FN(softmax_quant8_2)                                         \
+    FN(space_to_batch)                                           \
+    FN(space_to_batch_float_1)                                   \
+    FN(space_to_batch_float_1_relaxed)                           \
+    FN(space_to_batch_float_2)                                   \
+    FN(space_to_batch_float_2_relaxed)                           \
+    FN(space_to_batch_float_3)                                   \
+    FN(space_to_batch_float_3_relaxed)                           \
+    FN(space_to_batch_quant8_1)                                  \
+    FN(space_to_batch_quant8_2)                                  \
+    FN(space_to_batch_quant8_3)                                  \
+    FN(space_to_batch_relaxed)                                   \
+    FN(space_to_depth_float_1)                                   \
+    FN(space_to_depth_float_1_relaxed)                           \
+    FN(space_to_depth_float_2)                                   \
+    FN(space_to_depth_float_2_relaxed)                           \
+    FN(space_to_depth_float_3)                                   \
+    FN(space_to_depth_float_3_relaxed)                           \
+    FN(space_to_depth_quant8_1)                                  \
+    FN(space_to_depth_quant8_2)                                  \
+    FN(squeeze)                                                  \
+    FN(squeeze_float_1)                                          \
+    FN(squeeze_float_1_relaxed)                                  \
+    FN(squeeze_quant8_1)                                         \
+    FN(squeeze_relaxed)                                          \
+    FN(strided_slice)                                            \
+    FN(strided_slice_float_1)                                    \
+    FN(strided_slice_float_10)                                   \
+    FN(strided_slice_float_10_relaxed)                           \
+    FN(strided_slice_float_11)                                   \
+    FN(strided_slice_float_11_relaxed)                           \
+    FN(strided_slice_float_1_relaxed)                            \
+    FN(strided_slice_float_2)                                    \
+    FN(strided_slice_float_2_relaxed)                            \
+    FN(strided_slice_float_3)                                    \
+    FN(strided_slice_float_3_relaxed)                            \
+    FN(strided_slice_float_4)                                    \
+    FN(strided_slice_float_4_relaxed)                            \
+    FN(strided_slice_float_5)                                    \
+    FN(strided_slice_float_5_relaxed)                            \
+    FN(strided_slice_float_6)                                    \
+    FN(strided_slice_float_6_relaxed)                            \
+    FN(strided_slice_float_7)                                    \
+    FN(strided_slice_float_7_relaxed)                            \
+    FN(strided_slice_float_8)                                    \
+    FN(strided_slice_float_8_relaxed)                            \
+    FN(strided_slice_float_9)                                    \
+    FN(strided_slice_float_9_relaxed)                            \
+    FN(strided_slice_qaunt8_10)                                  \
+    FN(strided_slice_qaunt8_11)                                  \
+    FN(strided_slice_quant8_1)                                   \
+    FN(strided_slice_quant8_2)                                   \
+    FN(strided_slice_quant8_3)                                   \
+    FN(strided_slice_quant8_4)                                   \
+    FN(strided_slice_quant8_5)                                   \
+    FN(strided_slice_quant8_6)                                   \
+    FN(strided_slice_quant8_7)                                   \
+    FN(strided_slice_quant8_8)                                   \
+    FN(strided_slice_quant8_9)                                   \
+    FN(strided_slice_relaxed)                                    \
+    FN(sub)                                                      \
+    FN(sub_broadcast_float)                                      \
+    FN(sub_broadcast_float_relaxed)                              \
+    FN(sub_relaxed)                                              \
+    FN(svdf)                                                     \
+    FN(svdf2)                                                    \
+    FN(svdf2_relaxed)                                            \
+    FN(svdf_relaxed)                                             \
+    FN(svdf_state)                                               \
+    FN(svdf_state_relaxed)                                       \
+    FN(tanh)                                                     \
+    FN(tanh_relaxed)                                             \
+    FN(transpose)                                                \
+    FN(transpose_float_1)                                        \
+    FN(transpose_float_1_relaxed)                                \
+    FN(transpose_quant8_1)                                       \
+    FN(transpose_relaxed)
+
+#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
+    namespace function {                            \
+    extern std::vector<MixedTypedExample> examples; \
+    Model createTestModel();                        \
+    }
+
+FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
+
+#undef FORWARD_DECLARE_GENERATED_OBJECTS
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
+
+#endif  // VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
diff --git a/neuralnetworks/1.2/vts/functional/ValidateModel.cpp b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
new file mode 100644 (file)
index 0000000..7ec6ff1
--- /dev/null
@@ -0,0 +1,538 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+
+using V1_0::IPreparedModel;
+using V1_0::Operand;
+using V1_0::OperandLifeTime;
+using V1_0::OperandType;
+using V1_1::ExecutionPreference;
+
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
+                                           const Model& model) {
+    SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
+
+    Return<void> ret =
+        device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
+            EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
+        });
+    EXPECT_TRUE(ret.isOk());
+}
+
+static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
+                                 const Model& model, ExecutionPreference preference) {
+    SCOPED_TRACE(message + " [prepareModel_1_2]");
+
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus =
+        device->prepareModel_1_2(model, preference, preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
+    sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
+    ASSERT_EQ(nullptr, preparedModel.get());
+}
+
+static bool validExecutionPreference(ExecutionPreference preference) {
+    return preference == ExecutionPreference::LOW_POWER ||
+           preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
+           preference == ExecutionPreference::SUSTAINED_SPEED;
+}
+
+// Primary validation function. This function will take a valid model, apply a
+// mutation to it to invalidate the model, then pass it to interface calls that
+// use the model. Note that the model here is passed by value, and any mutation
+// to the model does not leave this function.
+static void validate(const sp<IDevice>& device, const std::string& message, Model model,
+                     const std::function<void(Model*)>& mutation,
+                     ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
+    mutation(&model);
+    if (validExecutionPreference(preference)) {
+        validateGetSupportedOperations(device, message, model);
+    }
+    validatePrepareModel(device, message, model, preference);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+    if (vec) {
+        std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+        vec->resize(vec->size() - 1);
+    }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+    // assume vec is valid
+    const uint32_t index = vec->size();
+    vec->resize(index + 1);
+    (*vec)[index] = value;
+    return index;
+}
+
+static uint32_t addOperand(Model* model) {
+    return hidl_vec_push_back(&model->operands,
+                              {
+                                  .type = OperandType::INT32,
+                                  .dimensions = {},
+                                  .numberOfConsumers = 0,
+                                  .scale = 0.0f,
+                                  .zeroPoint = 0,
+                                  .lifetime = OperandLifeTime::MODEL_INPUT,
+                                  .location = {.poolIndex = 0, .offset = 0, .length = 0},
+                              });
+}
+
+static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
+    uint32_t index = addOperand(model);
+    model->operands[index].numberOfConsumers = 1;
+    model->operands[index].lifetime = lifetime;
+    return index;
+}
+
+///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
+
+static const int32_t invalidOperandTypes[] = {
+    static_cast<int32_t>(OperandType::FLOAT32) - 1,              // lower bound fundamental
+    static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1,  // upper bound fundamental
+    static_cast<int32_t>(OperandType::OEM) - 1,                  // lower bound OEM
+    static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1,      // upper bound OEM
+};
+
+static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        for (int32_t invalidOperandType : invalidOperandTypes) {
+            const std::string message = "mutateOperandTypeTest: operand " +
+                                        std::to_string(operand) + " set to value " +
+                                        std::to_string(invalidOperandType);
+            validate(device, message, model, [operand, invalidOperandType](Model* model) {
+                model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE OPERAND RANK /////////////////////////
+
+static uint32_t getInvalidRank(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+            return 1;
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            return 0;
+        default:
+            return 0;
+    }
+}
+
+static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
+        const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
+                                    " has rank of " + std::to_string(invalidRank);
+        validate(device, message, model, [operand, invalidRank](Model* model) {
+            model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
+        });
+    }
+}
+
+///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
+
+static float getInvalidScale(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::TENSOR_FLOAT32:
+            return 1.0f;
+        case OperandType::TENSOR_INT32:
+            return -1.0f;
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            return 0.0f;
+        default:
+            return 0.0f;
+    }
+}
+
+static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const float invalidScale = getInvalidScale(model.operands[operand].type);
+        const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
+                                    " has scale of " + std::to_string(invalidScale);
+        validate(device, message, model, [operand, invalidScale](Model* model) {
+            model->operands[operand].scale = invalidScale;
+        });
+    }
+}
+
+///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
+
+static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+            return {1};
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            return {-1, 256};
+        default:
+            return {};
+    }
+}
+
+static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const std::vector<int32_t> invalidZeroPoints =
+            getInvalidZeroPoints(model.operands[operand].type);
+        for (int32_t invalidZeroPoint : invalidZeroPoints) {
+            const std::string message = "mutateOperandZeroPointTest: operand " +
+                                        std::to_string(operand) + " has zero point of " +
+                                        std::to_string(invalidZeroPoint);
+            validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
+                model->operands[operand].zeroPoint = invalidZeroPoint;
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE EXTRA ??? /////////////////////////
+
+// TODO: Operand::lifetime
+// TODO: Operand::location
+
+///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
+
+static void mutateOperand(Operand* operand, OperandType type) {
+    Operand newOperand = *operand;
+    newOperand.type = type;
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+            newOperand.dimensions = hidl_vec<uint32_t>();
+            newOperand.scale = 0.0f;
+            newOperand.zeroPoint = 0;
+            break;
+        case OperandType::TENSOR_FLOAT32:
+            newOperand.dimensions =
+                operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+            newOperand.scale = 0.0f;
+            newOperand.zeroPoint = 0;
+            break;
+        case OperandType::TENSOR_INT32:
+            newOperand.dimensions =
+                operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+            newOperand.zeroPoint = 0;
+            break;
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            newOperand.dimensions =
+                operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+            newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
+            break;
+        case OperandType::OEM:
+        case OperandType::TENSOR_OEM_BYTE:
+        default:
+            break;
+    }
+    *operand = newOperand;
+}
+
+static bool mutateOperationOperandTypeSkip(size_t operand, const Model& model) {
+    // LSH_PROJECTION's second argument is allowed to have any type. This is the
+    // only operation that currently has a type that can be anything independent
+    // from any other type. Changing the operand type to any other type will
+    // result in a valid model for LSH_PROJECTION. If this is the case, skip the
+    // test.
+    for (const Operation& operation : model.operations) {
+        if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
+            return true;
+        }
+    }
+    return false;
+}
+
+static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        if (mutateOperationOperandTypeSkip(operand, model)) {
+            continue;
+        }
+        for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
+            // Do not test OEM types
+            if (invalidOperandType == model.operands[operand].type ||
+                invalidOperandType == OperandType::OEM ||
+                invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
+                continue;
+            }
+            const std::string message = "mutateOperationOperandTypeTest: operand " +
+                                        std::to_string(operand) + " set to type " +
+                                        toString(invalidOperandType);
+            validate(device, message, model, [operand, invalidOperandType](Model* model) {
+                mutateOperand(&model->operands[operand], invalidOperandType);
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
+
+static const int32_t invalidOperationTypes[] = {
+    static_cast<int32_t>(OperationType::ADD) - 1,            // lower bound fundamental
+    static_cast<int32_t>(OperationType::TRANSPOSE) + 1,      // upper bound fundamental
+    static_cast<int32_t>(OperationType::OEM_OPERATION) - 1,  // lower bound OEM
+    static_cast<int32_t>(OperationType::OEM_OPERATION) + 1,  // upper bound OEM
+};
+
+static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        for (int32_t invalidOperationType : invalidOperationTypes) {
+            const std::string message = "mutateOperationTypeTest: operation " +
+                                        std::to_string(operation) + " set to value " +
+                                        std::to_string(invalidOperationType);
+            validate(device, message, model, [operation, invalidOperationType](Model* model) {
+                model->operations[operation].type =
+                    static_cast<OperationType>(invalidOperationType);
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const uint32_t invalidOperand = model.operands.size();
+        for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+            const std::string message = "mutateOperationInputOperandIndexTest: operation " +
+                                        std::to_string(operation) + " input " +
+                                        std::to_string(input);
+            validate(device, message, model, [operation, input, invalidOperand](Model* model) {
+                model->operations[operation].inputs[input] = invalidOperand;
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const uint32_t invalidOperand = model.operands.size();
+        for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+            const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
+                                        std::to_string(operation) + " output " +
+                                        std::to_string(output);
+            validate(device, message, model, [operation, output, invalidOperand](Model* model) {
+                model->operations[operation].outputs[output] = invalidOperand;
+            });
+        }
+    }
+}
+
+///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
+
+static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
+    if (vec) {
+        // remove elements matching "value"
+        auto last = std::remove(vec->begin(), vec->end(), value);
+        vec->resize(std::distance(vec->begin(), last));
+
+        // decrement elements exceeding "value"
+        std::transform(vec->begin(), vec->end(), vec->begin(),
+                       [value](uint32_t v) { return v > value ? v-- : v; });
+    }
+}
+
+static void removeOperand(Model* model, uint32_t index) {
+    hidl_vec_removeAt(&model->operands, index);
+    for (Operation& operation : model->operations) {
+        removeValueAndDecrementGreaterValues(&operation.inputs, index);
+        removeValueAndDecrementGreaterValues(&operation.outputs, index);
+    }
+    removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
+    removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
+}
+
+static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const std::string message = "removeOperandTest: operand " + std::to_string(operand);
+        validate(device, message, model,
+                 [operand](Model* model) { removeOperand(model, operand); });
+    }
+}
+
+///////////////////////// REMOVE OPERATION /////////////////////////
+
+static void removeOperation(Model* model, uint32_t index) {
+    for (uint32_t operand : model->operations[index].inputs) {
+        model->operands[operand].numberOfConsumers--;
+    }
+    hidl_vec_removeAt(&model->operations, index);
+}
+
+static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const std::string message = "removeOperationTest: operation " + std::to_string(operation);
+        validate(device, message, model,
+                 [operation](Model* model) { removeOperation(model, operation); });
+    }
+}
+
+///////////////////////// REMOVE OPERATION INPUT /////////////////////////
+
+static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+            const Operation& op = model.operations[operation];
+            // CONCATENATION has at least 2 inputs, with the last element being
+            // INT32. Skip this test if removing one of CONCATENATION's
+            // inputs still produces a valid model.
+            if (op.type == OperationType::CONCATENATION && op.inputs.size() > 2 &&
+                input != op.inputs.size() - 1) {
+                continue;
+            }
+            const std::string message = "removeOperationInputTest: operation " +
+                                        std::to_string(operation) + ", input " +
+                                        std::to_string(input);
+            validate(device, message, model, [operation, input](Model* model) {
+                uint32_t operand = model->operations[operation].inputs[input];
+                model->operands[operand].numberOfConsumers--;
+                hidl_vec_removeAt(&model->operations[operation].inputs, input);
+            });
+        }
+    }
+}
+
+///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
+
+static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+            const std::string message = "removeOperationOutputTest: operation " +
+                                        std::to_string(operation) + ", output " +
+                                        std::to_string(output);
+            validate(device, message, model, [operation, output](Model* model) {
+                hidl_vec_removeAt(&model->operations[operation].outputs, output);
+            });
+        }
+    }
+}
+
+///////////////////////// MODEL VALIDATION /////////////////////////
+
+// TODO: remove model input
+// TODO: remove model output
+// TODO: add unused operation
+
+///////////////////////// ADD OPERATION INPUT /////////////////////////
+
+static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
+        validate(device, message, model, [operation](Model* model) {
+            uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
+            hidl_vec_push_back(&model->operations[operation].inputs, index);
+            hidl_vec_push_back(&model->inputIndexes, index);
+        });
+    }
+}
+
+///////////////////////// ADD OPERATION OUTPUT /////////////////////////
+
+static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const std::string message =
+            "addOperationOutputTest: operation " + std::to_string(operation);
+        validate(device, message, model, [operation](Model* model) {
+            uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
+            hidl_vec_push_back(&model->operations[operation].outputs, index);
+            hidl_vec_push_back(&model->outputIndexes, index);
+        });
+    }
+}
+
+///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
+
+static const int32_t invalidExecutionPreferences[] = {
+    static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1,        // lower bound
+    static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1,  // upper bound
+};
+
+static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
+    for (int32_t preference : invalidExecutionPreferences) {
+        const std::string message =
+            "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
+        validate(device, message, model, [](Model*) {},
+                 static_cast<ExecutionPreference>(preference));
+    }
+}
+
+////////////////////////// ENTRY POINT //////////////////////////////
+
+void ValidationTest::validateModel(const Model& model) {
+    mutateOperandTypeTest(device, model);
+    mutateOperandRankTest(device, model);
+    mutateOperandScaleTest(device, model);
+    mutateOperandZeroPointTest(device, model);
+    mutateOperationOperandTypeTest(device, model);
+    mutateOperationTypeTest(device, model);
+    mutateOperationInputOperandIndexTest(device, model);
+    mutateOperationOutputOperandIndexTest(device, model);
+    removeOperandTest(device, model);
+    removeOperationTest(device, model);
+    removeOperationInputTest(device, model);
+    removeOperationOutputTest(device, model);
+    addOperationInputTest(device, model);
+    addOperationOutputTest(device, model);
+    mutateExecutionPreferenceTest(device, model);
+}
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
new file mode 100644 (file)
index 0000000..f4476fa
--- /dev/null
@@ -0,0 +1,261 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::hidl::memory::V1_0::IMemory;
+using test_helper::for_all;
+using test_helper::MixedTyped;
+using test_helper::MixedTypedExampleType;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void createPreparedModel(const sp<IDevice>& device, const Model& model,
+                                sp<IPreparedModel>* preparedModel) {
+    ASSERT_NE(nullptr, preparedModel);
+
+    // see if service can handle model
+    bool fullySupportsModel = false;
+    Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_2(
+        model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+            ASSERT_EQ(ErrorStatus::NONE, status);
+            ASSERT_NE(0ul, supported.size());
+            fullySupportsModel =
+                std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
+        });
+    ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
+
+    // launch prepare model
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
+        model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    // retrieve prepared model
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    *preparedModel = preparedModelCallback->getPreparedModel();
+
+    // The getSupportedOperations_1_2 call returns a list of operations that are
+    // guaranteed not to fail if prepareModel_1_2 is called, and
+    // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
+    // If a driver has any doubt that it can prepare an operation, it must
+    // return false. So here, if a driver isn't sure if it can support an
+    // operation, but reports that it successfully prepared the model, the test
+    // can continue.
+    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+        ASSERT_EQ(nullptr, preparedModel->get());
+        LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
+                     "prepare model that it does not support.";
+        std::cout << "[          ]   Unable to test Request validation because vendor service "
+                     "cannot prepare model that it does not support."
+                  << std::endl;
+        return;
+    }
+    ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+    ASSERT_NE(nullptr, preparedModel->get());
+}
+
+// Primary validation function. This function will take a valid request, apply a
+// mutation to it to invalidate the request, then pass it to interface calls
+// that use the request. Note that the request here is passed by value, and any
+// mutation to the request does not leave this function.
+static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
+                     Request request, const std::function<void(Request*)>& mutation) {
+    mutation(&request);
+    SCOPED_TRACE(message + " [execute]");
+
+    sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+    ASSERT_NE(nullptr, executionCallback.get());
+    Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
+    ASSERT_TRUE(executeLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
+
+    executionCallback->wait();
+    ErrorStatus executionReturnStatus = executionCallback->getStatus();
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+    if (vec) {
+        std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+        vec->resize(vec->size() - 1);
+    }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+    // assume vec is valid
+    const uint32_t index = vec->size();
+    vec->resize(index + 1);
+    (*vec)[index] = value;
+    return index;
+}
+
+///////////////////////// REMOVE INPUT ////////////////////////////////////
+
+static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+    for (size_t input = 0; input < request.inputs.size(); ++input) {
+        const std::string message = "removeInput: removed input " + std::to_string(input);
+        validate(preparedModel, message, request,
+                 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
+    }
+}
+
+///////////////////////// REMOVE OUTPUT ////////////////////////////////////
+
+static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+    for (size_t output = 0; output < request.outputs.size(); ++output) {
+        const std::string message = "removeOutput: removed Output " + std::to_string(output);
+        validate(preparedModel, message, request,
+                 [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
+    }
+}
+
+///////////////////////////// ENTRY POINT //////////////////////////////////
+
+std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
+    const uint32_t INPUT = 0;
+    const uint32_t OUTPUT = 1;
+
+    std::vector<Request> requests;
+
+    for (auto& example : examples) {
+        const MixedTyped& inputs = example.first;
+        const MixedTyped& outputs = example.second;
+
+        std::vector<RequestArgument> inputs_info, outputs_info;
+        uint32_t inputSize = 0, outputSize = 0;
+
+        // This function only partially specifies the metadata (vector of RequestArguments).
+        // The contents are copied over below.
+        for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
+            if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
+            RequestArgument arg = {
+                .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+                .dimensions = {},
+            };
+            RequestArgument arg_empty = {
+                .hasNoValue = true,
+            };
+            inputs_info[index] = s ? arg : arg_empty;
+            inputSize += s;
+        });
+        // Compute offset for inputs 1 and so on
+        {
+            size_t offset = 0;
+            for (auto& i : inputs_info) {
+                if (!i.hasNoValue) i.location.offset = offset;
+                offset += i.location.length;
+            }
+        }
+
+        // Go through all outputs, initialize RequestArgument descriptors
+        for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
+            if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
+            RequestArgument arg = {
+                .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+                .dimensions = {},
+            };
+            outputs_info[index] = arg;
+            outputSize += s;
+        });
+        // Compute offset for outputs 1 and so on
+        {
+            size_t offset = 0;
+            for (auto& i : outputs_info) {
+                i.location.offset = offset;
+                offset += i.location.length;
+            }
+        }
+        std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
+                                          nn::allocateSharedMemory(outputSize)};
+        if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
+            return {};
+        }
+
+        // map pool
+        sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
+        if (inputMemory == nullptr) {
+            return {};
+        }
+        char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
+        if (inputPtr == nullptr) {
+            return {};
+        }
+
+        // initialize pool
+        inputMemory->update();
+        for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
+            char* begin = (char*)p;
+            char* end = begin + s;
+            // TODO: handle more than one input
+            std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
+        });
+        inputMemory->commit();
+
+        requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
+    }
+
+    return requests;
+}
+
+void ValidationTest::validateRequests(const Model& model, const std::vector<Request>& requests) {
+    // create IPreparedModel
+    sp<IPreparedModel> preparedModel;
+    ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
+    if (preparedModel == nullptr) {
+        return;
+    }
+
+    // validate each request
+    for (const Request& request : requests) {
+        removeInputTest(preparedModel, request);
+        removeOutputTest(preparedModel, request);
+    }
+}
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/ValidationTests.cpp b/neuralnetworks/1.2/vts/functional/ValidationTests.cpp
new file mode 100644 (file)
index 0000000..3bdc5cd
--- /dev/null
@@ -0,0 +1,50 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "Models.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+// forward declarations
+std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
+
+// generate validation tests
+#define VTS_CURRENT_TEST_CASE(TestName)                                           \
+    TEST_F(ValidationTest, TestName) {                                            \
+        const Model model = TestName::createTestModel();                          \
+        const std::vector<Request> requests = createRequests(TestName::examples); \
+        validateModel(model);                                                     \
+        validateRequests(model, requests);                                        \
+    }
+
+FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
+
+#undef VTS_CURRENT_TEST_CASE
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.cpp b/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.cpp
new file mode 100644 (file)
index 0000000..90a910c
--- /dev/null
@@ -0,0 +1,86 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+// A class for test environment setup
+NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
+
+NeuralnetworksHidlEnvironment::~NeuralnetworksHidlEnvironment() {}
+
+NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
+    // This has to return a "new" object because it is freed inside
+    // ::testing::AddGlobalTestEnvironment when the gtest is being torn down
+    static NeuralnetworksHidlEnvironment* instance = new NeuralnetworksHidlEnvironment();
+    return instance;
+}
+
+void NeuralnetworksHidlEnvironment::registerTestServices() {
+    registerTestService<IDevice>();
+}
+
+// The main test class for NEURALNETWORK HIDL HAL.
+NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
+
+NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
+
+void NeuralnetworksHidlTest::SetUp() {
+    ::testing::VtsHalHidlTargetTestBase::SetUp();
+    device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
+        NeuralnetworksHidlEnvironment::getInstance());
+    ASSERT_NE(nullptr, device.get());
+}
+
+void NeuralnetworksHidlTest::TearDown() {
+    device = nullptr;
+    ::testing::VtsHalHidlTargetTestBase::TearDown();
+}
+
+}  // namespace functional
+}  // namespace vts
+
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
+    return os << toString(errorStatus);
+}
+
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
+    return os << toString(deviceStatus);
+}
+
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
+
+using android::hardware::neuralnetworks::V1_2::vts::functional::NeuralnetworksHidlEnvironment;
+
+int main(int argc, char** argv) {
+    ::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
+    ::testing::InitGoogleTest(&argc, argv);
+    NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
+
+    int status = RUN_ALL_TESTS();
+    return status;
+}
diff --git a/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.h b/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.h
new file mode 100644 (file)
index 0000000..a87d788
--- /dev/null
@@ -0,0 +1,92 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef VTS_HAL_NEURALNETWORKS_V1_2_H
+#define VTS_HAL_NEURALNETWORKS_V1_2_H
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <android/hardware/neuralnetworks/1.2/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+
+#include <VtsHalHidlTargetTestBase.h>
+#include <VtsHalHidlTargetTestEnvBase.h>
+
+#include <android-base/macros.h>
+#include <gtest/gtest.h>
+#include <iostream>
+#include <vector>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+
+using V1_0::DeviceStatus;
+using V1_0::ErrorStatus;
+using V1_0::Request;
+
+namespace vts {
+namespace functional {
+
+// A class for test environment setup
+class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
+    DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
+    NeuralnetworksHidlEnvironment();
+    ~NeuralnetworksHidlEnvironment() override;
+
+   public:
+    static NeuralnetworksHidlEnvironment* getInstance();
+    void registerTestServices() override;
+};
+
+// The main test class for NEURALNETWORKS HIDL HAL.
+class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+    DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
+
+   public:
+    NeuralnetworksHidlTest();
+    ~NeuralnetworksHidlTest() override;
+    void SetUp() override;
+    void TearDown() override;
+
+   protected:
+    sp<IDevice> device;
+};
+
+// Tag for the validation tests
+class ValidationTest : public NeuralnetworksHidlTest {
+   protected:
+    void validateModel(const Model& model);
+    void validateRequests(const Model& model, const std::vector<Request>& request);
+};
+
+// Tag for the generated tests
+class GeneratedTest : public NeuralnetworksHidlTest {};
+
+}  // namespace functional
+}  // namespace vts
+
+// pretty-print values for error messages
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
+
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
+
+#endif  // VTS_HAL_NEURALNETWORKS_V1_2_H