]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - glsdk/glsdk-u-boot.git/blob - nand_spl/nand_boot.c
Merge branch 'master' of git://www.denx.de/git/u-boot
[glsdk/glsdk-u-boot.git] / nand_spl / nand_boot.c
1 /*
2  * (C) Copyright 2006-2008
3  * Stefan Roese, DENX Software Engineering, sr@denx.de.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
21 #include <common.h>
22 #include <nand.h>
24 #define CFG_NAND_READ_DELAY \
25         { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
27 static int nand_ecc_pos[] = CFG_NAND_ECCPOS;
29 extern void board_nand_init(struct nand_chip *nand);
31 #if (CFG_NAND_PAGE_SIZE <= 512)
32 /*
33  * NAND command for small page NAND devices (512)
34  */
35 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
36 {
37         struct nand_chip *this = mtd->priv;
38         int page_addr = page + block * CFG_NAND_PAGE_COUNT;
40         if (this->dev_ready)
41                 this->dev_ready(mtd);
42         else
43                 CFG_NAND_READ_DELAY;
45         /* Begin command latch cycle */
46         this->hwcontrol(mtd, NAND_CTL_SETCLE);
47         this->write_byte(mtd, cmd);
48         /* Set ALE and clear CLE to start address cycle */
49         this->hwcontrol(mtd, NAND_CTL_CLRCLE);
50         this->hwcontrol(mtd, NAND_CTL_SETALE);
51         /* Column address */
52         this->write_byte(mtd, offs);                                    /* A[7:0] */
53         this->write_byte(mtd, (uchar)(page_addr & 0xff));               /* A[16:9] */
54         this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));        /* A[24:17] */
55 #ifdef CFG_NAND_4_ADDR_CYCLE
56         /* One more address cycle for devices > 32MiB */
57         this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));       /* A[xx:25] */
58 #endif
59         /* Latch in address */
60         this->hwcontrol(mtd, NAND_CTL_CLRALE);
62         /*
63          * Wait a while for the data to be ready
64          */
65         if (this->dev_ready)
66                 this->dev_ready(mtd);
67         else
68                 CFG_NAND_READ_DELAY;
70         return 0;
71 }
72 #else
73 /*
74  * NAND command for large page NAND devices (2k)
75  */
76 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
77 {
78         struct nand_chip *this = mtd->priv;
79         int page_offs = offs;
80         int page_addr = page + block * CFG_NAND_PAGE_COUNT;
82         if (this->dev_ready)
83                 this->dev_ready(mtd);
84         else
85                 CFG_NAND_READ_DELAY;
87         /* Emulate NAND_CMD_READOOB */
88         if (cmd == NAND_CMD_READOOB) {
89                 page_offs += CFG_NAND_PAGE_SIZE;
90                 cmd = NAND_CMD_READ0;
91         }
93         /* Begin command latch cycle */
94         this->hwcontrol(mtd, NAND_CTL_SETCLE);
95         this->write_byte(mtd, cmd);
96         /* Set ALE and clear CLE to start address cycle */
97         this->hwcontrol(mtd, NAND_CTL_CLRCLE);
98         this->hwcontrol(mtd, NAND_CTL_SETALE);
99         /* Column address */
100         this->write_byte(mtd, page_offs & 0xff);                        /* A[7:0] */
101         this->write_byte(mtd, (uchar)((page_offs >> 8) & 0xff));        /* A[11:9] */
102         /* Row address */
103         this->write_byte(mtd, (uchar)(page_addr & 0xff));               /* A[19:12] */
104         this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));        /* A[27:20] */
105 #ifdef CFG_NAND_5_ADDR_CYCLE
106         /* One more address cycle for devices > 128MiB */
107         this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));       /* A[xx:28] */
108 #endif
109         /* Latch in address */
110         this->hwcontrol(mtd, NAND_CTL_CLRALE);
112         /* Begin command latch cycle */
113         this->hwcontrol(mtd, NAND_CTL_SETCLE);
114         /* Write out the start read command */
115         this->write_byte(mtd, NAND_CMD_READSTART);
116         /* End command latch cycle */
117         this->hwcontrol(mtd, NAND_CTL_CLRCLE);
119         /*
120          * Wait a while for the data to be ready
121          */
122         if (this->dev_ready)
123                 this->dev_ready(mtd);
124         else
125                 CFG_NAND_READ_DELAY;
127         return 0;
129 #endif
131 static int nand_is_bad_block(struct mtd_info *mtd, int block)
133         struct nand_chip *this = mtd->priv;
135         nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
137         /*
138          * Read one byte
139          */
140         if (this->read_byte(mtd) != 0xff)
141                 return 1;
143         return 0;
146 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
148         struct nand_chip *this = mtd->priv;
149         u_char *ecc_calc;
150         u_char *ecc_code;
151         u_char *oob_data;
152         int i;
153         int eccsize = CFG_NAND_ECCSIZE;
154         int eccbytes = CFG_NAND_ECCBYTES;
155         int eccsteps = CFG_NAND_ECCSTEPS;
156         uint8_t *p = dst;
157         int stat;
159         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
161         /* No malloc available for now, just use some temporary locations
162          * in SDRAM
163          */
164         ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000);
165         ecc_code = ecc_calc + 0x100;
166         oob_data = ecc_calc + 0x200;
168         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
169                 this->enable_hwecc(mtd, NAND_ECC_READ);
170                 this->read_buf(mtd, p, eccsize);
171                 this->calculate_ecc(mtd, p, &ecc_calc[i]);
172         }
173         this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE);
175         /* Pick the ECC bytes out of the oob data */
176         for (i = 0; i < CFG_NAND_ECCTOTAL; i++)
177                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
179         eccsteps = CFG_NAND_ECCSTEPS;
180         p = dst;
182         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
183                 /* No chance to do something with the possible error message
184                  * from correct_data(). We just hope that all possible errors
185                  * are corrected by this routine.
186                  */
187                 stat = this->correct_data(mtd, p, &ecc_code[i], &ecc_calc[i]);
188         }
190         return 0;
193 static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
195         int block;
196         int blockcopy_count;
197         int page;
199         /*
200          * offs has to be aligned to a block address!
201          */
202         block = offs / CFG_NAND_BLOCK_SIZE;
203         blockcopy_count = 0;
205         while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) {
206                 if (!nand_is_bad_block(mtd, block)) {
207                         /*
208                          * Skip bad blocks
209                          */
210                         for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) {
211                                 nand_read_page(mtd, block, page, dst);
212                                 dst += CFG_NAND_PAGE_SIZE;
213                         }
215                         blockcopy_count++;
216                 }
218                 block++;
219         }
221         return 0;
224 /*
225  * The main entry for NAND booting. It's necessary that SDRAM is already
226  * configured and available since this code loads the main U-Boot image
227  * from NAND into SDRAM and starts it from there.
228  */
229 void nand_boot(void)
231         struct nand_chip nand_chip;
232         nand_info_t nand_info;
233         int ret;
234         void (*uboot)(void);
236         /*
237          * Init board specific nand support
238          */
239         nand_info.priv = &nand_chip;
240         nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CFG_NAND_BASE;
241         nand_chip.dev_ready = NULL;     /* preset to NULL */
242         board_nand_init(&nand_chip);
244         /*
245          * Load U-Boot image from NAND into RAM
246          */
247         ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
248                         (uchar *)CFG_NAND_U_BOOT_DST);
250         /*
251          * Jump to U-Boot image
252          */
253         uboot = (void (*)(void))CFG_NAND_U_BOOT_START;
254         (*uboot)();