/* * * Clock initialization for OMAP4 * * (C) Copyright 2010 * Texas Instruments, * * Aneesh V * * Based on previous work by: * Santosh Shilimkar * Rajendra Nayak * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #ifndef CONFIG_SPL_BUILD /* * printing to console doesn't work unless * this code is executed from SPL */ #define printf(fmt, args...) #define puts(s) #endif static inline u32 __get_sys_clk_index(void) { u32 ind; /* * For ES1 the ROM code calibration of sys clock is not reliable * due to hw issue. So, use hard-coded value. If this value is not * correct for any board over-ride this function in board file * From ES2.0 onwards you will get this information from * CM_SYS_CLKSEL */ if (omap_revision() == OMAP4430_ES1_0) ind = OMAP_SYS_CLK_IND_38_4_MHZ; else { /* SYS_CLKSEL - 1 to match the dpll param array indices */ ind = (readl(&prcm->cm_sys_clksel) & CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1; } return ind; } u32 get_sys_clk_index(void) __attribute__ ((weak, alias("__get_sys_clk_index"))); u32 get_sys_clk_freq(void) { u8 index = get_sys_clk_index(); return sys_clk_array[index]; } static inline void do_bypass_dpll(u32 *const base) { struct dpll_regs *dpll_regs = (struct dpll_regs *)base; clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, CM_CLKMODE_DPLL_DPLL_EN_MASK, DPLL_EN_FAST_RELOCK_BYPASS << CM_CLKMODE_DPLL_EN_SHIFT); } static inline void wait_for_bypass(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll, LDELAY)) { printf("Bypassing DPLL failed %p\n", base); } } static inline void do_lock_dpll(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, CM_CLKMODE_DPLL_DPLL_EN_MASK, DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT); } static inline void wait_for_lock(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK, &dpll_regs->cm_idlest_dpll, LDELAY)) { printf("DPLL locking failed for %p\n", base); hang(); } } inline u32 check_for_lock(u32 *const base) { struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK; return lock; } static void do_setup_dpll(u32 *const base, const struct dpll_params *params, u8 lock, char *dpll) { u32 temp, M, N; struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; temp = readl(&dpll_regs->cm_clksel_dpll); if (check_for_lock(base)) { /* * The Dpll has already been locked by rom code using CH. * Check if M,N are matching with Ideal nominal opp values. * If matches, skip the rest otherwise relock. */ M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT; N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT; if ((M != (params->m)) || (N != (params->n))) { debug("\n %s Dpll locked, but not for ideal M = %d," "N = %d values, current values are M = %d," "N= %d" , dpll, params->m, params->n, M, N); } else { /* Dpll locked with ideal values for nominal opps. */ debug("\n %s Dpll already locked with ideal" "nominal opp values", dpll); goto setup_post_dividers; } } bypass_dpll(base); /* Set M & N */ temp &= ~CM_CLKSEL_DPLL_M_MASK; temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK; temp &= ~CM_CLKSEL_DPLL_N_MASK; temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK; writel(temp, &dpll_regs->cm_clksel_dpll); /* Lock */ if (lock) do_lock_dpll(base); setup_post_dividers: setup_post_dividers(base, params); /* Wait till the DPLL locks */ if (lock) wait_for_lock(base); } u32 omap_ddr_clk(void) { u32 ddr_clk, sys_clk_khz, omap_rev, divider; const struct dpll_params *core_dpll_params; omap_rev = omap_revision(); sys_clk_khz = get_sys_clk_freq() / 1000; core_dpll_params = get_core_dpll_params(); debug("sys_clk %d\n ", sys_clk_khz * 1000); /* Find Core DPLL locked frequency first */ ddr_clk = sys_clk_khz * 2 * core_dpll_params->m / (core_dpll_params->n + 1); if (omap_rev < OMAP5430_ES1_0) { /* * DDR frequency is PHY_ROOT_CLK/2 * PHY_ROOT_CLK = Fdpll/2/M2 */ divider = 4; } else { /* * DDR frequency is PHY_ROOT_CLK * PHY_ROOT_CLK = Fdpll/2/M2 */ divider = 2; } ddr_clk = ddr_clk / divider / core_dpll_params->m2; ddr_clk *= 1000; /* convert to Hz */ debug("ddr_clk %d\n ", ddr_clk); return ddr_clk; } /* * Lock MPU dpll * * Resulting MPU frequencies: * 4430 ES1.0 : 600 MHz * 4430 ES2.x : 792 MHz (OPP Turbo) * 4460 : 920 MHz (OPP Turbo) - DCC disabled */ void configure_mpu_dpll(void) { const struct dpll_params *params; struct dpll_regs *mpu_dpll_regs; u32 omap_rev; omap_rev = omap_revision(); /* * DCC and clock divider settings for 4460. * DCC is required, if more than a certain frequency is required. * For, 4460 > 1GHZ. * 5430 > 1.4GHZ. */ if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) { mpu_dpll_regs = (struct dpll_regs *)&prcm->cm_clkmode_dpll_mpu; bypass_dpll(&prcm->cm_clkmode_dpll_mpu); clrbits_le32(&prcm->cm_mpu_mpu_clkctrl, MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK); setbits_le32(&prcm->cm_mpu_mpu_clkctrl, MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK); clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll, CM_CLKSEL_DCC_EN_MASK); } params = get_mpu_dpll_params(); do_setup_dpll(&prcm->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu"); debug("MPU DPLL locked\n"); } #ifdef CONFIG_USB_EHCI_OMAP static void setup_usb_dpll(void) { const struct dpll_params *params; u32 sys_clk_khz, sd_div, num, den; sys_clk_khz = get_sys_clk_freq() / 1000; /* * USB: * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250) * - where CLKINP is sys_clk in MHz * Use CLKINP in KHz and adjust the denominator accordingly so * that we have enough accuracy and at the same time no overflow */ params = get_usb_dpll_params(); num = params->m * sys_clk_khz; den = (params->n + 1) * 250 * 1000; num += den - 1; sd_div = num / den; clrsetbits_le32(&prcm->cm_clksel_dpll_usb, CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK, sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT); /* Now setup the dpll with the regular function */ do_setup_dpll(&prcm->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb"); } #endif static void setup_dplls(void) { u32 temp; const struct dpll_params *params; debug("setup_dplls\n"); /* CORE dpll */ params = get_core_dpll_params(); /* default - safest */ /* * Do not lock the core DPLL now. Just set it up. * Core DPLL will be locked after setting up EMIF * using the FREQ_UPDATE method(freq_update_core()) */ do_setup_dpll(&prcm->cm_clkmode_dpll_core, params, DPLL_NO_LOCK, "core"); /* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */ temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) | (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) | (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT); writel(temp, &prcm->cm_clksel_core); debug("Core DPLL configured\n"); /* lock PER dpll */ params = get_per_dpll_params(); do_setup_dpll(&prcm->cm_clkmode_dpll_per, params, DPLL_LOCK, "per"); debug("PER DPLL locked\n"); /* MPU dpll */ configure_mpu_dpll(); #ifdef CONFIG_USB_EHCI_OMAP setup_usb_dpll(); #endif } #ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL static void setup_non_essential_dplls(void) { u32 abe_ref_clk; const struct dpll_params *params; /* IVA */ clrsetbits_le32(&prcm->cm_bypclk_dpll_iva, CM_BYPCLK_DPLL_IVA_CLKSEL_MASK, DPLL_IVA_CLKSEL_CORE_X2_DIV_2); params = get_iva_dpll_params(); do_setup_dpll(&prcm->cm_clkmode_dpll_iva, params, DPLL_LOCK, "iva"); /* Configure ABE dpll */ params = get_abe_dpll_params(); #ifdef CONFIG_SYS_OMAP_ABE_SYSCK abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_SYSCLK; #else abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_32KCLK; /* * We need to enable some additional options to achieve * 196.608MHz from 32768 Hz */ setbits_le32(&prcm->cm_clkmode_dpll_abe, CM_CLKMODE_DPLL_DRIFTGUARD_EN_MASK| CM_CLKMODE_DPLL_RELOCK_RAMP_EN_MASK| CM_CLKMODE_DPLL_LPMODE_EN_MASK| CM_CLKMODE_DPLL_REGM4XEN_MASK); /* Spend 4 REFCLK cycles at each stage */ clrsetbits_le32(&prcm->cm_clkmode_dpll_abe, CM_CLKMODE_DPLL_RAMP_RATE_MASK, 1 << CM_CLKMODE_DPLL_RAMP_RATE_SHIFT); #endif /* Select the right reference clk */ clrsetbits_le32(&prcm->cm_abe_pll_ref_clksel, CM_ABE_PLL_REF_CLKSEL_CLKSEL_MASK, abe_ref_clk << CM_ABE_PLL_REF_CLKSEL_CLKSEL_SHIFT); /* Lock the dpll */ do_setup_dpll(&prcm->cm_clkmode_dpll_abe, params, DPLL_LOCK, "abe"); } #endif void do_scale_tps62361(int gpio, u32 reg, u32 volt_mv) { u32 step; int ret = 0; /* See if we can first get the GPIO if needed */ if (gpio >= 0) ret = gpio_request(gpio, "TPS62361_VSEL0_GPIO"); if (ret < 0) { printf("%s: gpio %d request failed %d\n", __func__, gpio, ret); gpio = -1; } /* Pull the GPIO low to select SET0 register, while we program SET1 */ if (gpio >= 0) gpio_direction_output(gpio, 0); step = volt_mv - TPS62361_BASE_VOLT_MV; step /= 10; debug("do_scale_tps62361: volt - %d step - 0x%x\n", volt_mv, step); if (omap_vc_bypass_send_value(TPS62361_I2C_SLAVE_ADDR, reg, step)) puts("Scaling voltage failed for vdd_mpu from TPS\n"); /* Pull the GPIO high to select SET1 register */ if (gpio >= 0) gpio_direction_output(gpio, 1); } void do_scale_vcore(u32 vcore_reg, u32 volt_mv) { u32 offset_code; u32 step = 12660; /* 12.66 mV represented in uV */ u32 offset = volt_mv; /* convert to uV for better accuracy in the calculations */ offset *= 1000; if (omap_revision() == OMAP4430_ES1_0) offset -= PHOENIX_SMPS_BASE_VOLT_STD_MODE_UV; else offset -= PHOENIX_SMPS_BASE_VOLT_STD_MODE_WITH_OFFSET_UV; offset_code = (offset + step - 1) / step; /* The code starts at 1 not 0 */ offset_code++; debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv, offset_code); if (omap_vc_bypass_send_value(SMPS_I2C_SLAVE_ADDR, vcore_reg, offset_code)) printf("Scaling voltage failed for 0x%x\n", vcore_reg); } static inline void enable_clock_domain(u32 *const clkctrl_reg, u32 enable_mode) { clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT); debug("Enable clock domain - %p\n", clkctrl_reg); } static inline void wait_for_clk_enable(u32 *clkctrl_addr) { u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED; u32 bound = LDELAY; while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) || (idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) { clkctrl = readl(clkctrl_addr); idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> MODULE_CLKCTRL_IDLEST_SHIFT; if (--bound == 0) { printf("Clock enable failed for 0x%p idlest 0x%x\n", clkctrl_addr, clkctrl); return; } } } static inline void enable_clock_module(u32 *const clkctrl_addr, u32 enable_mode, u32 wait_for_enable) { clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT); debug("Enable clock module - %p\n", clkctrl_addr); if (wait_for_enable) wait_for_clk_enable(clkctrl_addr); } void freq_update_core(void) { u32 freq_config1 = 0; const struct dpll_params *core_dpll_params; core_dpll_params = get_core_dpll_params(); /* Put EMIF clock domain in sw wakeup mode */ enable_clock_domain(&prcm->cm_memif_clkstctrl, CD_CLKCTRL_CLKTRCTRL_SW_WKUP); wait_for_clk_enable(&prcm->cm_memif_emif_1_clkctrl); wait_for_clk_enable(&prcm->cm_memif_emif_2_clkctrl); freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK | SHADOW_FREQ_CONFIG1_DLL_RESET_MASK; freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) & SHADOW_FREQ_CONFIG1_DPLL_EN_MASK; freq_config1 |= (core_dpll_params->m2 << SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) & SHADOW_FREQ_CONFIG1_M2_DIV_MASK; writel(freq_config1, &prcm->cm_shadow_freq_config1); if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0, &prcm->cm_shadow_freq_config1, LDELAY)) { puts("FREQ UPDATE procedure failed!!"); hang(); } /* Put EMIF clock domain back in hw auto mode */ enable_clock_domain(&prcm->cm_memif_clkstctrl, CD_CLKCTRL_CLKTRCTRL_HW_AUTO); wait_for_clk_enable(&prcm->cm_memif_emif_1_clkctrl); wait_for_clk_enable(&prcm->cm_memif_emif_2_clkctrl); } void bypass_dpll(u32 *const base) { do_bypass_dpll(base); wait_for_bypass(base); } void lock_dpll(u32 *const base) { do_lock_dpll(base); wait_for_lock(base); } void setup_clocks_for_console(void) { /* Do not add any spl_debug prints in this function */ clrsetbits_le32(&prcm->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_SW_WKUP << CD_CLKCTRL_CLKTRCTRL_SHIFT); /* Enable all UARTs - console will be on one of them */ clrsetbits_le32(&prcm->cm_l4per_uart1_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_uart2_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_uart3_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_uart3_clkctrl, MODULE_CLKCTRL_MODULEMODE_MASK, MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << MODULE_CLKCTRL_MODULEMODE_SHIFT); clrsetbits_le32(&prcm->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, CD_CLKCTRL_CLKTRCTRL_HW_AUTO << CD_CLKCTRL_CLKTRCTRL_SHIFT); } void do_enable_clocks(u32 *const *clk_domains, u32 *const *clk_modules_hw_auto, u32 *const *clk_modules_explicit_en, u8 wait_for_enable) { u32 i, max = 100; /* Put the clock domains in SW_WKUP mode */ for (i = 0; (i < max) && clk_domains[i]; i++) { enable_clock_domain(clk_domains[i], CD_CLKCTRL_CLKTRCTRL_SW_WKUP); } /* Clock modules that need to be put in HW_AUTO */ for (i = 0; (i < max) && clk_modules_hw_auto[i]; i++) { enable_clock_module(clk_modules_hw_auto[i], MODULE_CLKCTRL_MODULEMODE_HW_AUTO, wait_for_enable); }; /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) { enable_clock_module(clk_modules_explicit_en[i], MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, wait_for_enable); }; /* Put the clock domains in HW_AUTO mode now */ for (i = 0; (i < max) && clk_domains[i]; i++) { enable_clock_domain(clk_domains[i], CD_CLKCTRL_CLKTRCTRL_HW_AUTO); } } void prcm_init(void) { switch (omap_hw_init_context()) { case OMAP_INIT_CONTEXT_SPL: case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: enable_basic_clocks(); scale_vcores(); setup_dplls(); #ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL setup_non_essential_dplls(); enable_non_essential_clocks(); #endif break; default: break; } if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context()) enable_basic_uboot_clocks(); }