/* * EMIF programming * * (C) Copyright 2010 * Texas Instruments, * * Aneesh V * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include static int emif1_enabled = -1, emif2_enabled = -1; void set_lpmode_selfrefresh(u32 base) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; u32 reg; reg = readl(&emif->emif_pwr_mgmt_ctrl); reg &= ~EMIF_REG_LP_MODE_MASK; reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT; reg &= ~EMIF_REG_SR_TIM_MASK; writel(reg, &emif->emif_pwr_mgmt_ctrl); /* dummy read for the new SR_TIM to be loaded */ readl(&emif->emif_pwr_mgmt_ctrl); } void force_emif_self_refresh() { set_lpmode_selfrefresh(EMIF1_BASE); set_lpmode_selfrefresh(EMIF2_BASE); } inline u32 emif_num(u32 base) { if (base == EMIF1_BASE) return 1; else if (base == EMIF2_BASE) return 2; else return 0; } /* * Get SDRAM type connected to EMIF. * Assuming similar SDRAM parts are connected to both EMIF's * which is typically the case. So it is sufficient to get * SDRAM type from EMIF1. */ u32 emif_sdram_type() { struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE; return (readl(&emif->emif_sdram_config) & EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT; } static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr) { u32 mr; struct emif_reg_struct *emif = (struct emif_reg_struct *)base; mr_addr |= cs << EMIF_REG_CS_SHIFT; writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); if (omap_revision() == OMAP4430_ES2_0) mr = readl(&emif->emif_lpddr2_mode_reg_data_es2); else mr = readl(&emif->emif_lpddr2_mode_reg_data); debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base), cs, mr_addr, mr); if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) && ((mr & 0x00ff0000) >> 16) == (mr & 0xff) && ((mr & 0xff000000) >> 24) == (mr & 0xff)) return mr & 0xff; else return mr; } static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; mr_addr |= cs << EMIF_REG_CS_SHIFT; writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); writel(mr_val, &emif->emif_lpddr2_mode_reg_data); } void emif_reset_phy(u32 base) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; u32 iodft; iodft = readl(&emif->emif_iodft_tlgc); iodft |= EMIF_REG_RESET_PHY_MASK; writel(iodft, &emif->emif_iodft_tlgc); } static void do_lpddr2_init(u32 base, u32 cs) { u32 mr_addr; /* Wait till device auto initialization is complete */ while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK) ; set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT); /* * tZQINIT = 1 us * Enough loops assuming a maximum of 2GHz */ sdelay(2000); if (omap_revision() >= OMAP5430_ES1_0) set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8); else set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3); set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY); /* * Enable refresh along with writing MR2 * Encoding of RL in MR2 is (RL - 2) */ mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK; set_mr(base, cs, mr_addr, RL_FINAL - 2); if (omap_revision() >= OMAP5430_ES1_0) set_mr(base, cs, LPDDR2_MR3, 0x1); } static void lpddr2_init(u32 base, const struct emif_regs *regs) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; /* Not NVM */ clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK); /* * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM * when EMIF_SDRAM_CONFIG register is written */ setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK); /* * Set the SDRAM_CONFIG and PHY_CTRL for the * un-locked frequency & default RL */ writel(regs->sdram_config_init, &emif->emif_sdram_config); writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); do_ext_phy_settings(base, regs); do_lpddr2_init(base, CS0); if (regs->sdram_config & EMIF_REG_EBANK_MASK) do_lpddr2_init(base, CS1); writel(regs->sdram_config, &emif->emif_sdram_config); writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); /* Enable refresh now */ clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK); } __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs) { } void emif_update_timings(u32 base, const struct emif_regs *regs) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw); writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw); writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw); writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw); if (omap_revision() == OMAP4430_ES1_0) { /* ES1 bug EMIF should be in force idle during freq_update */ writel(0, &emif->emif_pwr_mgmt_ctrl); } else { writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl); writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw); } writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw); writel(regs->zq_config, &emif->emif_zq_config); writel(regs->temp_alert_config, &emif->emif_temp_alert_config); writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw); if (omap_revision() >= OMAP5430_ES1_0) { writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config); } else if (omap_revision() >= OMAP4460_ES1_0) { writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0, &emif->emif_l3_config); } else { writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0, &emif->emif_l3_config); } } static void ddr3_leveling(u32 base, const struct emif_regs *regs) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; /* keep sdram in self-refresh */ writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT) & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl); __udelay(130); /* * Set invert_clkout (if activated)--DDR_PHYCTRL_1 * Invert clock adds an additional half cycle delay on the command * interface. The additional half cycle, is usually meant to enable * leveling in the situation that DQS is later than CK on the board.It * also helps provide some additional margin for leveling. */ writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw); __udelay(130); writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT) & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl); /* Launch Full leveling */ writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl); /* Wait till full leveling is complete */ readl(&emif->emif_rd_wr_lvl_ctl); __udelay(130); /* Read data eye leveling no of samples */ config_data_eye_leveling_samples(base); /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */ writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl); __udelay(130); /* Launch Incremental leveling */ writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl); __udelay(130); } static void ddr3_init(u32 base, const struct emif_regs *regs) { struct emif_reg_struct *emif = (struct emif_reg_struct *)base; u32 *ext_phy_ctrl_base = 0; u32 *emif_ext_phy_ctrl_base = 0; u32 i = 0; /* * Set SDRAM_CONFIG and PHY control registers to locked frequency * and RL =7. As the default values of the Mode Registers are not * defined, contents of mode Registers must be fully initialized. * H/W takes care of this initialization */ writel(regs->sdram_config_init, &emif->emif_sdram_config); writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1); /* Update timing registers */ writel(regs->sdram_tim1, &emif->emif_sdram_tim_1); writel(regs->sdram_tim2, &emif->emif_sdram_tim_2); writel(regs->sdram_tim3, &emif->emif_sdram_tim_3); writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl); writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl); ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1); emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1); /* Configure external phy control timing registers */ for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) { writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++); /* Update shadow registers */ writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++); } /* * external phy 6-24 registers do not change with * ddr frequency */ for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) { writel(ddr3_ext_phy_ctrl_const_base[i], emif_ext_phy_ctrl_base++); /* Update shadow registers */ writel(ddr3_ext_phy_ctrl_const_base[i], emif_ext_phy_ctrl_base++); } /* enable leveling */ writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl); ddr3_leveling(base, regs); } #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg)) /* * Organization and refresh requirements for LPDDR2 devices of different * types and densities. Derived from JESD209-2 section 2.4 */ const struct lpddr2_addressing addressing_table[] = { /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */ {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */ {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */ {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */ {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */ {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */ {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */ {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */ {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */ {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */ {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */ }; static const u32 lpddr2_density_2_size_in_mbytes[] = { 8, /* 64Mb */ 16, /* 128Mb */ 32, /* 256Mb */ 64, /* 512Mb */ 128, /* 1Gb */ 256, /* 2Gb */ 512, /* 4Gb */ 1024, /* 8Gb */ 2048, /* 16Gb */ 4096 /* 32Gb */ }; /* * Calculate the period of DDR clock from frequency value and set the * denominator and numerator in global variables for easy access later */ static void set_ddr_clk_period(u32 freq) { /* * period = 1/freq * period_in_ns = 10^9/freq */ *T_num = 1000000000; *T_den = freq; cancel_out(T_num, T_den, 200); } /* * Convert time in nano seconds to number of cycles of DDR clock */ static inline u32 ns_2_cycles(u32 ns) { return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num); } /* * ns_2_cycles with the difference that the time passed is 2 times the actual * value(to avoid fractions). The cycles returned is for the original value of * the timing parameter */ static inline u32 ns_x2_2_cycles(u32 ns) { return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2); } /* * Find addressing table index based on the device's type(S2 or S4) and * density */ s8 addressing_table_index(u8 type, u8 density, u8 width) { u8 index; if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8)) return -1; /* * Look at the way ADDR_TABLE_INDEX* values have been defined * in emif.h compared to LPDDR2_DENSITY_* values * The table is layed out in the increasing order of density * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed * at the end */ if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb)) index = ADDR_TABLE_INDEX1GS2; else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb)) index = ADDR_TABLE_INDEX2GS2; else index = density; debug("emif: addressing table index %d\n", index); return index; } /* * Find the the right timing table from the array of timing * tables of the device using DDR clock frequency */ static const struct lpddr2_ac_timings *get_timings_table(const struct lpddr2_ac_timings const *const *device_timings, u32 freq) { u32 i, temp, freq_nearest; const struct lpddr2_ac_timings *timings = 0; emif_assert(freq <= MAX_LPDDR2_FREQ); emif_assert(device_timings); /* * Start with the maximum allowed frequency - that is always safe */ freq_nearest = MAX_LPDDR2_FREQ; /* * Find the timings table that has the max frequency value: * i. Above or equal to the DDR frequency - safe * ii. The lowest that satisfies condition (i) - optimal */ for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) { temp = device_timings[i]->max_freq; if ((temp >= freq) && (temp <= freq_nearest)) { freq_nearest = temp; timings = device_timings[i]; } } debug("emif: timings table: %d\n", freq_nearest); return timings; } /* * Finds the value of emif_sdram_config_reg * All parameters are programmed based on the device on CS0. * If there is a device on CS1, it will be same as that on CS0 or * it will be NVM. We don't support NVM yet. * If cs1_device pointer is NULL it is assumed that there is no device * on CS1 */ static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device, const struct lpddr2_device_details *cs1_device, const struct lpddr2_addressing *addressing, u8 RL) { u32 config_reg = 0; config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT; config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING << EMIF_REG_IBANK_POS_SHIFT; config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT; config_reg |= RL << EMIF_REG_CL_SHIFT; config_reg |= addressing->row_sz[cs0_device->io_width] << EMIF_REG_ROWSIZE_SHIFT; config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT; config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) << EMIF_REG_EBANK_SHIFT; config_reg |= addressing->col_sz[cs0_device->io_width] << EMIF_REG_PAGESIZE_SHIFT; return config_reg; } static u32 get_sdram_ref_ctrl(u32 freq, const struct lpddr2_addressing *addressing) { u32 ref_ctrl = 0, val = 0, freq_khz; freq_khz = freq / 1000; /* * refresh rate to be set is 'tREFI * freq in MHz * division by 10000 to account for khz and x10 in t_REFI_us_x10 */ val = addressing->t_REFI_us_x10 * freq_khz / 10000; ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT; return ref_ctrl; } static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings, const struct lpddr2_min_tck *min_tck, const struct lpddr2_addressing *addressing) { u32 tim1 = 0, val = 0; val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1; tim1 |= val << EMIF_REG_T_WTR_SHIFT; if (addressing->num_banks == BANKS8) val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) / (4 * (*T_num)) - 1; else val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1; tim1 |= val << EMIF_REG_T_RRD_SHIFT; val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1; tim1 |= val << EMIF_REG_T_RC_SHIFT; val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1; tim1 |= val << EMIF_REG_T_RAS_SHIFT; val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1; tim1 |= val << EMIF_REG_T_WR_SHIFT; val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1; tim1 |= val << EMIF_REG_T_RCD_SHIFT; val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1; tim1 |= val << EMIF_REG_T_RP_SHIFT; return tim1; } static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings, const struct lpddr2_min_tck *min_tck) { u32 tim2 = 0, val = 0; val = max(min_tck->tCKE, timings->tCKE) - 1; tim2 |= val << EMIF_REG_T_CKE_SHIFT; val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1; tim2 |= val << EMIF_REG_T_RTP_SHIFT; /* * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the * same value */ val = ns_2_cycles(timings->tXSR) - 1; tim2 |= val << EMIF_REG_T_XSRD_SHIFT; tim2 |= val << EMIF_REG_T_XSNR_SHIFT; val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1; tim2 |= val << EMIF_REG_T_XP_SHIFT; return tim2; } static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings, const struct lpddr2_min_tck *min_tck, const struct lpddr2_addressing *addressing) { u32 tim3 = 0, val = 0; val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF); tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT; val = ns_2_cycles(timings->tRFCab) - 1; tim3 |= val << EMIF_REG_T_RFC_SHIFT; val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1; tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT; val = ns_2_cycles(timings->tZQCS) - 1; tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT; val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1; tim3 |= val << EMIF_REG_T_CKESR_SHIFT; return tim3; } static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device, const struct lpddr2_addressing *addressing, u8 volt_ramp) { u32 zq = 0, val = 0; if (volt_ramp) val = EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 / addressing->t_REFI_us_x10; else val = EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 / addressing->t_REFI_us_x10; zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT; zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT; zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT; zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT; /* * Assuming that two chipselects have a single calibration resistor * If there are indeed two calibration resistors, then this flag should * be enabled to take advantage of dual calibration feature. * This data should ideally come from board files. But considering * that none of the boards today have calibration resistors per CS, * it would be an unnecessary overhead. */ zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT; zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT; zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT; return zq; } static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device, const struct lpddr2_addressing *addressing, u8 is_derated) { u32 alert = 0, interval; interval = TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10; if (is_derated) interval *= 4; alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT; alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT; alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT; alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT; alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT; alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT; return alert; } static u32 get_read_idle_ctrl_reg(u8 volt_ramp) { u32 idle = 0, val = 0; if (volt_ramp) val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1; else /*Maximum value in normal conditions - suggested by hw team */ val = 0x1FF; idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT; idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT; return idle; } static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL) { u32 phy = 0, val = 0; phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT; if (freq <= 100000000) val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS; else if (freq <= 200000000) val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ; else val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ; phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT; /* Other fields are constant magic values. Hardcode them together */ phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL << EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT; return phy; } static u32 get_emif_mem_size(struct emif_device_details *devices) { u32 size_mbytes = 0, temp; if (!devices) return 0; if (devices->cs0_device_details) { temp = devices->cs0_device_details->density; size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; } if (devices->cs1_device_details) { temp = devices->cs1_device_details->density; size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; } /* convert to bytes */ return size_mbytes << 20; } /* Gets the encoding corresponding to a given DMM section size */ u32 get_dmm_section_size_map(u32 section_size) { /* * Section size mapping: * 0x0: 16-MiB section * 0x1: 32-MiB section * 0x2: 64-MiB section * 0x3: 128-MiB section * 0x4: 256-MiB section * 0x5: 512-MiB section * 0x6: 1-GiB section * 0x7: 2-GiB section */ section_size >>= 24; /* divide by 16 MB */ return log_2_n_round_down(section_size); } static void emif_calculate_regs( const struct emif_device_details *emif_dev_details, u32 freq, struct emif_regs *regs) { u32 temp, sys_freq; const struct lpddr2_addressing *addressing; const struct lpddr2_ac_timings *timings; const struct lpddr2_min_tck *min_tck; const struct lpddr2_device_details *cs0_dev_details = emif_dev_details->cs0_device_details; const struct lpddr2_device_details *cs1_dev_details = emif_dev_details->cs1_device_details; const struct lpddr2_device_timings *cs0_dev_timings = emif_dev_details->cs0_device_timings; emif_assert(emif_dev_details); emif_assert(regs); /* * You can not have a device on CS1 without one on CS0 * So configuring EMIF without a device on CS0 doesn't * make sense */ emif_assert(cs0_dev_details); emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM); /* * If there is a device on CS1 it should be same type as CS0 * (or NVM. But NVM is not supported in this driver yet) */ emif_assert((cs1_dev_details == NULL) || (cs1_dev_details->type == LPDDR2_TYPE_NVM) || (cs0_dev_details->type == cs1_dev_details->type)); emif_assert(freq <= MAX_LPDDR2_FREQ); set_ddr_clk_period(freq); /* * The device on CS0 is used for all timing calculations * There is only one set of registers for timings per EMIF. So, if the * second CS(CS1) has a device, it should have the same timings as the * device on CS0 */ timings = get_timings_table(cs0_dev_timings->ac_timings, freq); emif_assert(timings); min_tck = cs0_dev_timings->min_tck; temp = addressing_table_index(cs0_dev_details->type, cs0_dev_details->density, cs0_dev_details->io_width); emif_assert((temp >= 0)); addressing = &(addressing_table[temp]); emif_assert(addressing); sys_freq = get_sys_clk_freq(); regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details, cs1_dev_details, addressing, RL_BOOT); regs->sdram_config = get_sdram_config_reg(cs0_dev_details, cs1_dev_details, addressing, RL_FINAL); regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing); regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing); regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck); regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing); regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE); regs->temp_alert_config = get_temp_alert_config(cs1_dev_details, addressing, 0); regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing, LPDDR2_VOLTAGE_STABLE); regs->emif_ddr_phy_ctlr_1_init = get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT); regs->emif_ddr_phy_ctlr_1 = get_ddr_phy_ctrl_1(freq, RL_FINAL); regs->freq = freq; print_timing_reg(regs->sdram_config_init); print_timing_reg(regs->sdram_config); print_timing_reg(regs->ref_ctrl); print_timing_reg(regs->sdram_tim1); print_timing_reg(regs->sdram_tim2); print_timing_reg(regs->sdram_tim3); print_timing_reg(regs->read_idle_ctrl); print_timing_reg(regs->temp_alert_config); print_timing_reg(regs->zq_config); print_timing_reg(regs->emif_ddr_phy_ctlr_1); print_timing_reg(regs->emif_ddr_phy_ctlr_1_init); } #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION const char *get_lpddr2_type(u8 type_id) { switch (type_id) { case LPDDR2_TYPE_S4: return "LPDDR2-S4"; case LPDDR2_TYPE_S2: return "LPDDR2-S2"; default: return NULL; } } const char *get_lpddr2_io_width(u8 width_id) { switch (width_id) { case LPDDR2_IO_WIDTH_8: return "x8"; case LPDDR2_IO_WIDTH_16: return "x16"; case LPDDR2_IO_WIDTH_32: return "x32"; default: return NULL; } } const char *get_lpddr2_manufacturer(u32 manufacturer) { switch (manufacturer) { case LPDDR2_MANUFACTURER_SAMSUNG: return "Samsung"; case LPDDR2_MANUFACTURER_QIMONDA: return "Qimonda"; case LPDDR2_MANUFACTURER_ELPIDA: return "Elpida"; case LPDDR2_MANUFACTURER_ETRON: return "Etron"; case LPDDR2_MANUFACTURER_NANYA: return "Nanya"; case LPDDR2_MANUFACTURER_HYNIX: return "Hynix"; case LPDDR2_MANUFACTURER_MOSEL: return "Mosel"; case LPDDR2_MANUFACTURER_WINBOND: return "Winbond"; case LPDDR2_MANUFACTURER_ESMT: return "ESMT"; case LPDDR2_MANUFACTURER_SPANSION: return "Spansion"; case LPDDR2_MANUFACTURER_SST: return "SST"; case LPDDR2_MANUFACTURER_ZMOS: return "ZMOS"; case LPDDR2_MANUFACTURER_INTEL: return "Intel"; case LPDDR2_MANUFACTURER_NUMONYX: return "Numonyx"; case LPDDR2_MANUFACTURER_MICRON: return "Micron"; default: return NULL; } } static void display_sdram_details(u32 emif_nr, u32 cs, struct lpddr2_device_details *device) { const char *mfg_str; const char *type_str; char density_str[10]; u32 density; debug("EMIF%d CS%d\t", emif_nr, cs); if (!device) { debug("None\n"); return; } mfg_str = get_lpddr2_manufacturer(device->manufacturer); type_str = get_lpddr2_type(device->type); density = lpddr2_density_2_size_in_mbytes[device->density]; if ((density / 1024 * 1024) == density) { density /= 1024; sprintf(density_str, "%d GB", density); } else sprintf(density_str, "%d MB", density); if (mfg_str && type_str) debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str); } static u8 is_lpddr2_sdram_present(u32 base, u32 cs, struct lpddr2_device_details *lpddr2_device) { u32 mr = 0, temp; mr = get_mr(base, cs, LPDDR2_MR0); if (mr > 0xFF) { /* Mode register value bigger than 8 bit */ return 0; } temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT; if (temp) { /* Not SDRAM */ return 0; } temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT; if (temp) { /* DNV supported - But DNV is only supported for NVM */ return 0; } mr = get_mr(base, cs, LPDDR2_MR4); if (mr > 0xFF) { /* Mode register value bigger than 8 bit */ return 0; } mr = get_mr(base, cs, LPDDR2_MR5); if (mr > 0xFF) { /* Mode register value bigger than 8 bit */ return 0; } if (!get_lpddr2_manufacturer(mr)) { /* Manufacturer not identified */ return 0; } lpddr2_device->manufacturer = mr; mr = get_mr(base, cs, LPDDR2_MR6); if (mr >= 0xFF) { /* Mode register value bigger than 8 bit */ return 0; } mr = get_mr(base, cs, LPDDR2_MR7); if (mr >= 0xFF) { /* Mode register value bigger than 8 bit */ return 0; } mr = get_mr(base, cs, LPDDR2_MR8); if (mr >= 0xFF) { /* Mode register value bigger than 8 bit */ return 0; } temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT; if (!get_lpddr2_type(temp)) { /* Not SDRAM */ return 0; } lpddr2_device->type = temp; temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT; if (temp > LPDDR2_DENSITY_32Gb) { /* Density not supported */ return 0; } lpddr2_device->density = temp; temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT; if (!get_lpddr2_io_width(temp)) { /* IO width unsupported value */ return 0; } lpddr2_device->io_width = temp; /* * If all the above tests pass we should * have a device on this chip-select */ return 1; } struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs, struct lpddr2_device_details *lpddr2_dev_details) { u32 phy; u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE; struct emif_reg_struct *emif = (struct emif_reg_struct *)base; if (!lpddr2_dev_details) return NULL; /* Do the minimum init for mode register accesses */ if (!(running_from_sdram() || warm_reset())) { phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT); writel(phy, &emif->emif_ddr_phy_ctrl_1); } if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details))) return NULL; display_sdram_details(emif_num(base), cs, lpddr2_dev_details); return lpddr2_dev_details; } #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */ static void do_sdram_init(u32 base) { const struct emif_regs *regs; u32 in_sdram, emif_nr; debug(">>do_sdram_init() %x\n", base); in_sdram = running_from_sdram(); emif_nr = (base == EMIF1_BASE) ? 1 : 2; #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS emif_get_reg_dump(emif_nr, ®s); if (!regs) { debug("EMIF: reg dump not provided\n"); return; } #else /* * The user has not provided the register values. We need to * calculate it based on the timings and the DDR frequency */ struct emif_device_details dev_details; struct emif_regs calculated_regs; /* * Get device details: * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set * - Obtained from user otherwise */ struct lpddr2_device_details cs0_dev_details, cs1_dev_details; emif_reset_phy(base); dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0, &cs0_dev_details); dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1, &cs1_dev_details); emif_reset_phy(base); /* Return if no devices on this EMIF */ if (!dev_details.cs0_device_details && !dev_details.cs1_device_details) { emif_sizes[emif_nr - 1] = 0; return; } if (!in_sdram) emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details); /* * Get device timings: * - Default timings specified by JESD209-2 if * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set * - Obtained from user otherwise */ emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings, &dev_details.cs1_device_timings); /* Calculate the register values */ emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs); regs = &calculated_regs; #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ /* * Initializing the LPDDR2 device can not happen from SDRAM. * Changing the timing registers in EMIF can happen(going from one * OPP to another) */ if (!(in_sdram || warm_reset())) { if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2) lpddr2_init(base, regs); else ddr3_init(base, regs); } /* Write to the shadow registers */ emif_update_timings(base, regs); debug("<emif_pwr_mgmt_ctrl); } void dmm_init(u32 base) { const struct dmm_lisa_map_regs *lisa_map_regs; u32 i, section, valid; #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS emif_get_dmm_regs(&lisa_map_regs); #else u32 emif1_size, emif2_size, mapped_size, section_map = 0; u32 section_cnt, sys_addr; struct dmm_lisa_map_regs lis_map_regs_calculated = {0}; mapped_size = 0; section_cnt = 3; sys_addr = CONFIG_SYS_SDRAM_BASE; emif1_size = emif_sizes[0]; emif2_size = emif_sizes[1]; debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size); if (!emif1_size && !emif2_size) return; /* symmetric interleaved section */ if (emif1_size && emif2_size) { mapped_size = min(emif1_size, emif2_size); section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL; section_map |= 0 << EMIF_SDRC_ADDR_SHIFT; /* only MSB */ section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT; section_map |= get_dmm_section_size_map(mapped_size * 2) << EMIF_SYS_SIZE_SHIFT; lis_map_regs_calculated.dmm_lisa_map_3 = section_map; emif1_size -= mapped_size; emif2_size -= mapped_size; sys_addr += (mapped_size * 2); section_cnt--; } /* * Single EMIF section(we can have a maximum of 1 single EMIF * section- either EMIF1 or EMIF2 or none, but not both) */ if (emif1_size) { section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL; section_map |= get_dmm_section_size_map(emif1_size) << EMIF_SYS_SIZE_SHIFT; /* only MSB */ section_map |= (mapped_size >> 24) << EMIF_SDRC_ADDR_SHIFT; /* only MSB */ section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT; section_cnt--; } if (emif2_size) { section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL; section_map |= get_dmm_section_size_map(emif2_size) << EMIF_SYS_SIZE_SHIFT; /* only MSB */ section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT; /* only MSB */ section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT; section_cnt--; } if (section_cnt == 2) { /* Only 1 section - either symmetric or single EMIF */ lis_map_regs_calculated.dmm_lisa_map_3 = section_map; lis_map_regs_calculated.dmm_lisa_map_2 = 0; lis_map_regs_calculated.dmm_lisa_map_1 = 0; } else { /* 2 sections - 1 symmetric, 1 single EMIF */ lis_map_regs_calculated.dmm_lisa_map_2 = section_map; lis_map_regs_calculated.dmm_lisa_map_1 = 0; } /* TRAP for invalid TILER mappings in section 0 */ lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP; lisa_map_regs = &lis_map_regs_calculated; #endif struct dmm_lisa_map_regs *hw_lisa_map_regs = (struct dmm_lisa_map_regs *)base; writel(0, &hw_lisa_map_regs->dmm_lisa_map_3); writel(0, &hw_lisa_map_regs->dmm_lisa_map_2); writel(0, &hw_lisa_map_regs->dmm_lisa_map_1); writel(0, &hw_lisa_map_regs->dmm_lisa_map_0); writel(lisa_map_regs->dmm_lisa_map_3, &hw_lisa_map_regs->dmm_lisa_map_3); writel(lisa_map_regs->dmm_lisa_map_2, &hw_lisa_map_regs->dmm_lisa_map_2); writel(lisa_map_regs->dmm_lisa_map_1, &hw_lisa_map_regs->dmm_lisa_map_1); writel(lisa_map_regs->dmm_lisa_map_0, &hw_lisa_map_regs->dmm_lisa_map_0); if (omap_revision() >= OMAP4460_ES1_0) { hw_lisa_map_regs = (struct dmm_lisa_map_regs *)MA_BASE; writel(lisa_map_regs->dmm_lisa_map_3, &hw_lisa_map_regs->dmm_lisa_map_3); writel(lisa_map_regs->dmm_lisa_map_2, &hw_lisa_map_regs->dmm_lisa_map_2); writel(lisa_map_regs->dmm_lisa_map_1, &hw_lisa_map_regs->dmm_lisa_map_1); writel(lisa_map_regs->dmm_lisa_map_0, &hw_lisa_map_regs->dmm_lisa_map_0); } /* * EMIF should be configured only when * memory is mapped on it. Using emif1_enabled * and emif2_enabled variables for this. */ emif1_enabled = 0; emif2_enabled = 0; for (i = 0; i < 4; i++) { section = __raw_readl(DMM_BASE + i*4); valid = (section & EMIF_SDRC_MAP_MASK) >> (EMIF_SDRC_MAP_SHIFT); if (valid == 3) { emif1_enabled = 1; emif2_enabled = 1; break; } else if (valid == 1) { emif1_enabled = 1; } else if (valid == 2) { emif2_enabled = 1; } } } /* * SDRAM initialization: * SDRAM initialization has two parts: * 1. Configuring the SDRAM device * 2. Update the AC timings related parameters in the EMIF module * (1) should be done only once and should not be done while we are * running from SDRAM. * (2) can and should be done more than once if OPP changes. * Particularly, this may be needed when we boot without SPL and * and using Configuration Header(CH). ROM code supports only at 50% OPP * at boot (low power boot). So u-boot has to switch to OPP100 and update * the frequency. So, * Doing (1) and (2) makes sense - first time initialization * Doing (2) and not (1) makes sense - OPP change (when using CH) * Doing (1) and not (2) doen't make sense * See do_sdram_init() for the details */ void sdram_init(void) { u32 in_sdram, size_prog, size_detect; u32 sdram_type = emif_sdram_type(); debug(">>sdram_init()\n"); if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL) return; in_sdram = running_from_sdram(); debug("in_sdram = %d\n", in_sdram); if (!(in_sdram || warm_reset())) { if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2) bypass_dpll(&prcm->cm_clkmode_dpll_core); else writel(CM_DLL_CTRL_NO_OVERRIDE, &prcm->cm_dll_ctrl); } if (!in_sdram) dmm_init(DMM_BASE); if (emif1_enabled) do_sdram_init(EMIF1_BASE); if (emif2_enabled) do_sdram_init(EMIF2_BASE); if (!(in_sdram || warm_reset())) { if (emif1_enabled) emif_post_init_config(EMIF1_BASE); if (emif2_enabled) emif_post_init_config(EMIF2_BASE); } /* for the shadow registers to take effect */ if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2) freq_update_core(); /* Do some testing after the init */ if (!in_sdram) { size_prog = omap_sdram_size(); size_prog = log_2_n_round_down(size_prog); size_prog = (1 << size_prog); size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, size_prog); /* Compare with the size programmed */ if (size_detect != size_prog) { printf("SDRAM: identified size not same as expected" " size identified: %x expected: %x\n", size_detect, size_prog); } else debug("get_ram_size() successful"); } debug("<