1 /**************************************************************************
2 *
3 * Copyright © 2007 Red Hat Inc.
4 * Copyright © 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
41 #include <xf86drm.h>
42 #include <xf86atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/stat.h>
53 #include <sys/types.h>
54 #include <stdbool.h>
56 #include "errno.h"
57 #include "libdrm_lists.h"
58 #include "intel_bufmgr.h"
59 #include "intel_bufmgr_priv.h"
60 #include "intel_chipset.h"
61 #include "intel_aub.h"
62 #include "string.h"
64 #include "i915_drm.h"
66 #ifdef HAVE_VALGRIND
67 #include <valgrind.h>
68 #include <memcheck.h>
69 #define VG(x) x
70 #else
71 #define VG(x)
72 #endif
74 #define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s)))
76 #define DBG(...) do { \
77 if (bufmgr_gem->bufmgr.debug) \
78 fprintf(stderr, __VA_ARGS__); \
79 } while (0)
81 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
83 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
85 struct drm_intel_gem_bo_bucket {
86 drmMMListHead head;
87 unsigned long size;
88 };
90 typedef struct _drm_intel_bufmgr_gem {
91 drm_intel_bufmgr bufmgr;
93 int fd;
95 int max_relocs;
97 pthread_mutex_t lock;
99 struct drm_i915_gem_exec_object *exec_objects;
100 struct drm_i915_gem_exec_object2 *exec2_objects;
101 drm_intel_bo **exec_bos;
102 int exec_size;
103 int exec_count;
105 /** Array of lists of cached gem objects of power-of-two sizes */
106 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
107 int num_buckets;
108 time_t time;
110 drmMMListHead named;
111 drmMMListHead vma_cache;
112 int vma_count, vma_open, vma_max;
114 uint64_t gtt_size;
115 int available_fences;
116 int pci_device;
117 int gen;
118 unsigned int has_bsd : 1;
119 unsigned int has_blt : 1;
120 unsigned int has_relaxed_fencing : 1;
121 unsigned int has_llc : 1;
122 unsigned int has_wait_timeout : 1;
123 unsigned int bo_reuse : 1;
124 unsigned int no_exec : 1;
125 bool fenced_relocs;
127 FILE *aub_file;
128 uint32_t aub_offset;
129 } drm_intel_bufmgr_gem;
131 #define DRM_INTEL_RELOC_FENCE (1<<0)
133 typedef struct _drm_intel_reloc_target_info {
134 drm_intel_bo *bo;
135 int flags;
136 } drm_intel_reloc_target;
138 struct _drm_intel_bo_gem {
139 drm_intel_bo bo;
141 atomic_t refcount;
142 uint32_t gem_handle;
143 const char *name;
145 /**
146 * Kenel-assigned global name for this object
147 */
148 unsigned int global_name;
149 drmMMListHead name_list;
151 /**
152 * Index of the buffer within the validation list while preparing a
153 * batchbuffer execution.
154 */
155 int validate_index;
157 /**
158 * Current tiling mode
159 */
160 uint32_t tiling_mode;
161 uint32_t swizzle_mode;
162 unsigned long stride;
164 time_t free_time;
166 /** Array passed to the DRM containing relocation information. */
167 struct drm_i915_gem_relocation_entry *relocs;
168 /**
169 * Array of info structs corresponding to relocs[i].target_handle etc
170 */
171 drm_intel_reloc_target *reloc_target_info;
172 /** Number of entries in relocs */
173 int reloc_count;
174 /** Mapped address for the buffer, saved across map/unmap cycles */
175 void *mem_virtual;
176 /** GTT virtual address for the buffer, saved across map/unmap cycles */
177 void *gtt_virtual;
178 int map_count;
179 drmMMListHead vma_list;
181 /** BO cache list */
182 drmMMListHead head;
184 /**
185 * Boolean of whether this BO and its children have been included in
186 * the current drm_intel_bufmgr_check_aperture_space() total.
187 */
188 bool included_in_check_aperture;
190 /**
191 * Boolean of whether this buffer has been used as a relocation
192 * target and had its size accounted for, and thus can't have any
193 * further relocations added to it.
194 */
195 bool used_as_reloc_target;
197 /**
198 * Boolean of whether we have encountered an error whilst building the relocation tree.
199 */
200 bool has_error;
202 /**
203 * Boolean of whether this buffer can be re-used
204 */
205 bool reusable;
207 /**
208 * Size in bytes of this buffer and its relocation descendents.
209 *
210 * Used to avoid costly tree walking in
211 * drm_intel_bufmgr_check_aperture in the common case.
212 */
213 int reloc_tree_size;
215 /**
216 * Number of potential fence registers required by this buffer and its
217 * relocations.
218 */
219 int reloc_tree_fences;
221 /** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
222 bool mapped_cpu_write;
224 uint32_t aub_offset;
226 drm_intel_aub_annotation *aub_annotations;
227 unsigned aub_annotation_count;
228 };
230 static unsigned int
231 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
233 static unsigned int
234 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
236 static int
237 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
238 uint32_t * swizzle_mode);
240 static int
241 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
242 uint32_t tiling_mode,
243 uint32_t stride);
245 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
246 time_t time);
248 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
250 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
252 static unsigned long
253 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
254 uint32_t *tiling_mode)
255 {
256 unsigned long min_size, max_size;
257 unsigned long i;
259 if (*tiling_mode == I915_TILING_NONE)
260 return size;
262 /* 965+ just need multiples of page size for tiling */
263 if (bufmgr_gem->gen >= 4)
264 return ROUND_UP_TO(size, 4096);
266 /* Older chips need powers of two, of at least 512k or 1M */
267 if (bufmgr_gem->gen == 3) {
268 min_size = 1024*1024;
269 max_size = 128*1024*1024;
270 } else {
271 min_size = 512*1024;
272 max_size = 64*1024*1024;
273 }
275 if (size > max_size) {
276 *tiling_mode = I915_TILING_NONE;
277 return size;
278 }
280 /* Do we need to allocate every page for the fence? */
281 if (bufmgr_gem->has_relaxed_fencing)
282 return ROUND_UP_TO(size, 4096);
284 for (i = min_size; i < size; i <<= 1)
285 ;
287 return i;
288 }
290 /*
291 * Round a given pitch up to the minimum required for X tiling on a
292 * given chip. We use 512 as the minimum to allow for a later tiling
293 * change.
294 */
295 static unsigned long
296 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
297 unsigned long pitch, uint32_t *tiling_mode)
298 {
299 unsigned long tile_width;
300 unsigned long i;
302 /* If untiled, then just align it so that we can do rendering
303 * to it with the 3D engine.
304 */
305 if (*tiling_mode == I915_TILING_NONE)
306 return ALIGN(pitch, 64);
308 if (*tiling_mode == I915_TILING_X
309 || (IS_915(bufmgr_gem->pci_device)
310 && *tiling_mode == I915_TILING_Y))
311 tile_width = 512;
312 else
313 tile_width = 128;
315 /* 965 is flexible */
316 if (bufmgr_gem->gen >= 4)
317 return ROUND_UP_TO(pitch, tile_width);
319 /* The older hardware has a maximum pitch of 8192 with tiled
320 * surfaces, so fallback to untiled if it's too large.
321 */
322 if (pitch > 8192) {
323 *tiling_mode = I915_TILING_NONE;
324 return ALIGN(pitch, 64);
325 }
327 /* Pre-965 needs power of two tile width */
328 for (i = tile_width; i < pitch; i <<= 1)
329 ;
331 return i;
332 }
334 static struct drm_intel_gem_bo_bucket *
335 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
336 unsigned long size)
337 {
338 int i;
340 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
341 struct drm_intel_gem_bo_bucket *bucket =
342 &bufmgr_gem->cache_bucket[i];
343 if (bucket->size >= size) {
344 return bucket;
345 }
346 }
348 return NULL;
349 }
351 static void
352 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
353 {
354 int i, j;
356 for (i = 0; i < bufmgr_gem->exec_count; i++) {
357 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
358 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
360 if (bo_gem->relocs == NULL) {
361 DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
362 bo_gem->name);
363 continue;
364 }
366 for (j = 0; j < bo_gem->reloc_count; j++) {
367 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
368 drm_intel_bo_gem *target_gem =
369 (drm_intel_bo_gem *) target_bo;
371 DBG("%2d: %d (%s)@0x%08llx -> "
372 "%d (%s)@0x%08lx + 0x%08x\n",
373 i,
374 bo_gem->gem_handle, bo_gem->name,
375 (unsigned long long)bo_gem->relocs[j].offset,
376 target_gem->gem_handle,
377 target_gem->name,
378 target_bo->offset,
379 bo_gem->relocs[j].delta);
380 }
381 }
382 }
384 static inline void
385 drm_intel_gem_bo_reference(drm_intel_bo *bo)
386 {
387 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
389 atomic_inc(&bo_gem->refcount);
390 }
392 /**
393 * Adds the given buffer to the list of buffers to be validated (moved into the
394 * appropriate memory type) with the next batch submission.
395 *
396 * If a buffer is validated multiple times in a batch submission, it ends up
397 * with the intersection of the memory type flags and the union of the
398 * access flags.
399 */
400 static void
401 drm_intel_add_validate_buffer(drm_intel_bo *bo)
402 {
403 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
404 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
405 int index;
407 if (bo_gem->validate_index != -1)
408 return;
410 /* Extend the array of validation entries as necessary. */
411 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
412 int new_size = bufmgr_gem->exec_size * 2;
414 if (new_size == 0)
415 new_size = 5;
417 bufmgr_gem->exec_objects =
418 realloc(bufmgr_gem->exec_objects,
419 sizeof(*bufmgr_gem->exec_objects) * new_size);
420 bufmgr_gem->exec_bos =
421 realloc(bufmgr_gem->exec_bos,
422 sizeof(*bufmgr_gem->exec_bos) * new_size);
423 bufmgr_gem->exec_size = new_size;
424 }
426 index = bufmgr_gem->exec_count;
427 bo_gem->validate_index = index;
428 /* Fill in array entry */
429 bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
430 bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
431 bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
432 bufmgr_gem->exec_objects[index].alignment = 0;
433 bufmgr_gem->exec_objects[index].offset = 0;
434 bufmgr_gem->exec_bos[index] = bo;
435 bufmgr_gem->exec_count++;
436 }
438 static void
439 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
440 {
441 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
442 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
443 int index;
445 if (bo_gem->validate_index != -1) {
446 if (need_fence)
447 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
448 EXEC_OBJECT_NEEDS_FENCE;
449 return;
450 }
452 /* Extend the array of validation entries as necessary. */
453 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
454 int new_size = bufmgr_gem->exec_size * 2;
456 if (new_size == 0)
457 new_size = 5;
459 bufmgr_gem->exec2_objects =
460 realloc(bufmgr_gem->exec2_objects,
461 sizeof(*bufmgr_gem->exec2_objects) * new_size);
462 bufmgr_gem->exec_bos =
463 realloc(bufmgr_gem->exec_bos,
464 sizeof(*bufmgr_gem->exec_bos) * new_size);
465 bufmgr_gem->exec_size = new_size;
466 }
468 index = bufmgr_gem->exec_count;
469 bo_gem->validate_index = index;
470 /* Fill in array entry */
471 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
472 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
473 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
474 bufmgr_gem->exec2_objects[index].alignment = 0;
475 bufmgr_gem->exec2_objects[index].offset = 0;
476 bufmgr_gem->exec_bos[index] = bo;
477 bufmgr_gem->exec2_objects[index].flags = 0;
478 bufmgr_gem->exec2_objects[index].rsvd1 = 0;
479 bufmgr_gem->exec2_objects[index].rsvd2 = 0;
480 if (need_fence) {
481 bufmgr_gem->exec2_objects[index].flags |=
482 EXEC_OBJECT_NEEDS_FENCE;
483 }
484 bufmgr_gem->exec_count++;
485 }
487 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
488 sizeof(uint32_t))
490 static void
491 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
492 drm_intel_bo_gem *bo_gem)
493 {
494 int size;
496 assert(!bo_gem->used_as_reloc_target);
498 /* The older chipsets are far-less flexible in terms of tiling,
499 * and require tiled buffer to be size aligned in the aperture.
500 * This means that in the worst possible case we will need a hole
501 * twice as large as the object in order for it to fit into the
502 * aperture. Optimal packing is for wimps.
503 */
504 size = bo_gem->bo.size;
505 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
506 int min_size;
508 if (bufmgr_gem->has_relaxed_fencing) {
509 if (bufmgr_gem->gen == 3)
510 min_size = 1024*1024;
511 else
512 min_size = 512*1024;
514 while (min_size < size)
515 min_size *= 2;
516 } else
517 min_size = size;
519 /* Account for worst-case alignment. */
520 size = 2 * min_size;
521 }
523 bo_gem->reloc_tree_size = size;
524 }
526 static int
527 drm_intel_setup_reloc_list(drm_intel_bo *bo)
528 {
529 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
530 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
531 unsigned int max_relocs = bufmgr_gem->max_relocs;
533 if (bo->size / 4 < max_relocs)
534 max_relocs = bo->size / 4;
536 bo_gem->relocs = malloc(max_relocs *
537 sizeof(struct drm_i915_gem_relocation_entry));
538 bo_gem->reloc_target_info = malloc(max_relocs *
539 sizeof(drm_intel_reloc_target));
540 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
541 bo_gem->has_error = true;
543 free (bo_gem->relocs);
544 bo_gem->relocs = NULL;
546 free (bo_gem->reloc_target_info);
547 bo_gem->reloc_target_info = NULL;
549 return 1;
550 }
552 return 0;
553 }
555 static int
556 drm_intel_gem_bo_busy(drm_intel_bo *bo)
557 {
558 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
559 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
560 struct drm_i915_gem_busy busy;
561 int ret;
563 VG_CLEAR(busy);
564 busy.handle = bo_gem->gem_handle;
566 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
568 return (ret == 0 && busy.busy);
569 }
571 static int
572 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
573 drm_intel_bo_gem *bo_gem, int state)
574 {
575 struct drm_i915_gem_madvise madv;
577 VG_CLEAR(madv);
578 madv.handle = bo_gem->gem_handle;
579 madv.madv = state;
580 madv.retained = 1;
581 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
583 return madv.retained;
584 }
586 static int
587 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
588 {
589 return drm_intel_gem_bo_madvise_internal
590 ((drm_intel_bufmgr_gem *) bo->bufmgr,
591 (drm_intel_bo_gem *) bo,
592 madv);
593 }
595 /* drop the oldest entries that have been purged by the kernel */
596 static void
597 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
598 struct drm_intel_gem_bo_bucket *bucket)
599 {
600 while (!DRMLISTEMPTY(&bucket->head)) {
601 drm_intel_bo_gem *bo_gem;
603 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
604 bucket->head.next, head);
605 if (drm_intel_gem_bo_madvise_internal
606 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
607 break;
609 DRMLISTDEL(&bo_gem->head);
610 drm_intel_gem_bo_free(&bo_gem->bo);
611 }
612 }
614 static drm_intel_bo *
615 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
616 const char *name,
617 unsigned long size,
618 unsigned long flags,
619 uint32_t tiling_mode,
620 unsigned long stride)
621 {
622 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
623 drm_intel_bo_gem *bo_gem;
624 unsigned int page_size = getpagesize();
625 int ret;
626 struct drm_intel_gem_bo_bucket *bucket;
627 bool alloc_from_cache;
628 unsigned long bo_size;
629 bool for_render = false;
631 if (flags & BO_ALLOC_FOR_RENDER)
632 for_render = true;
634 /* Round the allocated size up to a power of two number of pages. */
635 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
637 /* If we don't have caching at this size, don't actually round the
638 * allocation up.
639 */
640 if (bucket == NULL) {
641 bo_size = size;
642 if (bo_size < page_size)
643 bo_size = page_size;
644 } else {
645 bo_size = bucket->size;
646 }
648 pthread_mutex_lock(&bufmgr_gem->lock);
649 /* Get a buffer out of the cache if available */
650 retry:
651 alloc_from_cache = false;
652 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
653 if (for_render) {
654 /* Allocate new render-target BOs from the tail (MRU)
655 * of the list, as it will likely be hot in the GPU
656 * cache and in the aperture for us.
657 */
658 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
659 bucket->head.prev, head);
660 DRMLISTDEL(&bo_gem->head);
661 alloc_from_cache = true;
662 } else {
663 /* For non-render-target BOs (where we're probably
664 * going to map it first thing in order to fill it
665 * with data), check if the last BO in the cache is
666 * unbusy, and only reuse in that case. Otherwise,
667 * allocating a new buffer is probably faster than
668 * waiting for the GPU to finish.
669 */
670 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
671 bucket->head.next, head);
672 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
673 alloc_from_cache = true;
674 DRMLISTDEL(&bo_gem->head);
675 }
676 }
678 if (alloc_from_cache) {
679 if (!drm_intel_gem_bo_madvise_internal
680 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
681 drm_intel_gem_bo_free(&bo_gem->bo);
682 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
683 bucket);
684 goto retry;
685 }
687 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
688 tiling_mode,
689 stride)) {
690 drm_intel_gem_bo_free(&bo_gem->bo);
691 goto retry;
692 }
693 }
694 }
695 pthread_mutex_unlock(&bufmgr_gem->lock);
697 if (!alloc_from_cache) {
698 struct drm_i915_gem_create create;
700 bo_gem = calloc(1, sizeof(*bo_gem));
701 if (!bo_gem)
702 return NULL;
704 bo_gem->bo.size = bo_size;
706 VG_CLEAR(create);
707 create.size = bo_size;
709 ret = drmIoctl(bufmgr_gem->fd,
710 DRM_IOCTL_I915_GEM_CREATE,
711 &create);
712 bo_gem->gem_handle = create.handle;
713 bo_gem->bo.handle = bo_gem->gem_handle;
714 if (ret != 0) {
715 free(bo_gem);
716 return NULL;
717 }
718 bo_gem->bo.bufmgr = bufmgr;
720 bo_gem->tiling_mode = I915_TILING_NONE;
721 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
722 bo_gem->stride = 0;
724 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
725 tiling_mode,
726 stride)) {
727 drm_intel_gem_bo_free(&bo_gem->bo);
728 return NULL;
729 }
731 DRMINITLISTHEAD(&bo_gem->name_list);
732 DRMINITLISTHEAD(&bo_gem->vma_list);
733 }
735 bo_gem->name = name;
736 atomic_set(&bo_gem->refcount, 1);
737 bo_gem->validate_index = -1;
738 bo_gem->reloc_tree_fences = 0;
739 bo_gem->used_as_reloc_target = false;
740 bo_gem->has_error = false;
741 bo_gem->reusable = true;
742 bo_gem->aub_annotations = NULL;
743 bo_gem->aub_annotation_count = 0;
745 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
747 DBG("bo_create: buf %d (%s) %ldb\n",
748 bo_gem->gem_handle, bo_gem->name, size);
750 return &bo_gem->bo;
751 }
753 static drm_intel_bo *
754 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
755 const char *name,
756 unsigned long size,
757 unsigned int alignment)
758 {
759 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
760 BO_ALLOC_FOR_RENDER,
761 I915_TILING_NONE, 0);
762 }
764 static drm_intel_bo *
765 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
766 const char *name,
767 unsigned long size,
768 unsigned int alignment)
769 {
770 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
771 I915_TILING_NONE, 0);
772 }
774 static drm_intel_bo *
775 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
776 int x, int y, int cpp, uint32_t *tiling_mode,
777 unsigned long *pitch, unsigned long flags)
778 {
779 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
780 unsigned long size, stride;
781 uint32_t tiling;
783 do {
784 unsigned long aligned_y, height_alignment;
786 tiling = *tiling_mode;
788 /* If we're tiled, our allocations are in 8 or 32-row blocks,
789 * so failure to align our height means that we won't allocate
790 * enough pages.
791 *
792 * If we're untiled, we still have to align to 2 rows high
793 * because the data port accesses 2x2 blocks even if the
794 * bottom row isn't to be rendered, so failure to align means
795 * we could walk off the end of the GTT and fault. This is
796 * documented on 965, and may be the case on older chipsets
797 * too so we try to be careful.
798 */
799 aligned_y = y;
800 height_alignment = 2;
802 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
803 height_alignment = 16;
804 else if (tiling == I915_TILING_X
805 || (IS_915(bufmgr_gem->pci_device)
806 && tiling == I915_TILING_Y))
807 height_alignment = 8;
808 else if (tiling == I915_TILING_Y)
809 height_alignment = 32;
810 aligned_y = ALIGN(y, height_alignment);
812 stride = x * cpp;
813 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
814 size = stride * aligned_y;
815 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
816 } while (*tiling_mode != tiling);
817 *pitch = stride;
819 if (tiling == I915_TILING_NONE)
820 stride = 0;
822 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
823 tiling, stride);
824 }
826 /**
827 * Returns a drm_intel_bo wrapping the given buffer object handle.
828 *
829 * This can be used when one application needs to pass a buffer object
830 * to another.
831 */
832 drm_intel_bo *
833 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
834 const char *name,
835 unsigned int handle)
836 {
837 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
838 drm_intel_bo_gem *bo_gem;
839 int ret;
840 struct drm_gem_open open_arg;
841 struct drm_i915_gem_get_tiling get_tiling;
842 drmMMListHead *list;
844 /* At the moment most applications only have a few named bo.
845 * For instance, in a DRI client only the render buffers passed
846 * between X and the client are named. And since X returns the
847 * alternating names for the front/back buffer a linear search
848 * provides a sufficiently fast match.
849 */
850 for (list = bufmgr_gem->named.next;
851 list != &bufmgr_gem->named;
852 list = list->next) {
853 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
854 if (bo_gem->global_name == handle) {
855 drm_intel_gem_bo_reference(&bo_gem->bo);
856 return &bo_gem->bo;
857 }
858 }
860 bo_gem = calloc(1, sizeof(*bo_gem));
861 if (!bo_gem)
862 return NULL;
864 VG_CLEAR(open_arg);
865 open_arg.name = handle;
866 ret = drmIoctl(bufmgr_gem->fd,
867 DRM_IOCTL_GEM_OPEN,
868 &open_arg);
869 if (ret != 0) {
870 DBG("Couldn't reference %s handle 0x%08x: %s\n",
871 name, handle, strerror(errno));
872 free(bo_gem);
873 return NULL;
874 }
875 bo_gem->bo.size = open_arg.size;
876 bo_gem->bo.offset = 0;
877 bo_gem->bo.virtual = NULL;
878 bo_gem->bo.bufmgr = bufmgr;
879 bo_gem->name = name;
880 atomic_set(&bo_gem->refcount, 1);
881 bo_gem->validate_index = -1;
882 bo_gem->gem_handle = open_arg.handle;
883 bo_gem->bo.handle = open_arg.handle;
884 bo_gem->global_name = handle;
885 bo_gem->reusable = false;
887 VG_CLEAR(get_tiling);
888 get_tiling.handle = bo_gem->gem_handle;
889 ret = drmIoctl(bufmgr_gem->fd,
890 DRM_IOCTL_I915_GEM_GET_TILING,
891 &get_tiling);
892 if (ret != 0) {
893 drm_intel_gem_bo_unreference(&bo_gem->bo);
894 return NULL;
895 }
896 bo_gem->tiling_mode = get_tiling.tiling_mode;
897 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
898 /* XXX stride is unknown */
899 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
901 DRMINITLISTHEAD(&bo_gem->vma_list);
902 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
903 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
905 return &bo_gem->bo;
906 }
908 static void
909 drm_intel_gem_bo_free(drm_intel_bo *bo)
910 {
911 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
912 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
913 struct drm_gem_close close;
914 int ret;
916 DRMLISTDEL(&bo_gem->vma_list);
917 if (bo_gem->mem_virtual) {
918 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
919 munmap(bo_gem->mem_virtual, bo_gem->bo.size);
920 bufmgr_gem->vma_count--;
921 }
922 if (bo_gem->gtt_virtual) {
923 munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
924 bufmgr_gem->vma_count--;
925 }
927 /* Close this object */
928 VG_CLEAR(close);
929 close.handle = bo_gem->gem_handle;
930 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
931 if (ret != 0) {
932 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
933 bo_gem->gem_handle, bo_gem->name, strerror(errno));
934 }
935 free(bo_gem->aub_annotations);
936 free(bo);
937 }
939 static void
940 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
941 {
942 #if HAVE_VALGRIND
943 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
945 if (bo_gem->mem_virtual)
946 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
948 if (bo_gem->gtt_virtual)
949 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
950 #endif
951 }
953 /** Frees all cached buffers significantly older than @time. */
954 static void
955 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
956 {
957 int i;
959 if (bufmgr_gem->time == time)
960 return;
962 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
963 struct drm_intel_gem_bo_bucket *bucket =
964 &bufmgr_gem->cache_bucket[i];
966 while (!DRMLISTEMPTY(&bucket->head)) {
967 drm_intel_bo_gem *bo_gem;
969 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
970 bucket->head.next, head);
971 if (time - bo_gem->free_time <= 1)
972 break;
974 DRMLISTDEL(&bo_gem->head);
976 drm_intel_gem_bo_free(&bo_gem->bo);
977 }
978 }
980 bufmgr_gem->time = time;
981 }
983 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
984 {
985 int limit;
987 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
988 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
990 if (bufmgr_gem->vma_max < 0)
991 return;
993 /* We may need to evict a few entries in order to create new mmaps */
994 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
995 if (limit < 0)
996 limit = 0;
998 while (bufmgr_gem->vma_count > limit) {
999 drm_intel_bo_gem *bo_gem;
1001 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1002 bufmgr_gem->vma_cache.next,
1003 vma_list);
1004 assert(bo_gem->map_count == 0);
1005 DRMLISTDELINIT(&bo_gem->vma_list);
1007 if (bo_gem->mem_virtual) {
1008 munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1009 bo_gem->mem_virtual = NULL;
1010 bufmgr_gem->vma_count--;
1011 }
1012 if (bo_gem->gtt_virtual) {
1013 munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1014 bo_gem->gtt_virtual = NULL;
1015 bufmgr_gem->vma_count--;
1016 }
1017 }
1018 }
1020 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1021 drm_intel_bo_gem *bo_gem)
1022 {
1023 bufmgr_gem->vma_open--;
1024 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1025 if (bo_gem->mem_virtual)
1026 bufmgr_gem->vma_count++;
1027 if (bo_gem->gtt_virtual)
1028 bufmgr_gem->vma_count++;
1029 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1030 }
1032 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1033 drm_intel_bo_gem *bo_gem)
1034 {
1035 bufmgr_gem->vma_open++;
1036 DRMLISTDEL(&bo_gem->vma_list);
1037 if (bo_gem->mem_virtual)
1038 bufmgr_gem->vma_count--;
1039 if (bo_gem->gtt_virtual)
1040 bufmgr_gem->vma_count--;
1041 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1042 }
1044 static void
1045 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1046 {
1047 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1048 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1049 struct drm_intel_gem_bo_bucket *bucket;
1050 int i;
1052 /* Unreference all the target buffers */
1053 for (i = 0; i < bo_gem->reloc_count; i++) {
1054 if (bo_gem->reloc_target_info[i].bo != bo) {
1055 drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1056 reloc_target_info[i].bo,
1057 time);
1058 }
1059 }
1060 bo_gem->reloc_count = 0;
1061 bo_gem->used_as_reloc_target = false;
1063 DBG("bo_unreference final: %d (%s)\n",
1064 bo_gem->gem_handle, bo_gem->name);
1066 /* release memory associated with this object */
1067 if (bo_gem->reloc_target_info) {
1068 free(bo_gem->reloc_target_info);
1069 bo_gem->reloc_target_info = NULL;
1070 }
1071 if (bo_gem->relocs) {
1072 free(bo_gem->relocs);
1073 bo_gem->relocs = NULL;
1074 }
1076 /* Clear any left-over mappings */
1077 if (bo_gem->map_count) {
1078 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1079 bo_gem->map_count = 0;
1080 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1081 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1082 }
1084 DRMLISTDEL(&bo_gem->name_list);
1086 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1087 /* Put the buffer into our internal cache for reuse if we can. */
1088 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1089 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1090 I915_MADV_DONTNEED)) {
1091 bo_gem->free_time = time;
1093 bo_gem->name = NULL;
1094 bo_gem->validate_index = -1;
1096 DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1097 } else {
1098 drm_intel_gem_bo_free(bo);
1099 }
1100 }
1102 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1103 time_t time)
1104 {
1105 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1107 assert(atomic_read(&bo_gem->refcount) > 0);
1108 if (atomic_dec_and_test(&bo_gem->refcount))
1109 drm_intel_gem_bo_unreference_final(bo, time);
1110 }
1112 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1113 {
1114 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1116 assert(atomic_read(&bo_gem->refcount) > 0);
1117 if (atomic_dec_and_test(&bo_gem->refcount)) {
1118 drm_intel_bufmgr_gem *bufmgr_gem =
1119 (drm_intel_bufmgr_gem *) bo->bufmgr;
1120 struct timespec time;
1122 clock_gettime(CLOCK_MONOTONIC, &time);
1124 pthread_mutex_lock(&bufmgr_gem->lock);
1125 drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1126 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1127 pthread_mutex_unlock(&bufmgr_gem->lock);
1128 }
1129 }
1131 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1132 {
1133 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1134 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1135 struct drm_i915_gem_set_domain set_domain;
1136 int ret;
1138 pthread_mutex_lock(&bufmgr_gem->lock);
1140 if (bo_gem->map_count++ == 0)
1141 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1143 if (!bo_gem->mem_virtual) {
1144 struct drm_i915_gem_mmap mmap_arg;
1146 DBG("bo_map: %d (%s), map_count=%d\n",
1147 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1149 VG_CLEAR(mmap_arg);
1150 mmap_arg.handle = bo_gem->gem_handle;
1151 mmap_arg.offset = 0;
1152 mmap_arg.size = bo->size;
1153 ret = drmIoctl(bufmgr_gem->fd,
1154 DRM_IOCTL_I915_GEM_MMAP,
1155 &mmap_arg);
1156 if (ret != 0) {
1157 ret = -errno;
1158 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1159 __FILE__, __LINE__, bo_gem->gem_handle,
1160 bo_gem->name, strerror(errno));
1161 if (--bo_gem->map_count == 0)
1162 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1163 pthread_mutex_unlock(&bufmgr_gem->lock);
1164 return ret;
1165 }
1166 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1167 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1168 }
1169 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1170 bo_gem->mem_virtual);
1171 bo->virtual = bo_gem->mem_virtual;
1173 VG_CLEAR(set_domain);
1174 set_domain.handle = bo_gem->gem_handle;
1175 set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1176 if (write_enable)
1177 set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1178 else
1179 set_domain.write_domain = 0;
1180 ret = drmIoctl(bufmgr_gem->fd,
1181 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1182 &set_domain);
1183 if (ret != 0) {
1184 DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1185 __FILE__, __LINE__, bo_gem->gem_handle,
1186 strerror(errno));
1187 }
1189 if (write_enable)
1190 bo_gem->mapped_cpu_write = true;
1192 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1193 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1194 pthread_mutex_unlock(&bufmgr_gem->lock);
1196 return 0;
1197 }
1199 static int
1200 map_gtt(drm_intel_bo *bo)
1201 {
1202 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1203 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1204 int ret;
1206 if (bo_gem->map_count++ == 0)
1207 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1209 /* Get a mapping of the buffer if we haven't before. */
1210 if (bo_gem->gtt_virtual == NULL) {
1211 struct drm_i915_gem_mmap_gtt mmap_arg;
1213 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1214 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1216 VG_CLEAR(mmap_arg);
1217 mmap_arg.handle = bo_gem->gem_handle;
1219 /* Get the fake offset back... */
1220 ret = drmIoctl(bufmgr_gem->fd,
1221 DRM_IOCTL_I915_GEM_MMAP_GTT,
1222 &mmap_arg);
1223 if (ret != 0) {
1224 ret = -errno;
1225 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1226 __FILE__, __LINE__,
1227 bo_gem->gem_handle, bo_gem->name,
1228 strerror(errno));
1229 if (--bo_gem->map_count == 0)
1230 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1231 return ret;
1232 }
1234 /* and mmap it */
1235 bo_gem->gtt_virtual = mmap(0, bo->size, PROT_READ | PROT_WRITE,
1236 MAP_SHARED, bufmgr_gem->fd,
1237 mmap_arg.offset);
1238 if (bo_gem->gtt_virtual == MAP_FAILED) {
1239 bo_gem->gtt_virtual = NULL;
1240 ret = -errno;
1241 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1242 __FILE__, __LINE__,
1243 bo_gem->gem_handle, bo_gem->name,
1244 strerror(errno));
1245 if (--bo_gem->map_count == 0)
1246 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1247 return ret;
1248 }
1249 }
1251 bo->virtual = bo_gem->gtt_virtual;
1253 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1254 bo_gem->gtt_virtual);
1256 return 0;
1257 }
1259 int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1260 {
1261 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1262 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1263 struct drm_i915_gem_set_domain set_domain;
1264 int ret;
1266 pthread_mutex_lock(&bufmgr_gem->lock);
1268 ret = map_gtt(bo);
1269 if (ret) {
1270 pthread_mutex_unlock(&bufmgr_gem->lock);
1271 return ret;
1272 }
1274 /* Now move it to the GTT domain so that the GPU and CPU
1275 * caches are flushed and the GPU isn't actively using the
1276 * buffer.
1277 *
1278 * The pagefault handler does this domain change for us when
1279 * it has unbound the BO from the GTT, but it's up to us to
1280 * tell it when we're about to use things if we had done
1281 * rendering and it still happens to be bound to the GTT.
1282 */
1283 VG_CLEAR(set_domain);
1284 set_domain.handle = bo_gem->gem_handle;
1285 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1286 set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1287 ret = drmIoctl(bufmgr_gem->fd,
1288 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1289 &set_domain);
1290 if (ret != 0) {
1291 DBG("%s:%d: Error setting domain %d: %s\n",
1292 __FILE__, __LINE__, bo_gem->gem_handle,
1293 strerror(errno));
1294 }
1296 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1297 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1298 pthread_mutex_unlock(&bufmgr_gem->lock);
1300 return 0;
1301 }
1303 /**
1304 * Performs a mapping of the buffer object like the normal GTT
1305 * mapping, but avoids waiting for the GPU to be done reading from or
1306 * rendering to the buffer.
1307 *
1308 * This is used in the implementation of GL_ARB_map_buffer_range: The
1309 * user asks to create a buffer, then does a mapping, fills some
1310 * space, runs a drawing command, then asks to map it again without
1311 * synchronizing because it guarantees that it won't write over the
1312 * data that the GPU is busy using (or, more specifically, that if it
1313 * does write over the data, it acknowledges that rendering is
1314 * undefined).
1315 */
1317 int drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1318 {
1319 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1320 int ret;
1322 /* If the CPU cache isn't coherent with the GTT, then use a
1323 * regular synchronized mapping. The problem is that we don't
1324 * track where the buffer was last used on the CPU side in
1325 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1326 * we would potentially corrupt the buffer even when the user
1327 * does reasonable things.
1328 */
1329 if (!bufmgr_gem->has_llc)
1330 return drm_intel_gem_bo_map_gtt(bo);
1332 pthread_mutex_lock(&bufmgr_gem->lock);
1333 ret = map_gtt(bo);
1334 pthread_mutex_unlock(&bufmgr_gem->lock);
1336 return ret;
1337 }
1339 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1340 {
1341 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1342 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1343 int ret = 0;
1345 if (bo == NULL)
1346 return 0;
1348 pthread_mutex_lock(&bufmgr_gem->lock);
1350 if (bo_gem->map_count <= 0) {
1351 DBG("attempted to unmap an unmapped bo\n");
1352 pthread_mutex_unlock(&bufmgr_gem->lock);
1353 /* Preserve the old behaviour of just treating this as a
1354 * no-op rather than reporting the error.
1355 */
1356 return 0;
1357 }
1359 if (bo_gem->mapped_cpu_write) {
1360 struct drm_i915_gem_sw_finish sw_finish;
1362 /* Cause a flush to happen if the buffer's pinned for
1363 * scanout, so the results show up in a timely manner.
1364 * Unlike GTT set domains, this only does work if the
1365 * buffer should be scanout-related.
1366 */
1367 VG_CLEAR(sw_finish);
1368 sw_finish.handle = bo_gem->gem_handle;
1369 ret = drmIoctl(bufmgr_gem->fd,
1370 DRM_IOCTL_I915_GEM_SW_FINISH,
1371 &sw_finish);
1372 ret = ret == -1 ? -errno : 0;
1374 bo_gem->mapped_cpu_write = false;
1375 }
1377 /* We need to unmap after every innovation as we cannot track
1378 * an open vma for every bo as that will exhaasut the system
1379 * limits and cause later failures.
1380 */
1381 if (--bo_gem->map_count == 0) {
1382 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1383 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1384 bo->virtual = NULL;
1385 }
1386 pthread_mutex_unlock(&bufmgr_gem->lock);
1388 return ret;
1389 }
1391 int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1392 {
1393 return drm_intel_gem_bo_unmap(bo);
1394 }
1396 static int
1397 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1398 unsigned long size, const void *data)
1399 {
1400 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1401 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1402 struct drm_i915_gem_pwrite pwrite;
1403 int ret;
1405 VG_CLEAR(pwrite);
1406 pwrite.handle = bo_gem->gem_handle;
1407 pwrite.offset = offset;
1408 pwrite.size = size;
1409 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1410 ret = drmIoctl(bufmgr_gem->fd,
1411 DRM_IOCTL_I915_GEM_PWRITE,
1412 &pwrite);
1413 if (ret != 0) {
1414 ret = -errno;
1415 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1416 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1417 (int)size, strerror(errno));
1418 }
1420 return ret;
1421 }
1423 static int
1424 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1425 {
1426 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1427 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1428 int ret;
1430 VG_CLEAR(get_pipe_from_crtc_id);
1431 get_pipe_from_crtc_id.crtc_id = crtc_id;
1432 ret = drmIoctl(bufmgr_gem->fd,
1433 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1434 &get_pipe_from_crtc_id);
1435 if (ret != 0) {
1436 /* We return -1 here to signal that we don't
1437 * know which pipe is associated with this crtc.
1438 * This lets the caller know that this information
1439 * isn't available; using the wrong pipe for
1440 * vblank waiting can cause the chipset to lock up
1441 */
1442 return -1;
1443 }
1445 return get_pipe_from_crtc_id.pipe;
1446 }
1448 static int
1449 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1450 unsigned long size, void *data)
1451 {
1452 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1453 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1454 struct drm_i915_gem_pread pread;
1455 int ret;
1457 VG_CLEAR(pread);
1458 pread.handle = bo_gem->gem_handle;
1459 pread.offset = offset;
1460 pread.size = size;
1461 pread.data_ptr = (uint64_t) (uintptr_t) data;
1462 ret = drmIoctl(bufmgr_gem->fd,
1463 DRM_IOCTL_I915_GEM_PREAD,
1464 &pread);
1465 if (ret != 0) {
1466 ret = -errno;
1467 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1468 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1469 (int)size, strerror(errno));
1470 }
1472 return ret;
1473 }
1475 /** Waits for all GPU rendering with the object to have completed. */
1476 static void
1477 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1478 {
1479 drm_intel_gem_bo_start_gtt_access(bo, 1);
1480 }
1482 /**
1483 * Waits on a BO for the given amount of time.
1484 *
1485 * @bo: buffer object to wait for
1486 * @timeout_ns: amount of time to wait in nanoseconds.
1487 * If value is less than 0, an infinite wait will occur.
1488 *
1489 * Returns 0 if the wait was successful ie. the last batch referencing the
1490 * object has completed within the allotted time. Otherwise some negative return
1491 * value describes the error. Of particular interest is -ETIME when the wait has
1492 * failed to yield the desired result.
1493 *
1494 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1495 * the operation to give up after a certain amount of time. Another subtle
1496 * difference is the internal locking semantics are different (this variant does
1497 * not hold the lock for the duration of the wait). This makes the wait subject
1498 * to a larger userspace race window.
1499 *
1500 * The implementation shall wait until the object is no longer actively
1501 * referenced within a batch buffer at the time of the call. The wait will
1502 * not guarantee that the buffer is re-issued via another thread, or an flinked
1503 * handle. Userspace must make sure this race does not occur if such precision
1504 * is important.
1505 */
1506 int drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1507 {
1508 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1509 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1510 struct drm_i915_gem_wait wait;
1511 int ret;
1513 if (!bufmgr_gem->has_wait_timeout) {
1514 DBG("%s:%d: Timed wait is not supported. Falling back to "
1515 "infinite wait\n", __FILE__, __LINE__);
1516 if (timeout_ns) {
1517 drm_intel_gem_bo_wait_rendering(bo);
1518 return 0;
1519 } else {
1520 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1521 }
1522 }
1524 wait.bo_handle = bo_gem->gem_handle;
1525 wait.timeout_ns = timeout_ns;
1526 wait.flags = 0;
1527 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1528 if (ret == -1)
1529 return -errno;
1531 return ret;
1532 }
1534 /**
1535 * Sets the object to the GTT read and possibly write domain, used by the X
1536 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1537 *
1538 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1539 * can do tiled pixmaps this way.
1540 */
1541 void
1542 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1543 {
1544 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1545 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1546 struct drm_i915_gem_set_domain set_domain;
1547 int ret;
1549 VG_CLEAR(set_domain);
1550 set_domain.handle = bo_gem->gem_handle;
1551 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1552 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1553 ret = drmIoctl(bufmgr_gem->fd,
1554 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1555 &set_domain);
1556 if (ret != 0) {
1557 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1558 __FILE__, __LINE__, bo_gem->gem_handle,
1559 set_domain.read_domains, set_domain.write_domain,
1560 strerror(errno));
1561 }
1562 }
1564 static void
1565 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1566 {
1567 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1568 int i;
1570 free(bufmgr_gem->exec2_objects);
1571 free(bufmgr_gem->exec_objects);
1572 free(bufmgr_gem->exec_bos);
1574 pthread_mutex_destroy(&bufmgr_gem->lock);
1576 /* Free any cached buffer objects we were going to reuse */
1577 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1578 struct drm_intel_gem_bo_bucket *bucket =
1579 &bufmgr_gem->cache_bucket[i];
1580 drm_intel_bo_gem *bo_gem;
1582 while (!DRMLISTEMPTY(&bucket->head)) {
1583 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1584 bucket->head.next, head);
1585 DRMLISTDEL(&bo_gem->head);
1587 drm_intel_gem_bo_free(&bo_gem->bo);
1588 }
1589 }
1591 free(bufmgr);
1592 }
1594 /**
1595 * Adds the target buffer to the validation list and adds the relocation
1596 * to the reloc_buffer's relocation list.
1597 *
1598 * The relocation entry at the given offset must already contain the
1599 * precomputed relocation value, because the kernel will optimize out
1600 * the relocation entry write when the buffer hasn't moved from the
1601 * last known offset in target_bo.
1602 */
1603 static int
1604 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1605 drm_intel_bo *target_bo, uint32_t target_offset,
1606 uint32_t read_domains, uint32_t write_domain,
1607 bool need_fence)
1608 {
1609 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1610 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1611 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1612 bool fenced_command;
1614 if (bo_gem->has_error)
1615 return -ENOMEM;
1617 if (target_bo_gem->has_error) {
1618 bo_gem->has_error = true;
1619 return -ENOMEM;
1620 }
1622 /* We never use HW fences for rendering on 965+ */
1623 if (bufmgr_gem->gen >= 4)
1624 need_fence = false;
1626 fenced_command = need_fence;
1627 if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1628 need_fence = false;
1630 /* Create a new relocation list if needed */
1631 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1632 return -ENOMEM;
1634 /* Check overflow */
1635 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1637 /* Check args */
1638 assert(offset <= bo->size - 4);
1639 assert((write_domain & (write_domain - 1)) == 0);
1641 /* Make sure that we're not adding a reloc to something whose size has
1642 * already been accounted for.
1643 */
1644 assert(!bo_gem->used_as_reloc_target);
1645 if (target_bo_gem != bo_gem) {
1646 target_bo_gem->used_as_reloc_target = true;
1647 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1648 }
1649 /* An object needing a fence is a tiled buffer, so it won't have
1650 * relocs to other buffers.
1651 */
1652 if (need_fence)
1653 target_bo_gem->reloc_tree_fences = 1;
1654 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1656 bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1657 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1658 bo_gem->relocs[bo_gem->reloc_count].target_handle =
1659 target_bo_gem->gem_handle;
1660 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
1661 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
1662 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset;
1664 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1665 if (target_bo != bo)
1666 drm_intel_gem_bo_reference(target_bo);
1667 if (fenced_command)
1668 bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1669 DRM_INTEL_RELOC_FENCE;
1670 else
1671 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1673 bo_gem->reloc_count++;
1675 return 0;
1676 }
1678 static int
1679 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1680 drm_intel_bo *target_bo, uint32_t target_offset,
1681 uint32_t read_domains, uint32_t write_domain)
1682 {
1683 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
1685 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1686 read_domains, write_domain,
1687 !bufmgr_gem->fenced_relocs);
1688 }
1690 static int
1691 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
1692 drm_intel_bo *target_bo,
1693 uint32_t target_offset,
1694 uint32_t read_domains, uint32_t write_domain)
1695 {
1696 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1697 read_domains, write_domain, true);
1698 }
1700 int
1701 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
1702 {
1703 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1705 return bo_gem->reloc_count;
1706 }
1708 /**
1709 * Removes existing relocation entries in the BO after "start".
1710 *
1711 * This allows a user to avoid a two-step process for state setup with
1712 * counting up all the buffer objects and doing a
1713 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
1714 * relocations for the state setup. Instead, save the state of the
1715 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
1716 * state, and then check if it still fits in the aperture.
1717 *
1718 * Any further drm_intel_bufmgr_check_aperture_space() queries
1719 * involving this buffer in the tree are undefined after this call.
1720 */
1721 void
1722 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
1723 {
1724 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1725 int i;
1726 struct timespec time;
1728 clock_gettime(CLOCK_MONOTONIC, &time);
1730 assert(bo_gem->reloc_count >= start);
1731 /* Unreference the cleared target buffers */
1732 for (i = start; i < bo_gem->reloc_count; i++) {
1733 if (bo_gem->reloc_target_info[i].bo != bo) {
1734 drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1735 reloc_target_info[i].bo,
1736 time.tv_sec);
1737 }
1738 }
1739 bo_gem->reloc_count = start;
1740 }
1742 /**
1743 * Walk the tree of relocations rooted at BO and accumulate the list of
1744 * validations to be performed and update the relocation buffers with
1745 * index values into the validation list.
1746 */
1747 static void
1748 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
1749 {
1750 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1751 int i;
1753 if (bo_gem->relocs == NULL)
1754 return;
1756 for (i = 0; i < bo_gem->reloc_count; i++) {
1757 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1759 if (target_bo == bo)
1760 continue;
1762 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1764 /* Continue walking the tree depth-first. */
1765 drm_intel_gem_bo_process_reloc(target_bo);
1767 /* Add the target to the validate list */
1768 drm_intel_add_validate_buffer(target_bo);
1769 }
1770 }
1772 static void
1773 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
1774 {
1775 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1776 int i;
1778 if (bo_gem->relocs == NULL)
1779 return;
1781 for (i = 0; i < bo_gem->reloc_count; i++) {
1782 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1783 int need_fence;
1785 if (target_bo == bo)
1786 continue;
1788 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1790 /* Continue walking the tree depth-first. */
1791 drm_intel_gem_bo_process_reloc2(target_bo);
1793 need_fence = (bo_gem->reloc_target_info[i].flags &
1794 DRM_INTEL_RELOC_FENCE);
1796 /* Add the target to the validate list */
1797 drm_intel_add_validate_buffer2(target_bo, need_fence);
1798 }
1799 }
1802 static void
1803 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
1804 {
1805 int i;
1807 for (i = 0; i < bufmgr_gem->exec_count; i++) {
1808 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1809 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1811 /* Update the buffer offset */
1812 if (bufmgr_gem->exec_objects[i].offset != bo->offset) {
1813 DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1814 bo_gem->gem_handle, bo_gem->name, bo->offset,
1815 (unsigned long long)bufmgr_gem->exec_objects[i].
1816 offset);
1817 bo->offset = bufmgr_gem->exec_objects[i].offset;
1818 }
1819 }
1820 }
1822 static void
1823 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
1824 {
1825 int i;
1827 for (i = 0; i < bufmgr_gem->exec_count; i++) {
1828 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1829 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1831 /* Update the buffer offset */
1832 if (bufmgr_gem->exec2_objects[i].offset != bo->offset) {
1833 DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1834 bo_gem->gem_handle, bo_gem->name, bo->offset,
1835 (unsigned long long)bufmgr_gem->exec2_objects[i].offset);
1836 bo->offset = bufmgr_gem->exec2_objects[i].offset;
1837 }
1838 }
1839 }
1841 static void
1842 aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
1843 {
1844 fwrite(&data, 1, 4, bufmgr_gem->aub_file);
1845 }
1847 static void
1848 aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
1849 {
1850 fwrite(data, 1, size, bufmgr_gem->aub_file);
1851 }
1853 static void
1854 aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
1855 {
1856 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1857 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1858 uint32_t *data;
1859 unsigned int i;
1861 data = malloc(bo->size);
1862 drm_intel_bo_get_subdata(bo, offset, size, data);
1864 /* Easy mode: write out bo with no relocations */
1865 if (!bo_gem->reloc_count) {
1866 aub_out_data(bufmgr_gem, data, size);
1867 free(data);
1868 return;
1869 }
1871 /* Otherwise, handle the relocations while writing. */
1872 for (i = 0; i < size / 4; i++) {
1873 int r;
1874 for (r = 0; r < bo_gem->reloc_count; r++) {
1875 struct drm_i915_gem_relocation_entry *reloc;
1876 drm_intel_reloc_target *info;
1878 reloc = &bo_gem->relocs[r];
1879 info = &bo_gem->reloc_target_info[r];
1881 if (reloc->offset == offset + i * 4) {
1882 drm_intel_bo_gem *target_gem;
1883 uint32_t val;
1885 target_gem = (drm_intel_bo_gem *)info->bo;
1887 val = reloc->delta;
1888 val += target_gem->aub_offset;
1890 aub_out(bufmgr_gem, val);
1891 data[i] = val;
1892 break;
1893 }
1894 }
1895 if (r == bo_gem->reloc_count) {
1896 /* no relocation, just the data */
1897 aub_out(bufmgr_gem, data[i]);
1898 }
1899 }
1901 free(data);
1902 }
1904 static void
1905 aub_bo_get_address(drm_intel_bo *bo)
1906 {
1907 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1908 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1910 /* Give the object a graphics address in the AUB file. We
1911 * don't just use the GEM object address because we do AUB
1912 * dumping before execution -- we want to successfully log
1913 * when the hardware might hang, and we might even want to aub
1914 * capture for a driver trying to execute on a different
1915 * generation of hardware by disabling the actual kernel exec
1916 * call.
1917 */
1918 bo_gem->aub_offset = bufmgr_gem->aub_offset;
1919 bufmgr_gem->aub_offset += bo->size;
1920 /* XXX: Handle aperture overflow. */
1921 assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
1922 }
1924 static void
1925 aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
1926 uint32_t offset, uint32_t size)
1927 {
1928 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1929 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1931 aub_out(bufmgr_gem,
1932 CMD_AUB_TRACE_HEADER_BLOCK |
1933 (5 - 2));
1934 aub_out(bufmgr_gem,
1935 AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
1936 aub_out(bufmgr_gem, subtype);
1937 aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
1938 aub_out(bufmgr_gem, size);
1939 aub_write_bo_data(bo, offset, size);
1940 }
1942 /**
1943 * Break up large objects into multiple writes. Otherwise a 128kb VBO
1944 * would overflow the 16 bits of size field in the packet header and
1945 * everything goes badly after that.
1946 */
1947 static void
1948 aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
1949 uint32_t offset, uint32_t size)
1950 {
1951 uint32_t block_size;
1952 uint32_t sub_offset;
1954 for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
1955 block_size = size - sub_offset;
1957 if (block_size > 8 * 4096)
1958 block_size = 8 * 4096;
1960 aub_write_trace_block(bo, type, subtype, offset + sub_offset,
1961 block_size);
1962 }
1963 }
1965 static void
1966 aub_write_bo(drm_intel_bo *bo)
1967 {
1968 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1969 uint32_t offset = 0;
1970 unsigned i;
1972 aub_bo_get_address(bo);
1974 /* Write out each annotated section separately. */
1975 for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
1976 drm_intel_aub_annotation *annotation =
1977 &bo_gem->aub_annotations[i];
1978 uint32_t ending_offset = annotation->ending_offset;
1979 if (ending_offset > bo->size)
1980 ending_offset = bo->size;
1981 if (ending_offset > offset) {
1982 aub_write_large_trace_block(bo, annotation->type,
1983 annotation->subtype,
1984 offset,
1985 ending_offset - offset);
1986 offset = ending_offset;
1987 }
1988 }
1990 /* Write out any remaining unannotated data */
1991 if (offset < bo->size) {
1992 aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
1993 offset, bo->size - offset);
1994 }
1995 }
1997 /*
1998 * Make a ringbuffer on fly and dump it
1999 */
2000 static void
2001 aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
2002 uint32_t batch_buffer, int ring_flag)
2003 {
2004 uint32_t ringbuffer[4096];
2005 int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
2006 int ring_count = 0;
2008 if (ring_flag == I915_EXEC_BSD)
2009 ring = AUB_TRACE_TYPE_RING_PRB1;
2011 /* Make a ring buffer to execute our batchbuffer. */
2012 memset(ringbuffer, 0, sizeof(ringbuffer));
2013 ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
2014 ringbuffer[ring_count++] = batch_buffer;
2016 /* Write out the ring. This appears to trigger execution of
2017 * the ring in the simulator.
2018 */
2019 aub_out(bufmgr_gem,
2020 CMD_AUB_TRACE_HEADER_BLOCK |
2021 (5 - 2));
2022 aub_out(bufmgr_gem,
2023 AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
2024 aub_out(bufmgr_gem, 0); /* general/surface subtype */
2025 aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
2026 aub_out(bufmgr_gem, ring_count * 4);
2028 /* FIXME: Need some flush operations here? */
2029 aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
2031 /* Update offset pointer */
2032 bufmgr_gem->aub_offset += 4096;
2033 }
2035 void
2036 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2037 int x1, int y1, int width, int height,
2038 enum aub_dump_bmp_format format,
2039 int pitch, int offset)
2040 {
2041 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2042 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2043 uint32_t cpp;
2045 switch (format) {
2046 case AUB_DUMP_BMP_FORMAT_8BIT:
2047 cpp = 1;
2048 break;
2049 case AUB_DUMP_BMP_FORMAT_ARGB_4444:
2050 cpp = 2;
2051 break;
2052 case AUB_DUMP_BMP_FORMAT_ARGB_0888:
2053 case AUB_DUMP_BMP_FORMAT_ARGB_8888:
2054 cpp = 4;
2055 break;
2056 default:
2057 printf("Unknown AUB dump format %d\n", format);
2058 return;
2059 }
2061 if (!bufmgr_gem->aub_file)
2062 return;
2064 aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
2065 aub_out(bufmgr_gem, (y1 << 16) | x1);
2066 aub_out(bufmgr_gem,
2067 (format << 24) |
2068 (cpp << 19) |
2069 pitch / 4);
2070 aub_out(bufmgr_gem, (height << 16) | width);
2071 aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2072 aub_out(bufmgr_gem,
2073 ((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
2074 ((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
2075 }
2077 static void
2078 aub_exec(drm_intel_bo *bo, int ring_flag, int used)
2079 {
2080 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2081 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2082 int i;
2083 bool batch_buffer_needs_annotations;
2085 if (!bufmgr_gem->aub_file)
2086 return;
2088 /* If batch buffer is not annotated, annotate it the best we
2089 * can.
2090 */
2091 batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
2092 if (batch_buffer_needs_annotations) {
2093 drm_intel_aub_annotation annotations[2] = {
2094 { AUB_TRACE_TYPE_BATCH, 0, used },
2095 { AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
2096 };
2097 drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
2098 }
2100 /* Write out all buffers to AUB memory */
2101 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2102 aub_write_bo(bufmgr_gem->exec_bos[i]);
2103 }
2105 /* Remove any annotations we added */
2106 if (batch_buffer_needs_annotations)
2107 drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
2109 /* Dump ring buffer */
2110 aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
2112 fflush(bufmgr_gem->aub_file);
2114 /*
2115 * One frame has been dumped. So reset the aub_offset for the next frame.
2116 *
2117 * FIXME: Can we do this?
2118 */
2119 bufmgr_gem->aub_offset = 0x10000;
2120 }
2122 static int
2123 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2124 drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2125 {
2126 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2127 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2128 struct drm_i915_gem_execbuffer execbuf;
2129 int ret, i;
2131 if (bo_gem->has_error)
2132 return -ENOMEM;
2134 pthread_mutex_lock(&bufmgr_gem->lock);
2135 /* Update indices and set up the validate list. */
2136 drm_intel_gem_bo_process_reloc(bo);
2138 /* Add the batch buffer to the validation list. There are no
2139 * relocations pointing to it.
2140 */
2141 drm_intel_add_validate_buffer(bo);
2143 VG_CLEAR(execbuf);
2144 execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2145 execbuf.buffer_count = bufmgr_gem->exec_count;
2146 execbuf.batch_start_offset = 0;
2147 execbuf.batch_len = used;
2148 execbuf.cliprects_ptr = (uintptr_t) cliprects;
2149 execbuf.num_cliprects = num_cliprects;
2150 execbuf.DR1 = 0;
2151 execbuf.DR4 = DR4;
2153 ret = drmIoctl(bufmgr_gem->fd,
2154 DRM_IOCTL_I915_GEM_EXECBUFFER,
2155 &execbuf);
2156 if (ret != 0) {
2157 ret = -errno;
2158 if (errno == ENOSPC) {
2159 DBG("Execbuffer fails to pin. "
2160 "Estimate: %u. Actual: %u. Available: %u\n",
2161 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2162 bufmgr_gem->
2163 exec_count),
2164 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2165 bufmgr_gem->
2166 exec_count),
2167 (unsigned int)bufmgr_gem->gtt_size);
2168 }
2169 }
2170 drm_intel_update_buffer_offsets(bufmgr_gem);
2172 if (bufmgr_gem->bufmgr.debug)
2173 drm_intel_gem_dump_validation_list(bufmgr_gem);
2175 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2176 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2177 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2179 /* Disconnect the buffer from the validate list */
2180 bo_gem->validate_index = -1;
2181 bufmgr_gem->exec_bos[i] = NULL;
2182 }
2183 bufmgr_gem->exec_count = 0;
2184 pthread_mutex_unlock(&bufmgr_gem->lock);
2186 return ret;
2187 }
2189 static int
2190 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2191 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2192 unsigned int flags)
2193 {
2194 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2195 struct drm_i915_gem_execbuffer2 execbuf;
2196 int ret = 0;
2197 int i;
2199 switch (flags & 0x7) {
2200 default:
2201 return -EINVAL;
2202 case I915_EXEC_BLT:
2203 if (!bufmgr_gem->has_blt)
2204 return -EINVAL;
2205 break;
2206 case I915_EXEC_BSD:
2207 if (!bufmgr_gem->has_bsd)
2208 return -EINVAL;
2209 break;
2210 case I915_EXEC_RENDER:
2211 case I915_EXEC_DEFAULT:
2212 break;
2213 }
2215 pthread_mutex_lock(&bufmgr_gem->lock);
2216 /* Update indices and set up the validate list. */
2217 drm_intel_gem_bo_process_reloc2(bo);
2219 /* Add the batch buffer to the validation list. There are no relocations
2220 * pointing to it.
2221 */
2222 drm_intel_add_validate_buffer2(bo, 0);
2224 VG_CLEAR(execbuf);
2225 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2226 execbuf.buffer_count = bufmgr_gem->exec_count;
2227 execbuf.batch_start_offset = 0;
2228 execbuf.batch_len = used;
2229 execbuf.cliprects_ptr = (uintptr_t)cliprects;
2230 execbuf.num_cliprects = num_cliprects;
2231 execbuf.DR1 = 0;
2232 execbuf.DR4 = DR4;
2233 execbuf.flags = flags;
2234 if (ctx == NULL)
2235 i915_execbuffer2_set_context_id(execbuf, 0);
2236 else
2237 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2238 execbuf.rsvd2 = 0;
2240 aub_exec(bo, flags, used);
2242 if (bufmgr_gem->no_exec)
2243 goto skip_execution;
2245 ret = drmIoctl(bufmgr_gem->fd,
2246 DRM_IOCTL_I915_GEM_EXECBUFFER2,
2247 &execbuf);
2248 if (ret != 0) {
2249 ret = -errno;
2250 if (ret == -ENOSPC) {
2251 DBG("Execbuffer fails to pin. "
2252 "Estimate: %u. Actual: %u. Available: %u\n",
2253 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2254 bufmgr_gem->exec_count),
2255 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2256 bufmgr_gem->exec_count),
2257 (unsigned int) bufmgr_gem->gtt_size);
2258 }
2259 }
2260 drm_intel_update_buffer_offsets2(bufmgr_gem);
2262 skip_execution:
2263 if (bufmgr_gem->bufmgr.debug)
2264 drm_intel_gem_dump_validation_list(bufmgr_gem);
2266 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2267 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2268 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2270 /* Disconnect the buffer from the validate list */
2271 bo_gem->validate_index = -1;
2272 bufmgr_gem->exec_bos[i] = NULL;
2273 }
2274 bufmgr_gem->exec_count = 0;
2275 pthread_mutex_unlock(&bufmgr_gem->lock);
2277 return ret;
2278 }
2280 static int
2281 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2282 drm_clip_rect_t *cliprects, int num_cliprects,
2283 int DR4)
2284 {
2285 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2286 I915_EXEC_RENDER);
2287 }
2289 static int
2290 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2291 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2292 unsigned int flags)
2293 {
2294 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2295 flags);
2296 }
2298 int
2299 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2300 int used, unsigned int flags)
2301 {
2302 return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2303 }
2305 static int
2306 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2307 {
2308 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2309 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2310 struct drm_i915_gem_pin pin;
2311 int ret;
2313 VG_CLEAR(pin);
2314 pin.handle = bo_gem->gem_handle;
2315 pin.alignment = alignment;
2317 ret = drmIoctl(bufmgr_gem->fd,
2318 DRM_IOCTL_I915_GEM_PIN,
2319 &pin);
2320 if (ret != 0)
2321 return -errno;
2323 bo->offset = pin.offset;
2324 return 0;
2325 }
2327 static int
2328 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2329 {
2330 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2331 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2332 struct drm_i915_gem_unpin unpin;
2333 int ret;
2335 VG_CLEAR(unpin);
2336 unpin.handle = bo_gem->gem_handle;
2338 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2339 if (ret != 0)
2340 return -errno;
2342 return 0;
2343 }
2345 static int
2346 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2347 uint32_t tiling_mode,
2348 uint32_t stride)
2349 {
2350 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2351 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2352 struct drm_i915_gem_set_tiling set_tiling;
2353 int ret;
2355 if (bo_gem->global_name == 0 &&
2356 tiling_mode == bo_gem->tiling_mode &&
2357 stride == bo_gem->stride)
2358 return 0;
2360 memset(&set_tiling, 0, sizeof(set_tiling));
2361 do {
2362 /* set_tiling is slightly broken and overwrites the
2363 * input on the error path, so we have to open code
2364 * rmIoctl.
2365 */
2366 set_tiling.handle = bo_gem->gem_handle;
2367 set_tiling.tiling_mode = tiling_mode;
2368 set_tiling.stride = stride;
2370 ret = ioctl(bufmgr_gem->fd,
2371 DRM_IOCTL_I915_GEM_SET_TILING,
2372 &set_tiling);
2373 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2374 if (ret == -1)
2375 return -errno;
2377 bo_gem->tiling_mode = set_tiling.tiling_mode;
2378 bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2379 bo_gem->stride = set_tiling.stride;
2380 return 0;
2381 }
2383 static int
2384 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2385 uint32_t stride)
2386 {
2387 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2388 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2389 int ret;
2391 /* Linear buffers have no stride. By ensuring that we only ever use
2392 * stride 0 with linear buffers, we simplify our code.
2393 */
2394 if (*tiling_mode == I915_TILING_NONE)
2395 stride = 0;
2397 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2398 if (ret == 0)
2399 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2401 *tiling_mode = bo_gem->tiling_mode;
2402 return ret;
2403 }
2405 static int
2406 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2407 uint32_t * swizzle_mode)
2408 {
2409 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2411 *tiling_mode = bo_gem->tiling_mode;
2412 *swizzle_mode = bo_gem->swizzle_mode;
2413 return 0;
2414 }
2416 drm_intel_bo *
2417 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2418 {
2419 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2420 int ret;
2421 uint32_t handle;
2422 drm_intel_bo_gem *bo_gem;
2423 struct drm_i915_gem_get_tiling get_tiling;
2425 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2426 if (ret) {
2427 fprintf(stderr,"ret is %d %d\n", ret, errno);
2428 return NULL;
2429 }
2431 bo_gem = calloc(1, sizeof(*bo_gem));
2432 if (!bo_gem)
2433 return NULL;
2435 bo_gem->bo.size = size;
2436 bo_gem->bo.handle = handle;
2437 bo_gem->bo.bufmgr = bufmgr;
2439 bo_gem->gem_handle = handle;
2441 atomic_set(&bo_gem->refcount, 1);
2443 bo_gem->name = "prime";
2444 bo_gem->validate_index = -1;
2445 bo_gem->reloc_tree_fences = 0;
2446 bo_gem->used_as_reloc_target = false;
2447 bo_gem->has_error = false;
2448 bo_gem->reusable = false;
2450 DRMINITLISTHEAD(&bo_gem->name_list);
2451 DRMINITLISTHEAD(&bo_gem->vma_list);
2453 VG_CLEAR(get_tiling);
2454 get_tiling.handle = bo_gem->gem_handle;
2455 ret = drmIoctl(bufmgr_gem->fd,
2456 DRM_IOCTL_I915_GEM_GET_TILING,
2457 &get_tiling);
2458 if (ret != 0) {
2459 drm_intel_gem_bo_unreference(&bo_gem->bo);
2460 return NULL;
2461 }
2462 bo_gem->tiling_mode = get_tiling.tiling_mode;
2463 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2464 /* XXX stride is unknown */
2465 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2467 return &bo_gem->bo;
2468 }
2470 int
2471 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2472 {
2473 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2474 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2476 return drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle, DRM_CLOEXEC, prime_fd);
2477 }
2479 static int
2480 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2481 {
2482 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2483 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2484 int ret;
2486 if (!bo_gem->global_name) {
2487 struct drm_gem_flink flink;
2489 VG_CLEAR(flink);
2490 flink.handle = bo_gem->gem_handle;
2492 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2493 if (ret != 0)
2494 return -errno;
2496 bo_gem->global_name = flink.name;
2497 bo_gem->reusable = false;
2499 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2500 }
2502 *name = bo_gem->global_name;
2503 return 0;
2504 }
2506 /**
2507 * Enables unlimited caching of buffer objects for reuse.
2508 *
2509 * This is potentially very memory expensive, as the cache at each bucket
2510 * size is only bounded by how many buffers of that size we've managed to have
2511 * in flight at once.
2512 */
2513 void
2514 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2515 {
2516 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2518 bufmgr_gem->bo_reuse = true;
2519 }
2521 /**
2522 * Enable use of fenced reloc type.
2523 *
2524 * New code should enable this to avoid unnecessary fence register
2525 * allocation. If this option is not enabled, all relocs will have fence
2526 * register allocated.
2527 */
2528 void
2529 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2530 {
2531 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2533 if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2534 bufmgr_gem->fenced_relocs = true;
2535 }
2537 /**
2538 * Return the additional aperture space required by the tree of buffer objects
2539 * rooted at bo.
2540 */
2541 static int
2542 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2543 {
2544 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2545 int i;
2546 int total = 0;
2548 if (bo == NULL || bo_gem->included_in_check_aperture)
2549 return 0;
2551 total += bo->size;
2552 bo_gem->included_in_check_aperture = true;
2554 for (i = 0; i < bo_gem->reloc_count; i++)
2555 total +=
2556 drm_intel_gem_bo_get_aperture_space(bo_gem->
2557 reloc_target_info[i].bo);
2559 return total;
2560 }
2562 /**
2563 * Count the number of buffers in this list that need a fence reg
2564 *
2565 * If the count is greater than the number of available regs, we'll have
2566 * to ask the caller to resubmit a batch with fewer tiled buffers.
2567 *
2568 * This function over-counts if the same buffer is used multiple times.
2569 */
2570 static unsigned int
2571 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2572 {
2573 int i;
2574 unsigned int total = 0;
2576 for (i = 0; i < count; i++) {
2577 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2579 if (bo_gem == NULL)
2580 continue;
2582 total += bo_gem->reloc_tree_fences;
2583 }
2584 return total;
2585 }
2587 /**
2588 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2589 * for the next drm_intel_bufmgr_check_aperture_space() call.
2590 */
2591 static void
2592 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2593 {
2594 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2595 int i;
2597 if (bo == NULL || !bo_gem->included_in_check_aperture)
2598 return;
2600 bo_gem->included_in_check_aperture = false;
2602 for (i = 0; i < bo_gem->reloc_count; i++)
2603 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2604 reloc_target_info[i].bo);
2605 }
2607 /**
2608 * Return a conservative estimate for the amount of aperture required
2609 * for a collection of buffers. This may double-count some buffers.
2610 */
2611 static unsigned int
2612 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2613 {
2614 int i;
2615 unsigned int total = 0;
2617 for (i = 0; i < count; i++) {
2618 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2619 if (bo_gem != NULL)
2620 total += bo_gem->reloc_tree_size;
2621 }
2622 return total;
2623 }
2625 /**
2626 * Return the amount of aperture needed for a collection of buffers.
2627 * This avoids double counting any buffers, at the cost of looking
2628 * at every buffer in the set.
2629 */
2630 static unsigned int
2631 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2632 {
2633 int i;
2634 unsigned int total = 0;
2636 for (i = 0; i < count; i++) {
2637 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2638 /* For the first buffer object in the array, we get an
2639 * accurate count back for its reloc_tree size (since nothing
2640 * had been flagged as being counted yet). We can save that
2641 * value out as a more conservative reloc_tree_size that
2642 * avoids double-counting target buffers. Since the first
2643 * buffer happens to usually be the batch buffer in our
2644 * callers, this can pull us back from doing the tree
2645 * walk on every new batch emit.
2646 */
2647 if (i == 0) {
2648 drm_intel_bo_gem *bo_gem =
2649 (drm_intel_bo_gem *) bo_array[i];
2650 bo_gem->reloc_tree_size = total;
2651 }
2652 }
2654 for (i = 0; i < count; i++)
2655 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2656 return total;
2657 }
2659 /**
2660 * Return -1 if the batchbuffer should be flushed before attempting to
2661 * emit rendering referencing the buffers pointed to by bo_array.
2662 *
2663 * This is required because if we try to emit a batchbuffer with relocations
2664 * to a tree of buffers that won't simultaneously fit in the aperture,
2665 * the rendering will return an error at a point where the software is not
2666 * prepared to recover from it.
2667 *
2668 * However, we also want to emit the batchbuffer significantly before we reach
2669 * the limit, as a series of batchbuffers each of which references buffers
2670 * covering almost all of the aperture means that at each emit we end up
2671 * waiting to evict a buffer from the last rendering, and we get synchronous
2672 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to
2673 * get better parallelism.
2674 */
2675 static int
2676 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2677 {
2678 drm_intel_bufmgr_gem *bufmgr_gem =
2679 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2680 unsigned int total = 0;
2681 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2682 int total_fences;
2684 /* Check for fence reg constraints if necessary */
2685 if (bufmgr_gem->available_fences) {
2686 total_fences = drm_intel_gem_total_fences(bo_array, count);
2687 if (total_fences > bufmgr_gem->available_fences)
2688 return -ENOSPC;
2689 }
2691 total = drm_intel_gem_estimate_batch_space(bo_array, count);
2693 if (total > threshold)
2694 total = drm_intel_gem_compute_batch_space(bo_array, count);
2696 if (total > threshold) {
2697 DBG("check_space: overflowed available aperture, "
2698 "%dkb vs %dkb\n",
2699 total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2700 return -ENOSPC;
2701 } else {
2702 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2703 (int)bufmgr_gem->gtt_size / 1024);
2704 return 0;
2705 }
2706 }
2708 /*
2709 * Disable buffer reuse for objects which are shared with the kernel
2710 * as scanout buffers
2711 */
2712 static int
2713 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2714 {
2715 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2717 bo_gem->reusable = false;
2718 return 0;
2719 }
2721 static int
2722 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2723 {
2724 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2726 return bo_gem->reusable;
2727 }
2729 static int
2730 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2731 {
2732 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2733 int i;
2735 for (i = 0; i < bo_gem->reloc_count; i++) {
2736 if (bo_gem->reloc_target_info[i].bo == target_bo)
2737 return 1;
2738 if (bo == bo_gem->reloc_target_info[i].bo)
2739 continue;
2740 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
2741 target_bo))
2742 return 1;
2743 }
2745 return 0;
2746 }
2748 /** Return true if target_bo is referenced by bo's relocation tree. */
2749 static int
2750 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2751 {
2752 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2754 if (bo == NULL || target_bo == NULL)
2755 return 0;
2756 if (target_bo_gem->used_as_reloc_target)
2757 return _drm_intel_gem_bo_references(bo, target_bo);
2758 return 0;
2759 }
2761 static void
2762 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
2763 {
2764 unsigned int i = bufmgr_gem->num_buckets;
2766 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
2768 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
2769 bufmgr_gem->cache_bucket[i].size = size;
2770 bufmgr_gem->num_buckets++;
2771 }
2773 static void
2774 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
2775 {
2776 unsigned long size, cache_max_size = 64 * 1024 * 1024;
2778 /* OK, so power of two buckets was too wasteful of memory.
2779 * Give 3 other sizes between each power of two, to hopefully
2780 * cover things accurately enough. (The alternative is
2781 * probably to just go for exact matching of sizes, and assume
2782 * that for things like composited window resize the tiled
2783 * width/height alignment and rounding of sizes to pages will
2784 * get us useful cache hit rates anyway)
2785 */
2786 add_bucket(bufmgr_gem, 4096);
2787 add_bucket(bufmgr_gem, 4096 * 2);
2788 add_bucket(bufmgr_gem, 4096 * 3);
2790 /* Initialize the linked lists for BO reuse cache. */
2791 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
2792 add_bucket(bufmgr_gem, size);
2794 add_bucket(bufmgr_gem, size + size * 1 / 4);
2795 add_bucket(bufmgr_gem, size + size * 2 / 4);
2796 add_bucket(bufmgr_gem, size + size * 3 / 4);
2797 }
2798 }
2800 void
2801 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
2802 {
2803 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2805 bufmgr_gem->vma_max = limit;
2807 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
2808 }
2810 /**
2811 * Get the PCI ID for the device. This can be overridden by setting the
2812 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2813 */
2814 static int
2815 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
2816 {
2817 char *devid_override;
2818 int devid;
2819 int ret;
2820 drm_i915_getparam_t gp;
2822 if (geteuid() == getuid()) {
2823 devid_override = getenv("INTEL_DEVID_OVERRIDE");
2824 if (devid_override) {
2825 bufmgr_gem->no_exec = true;
2826 return strtod(devid_override, NULL);
2827 }
2828 }
2830 VG_CLEAR(devid);
2831 VG_CLEAR(gp);
2832 gp.param = I915_PARAM_CHIPSET_ID;
2833 gp.value = &devid;
2834 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
2835 if (ret) {
2836 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
2837 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
2838 }
2839 return devid;
2840 }
2842 int
2843 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
2844 {
2845 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2847 return bufmgr_gem->pci_device;
2848 }
2850 /**
2851 * Sets up AUB dumping.
2852 *
2853 * This is a trace file format that can be used with the simulator.
2854 * Packets are emitted in a format somewhat like GPU command packets.
2855 * You can set up a GTT and upload your objects into the referenced
2856 * space, then send off batchbuffers and get BMPs out the other end.
2857 */
2858 void
2859 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
2860 {
2861 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2862 int entry = 0x200003;
2863 int i;
2864 int gtt_size = 0x10000;
2866 if (!enable) {
2867 if (bufmgr_gem->aub_file) {
2868 fclose(bufmgr_gem->aub_file);
2869 bufmgr_gem->aub_file = NULL;
2870 }
2871 }
2873 if (geteuid() != getuid())
2874 return;
2876 bufmgr_gem->aub_file = fopen("intel.aub", "w+");
2877 if (!bufmgr_gem->aub_file)
2878 return;
2880 /* Start allocating objects from just after the GTT. */
2881 bufmgr_gem->aub_offset = gtt_size;
2883 /* Start with a (required) version packet. */
2884 aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
2885 aub_out(bufmgr_gem,
2886 (4 << AUB_HEADER_MAJOR_SHIFT) |
2887 (0 << AUB_HEADER_MINOR_SHIFT));
2888 for (i = 0; i < 8; i++) {
2889 aub_out(bufmgr_gem, 0); /* app name */
2890 }
2891 aub_out(bufmgr_gem, 0); /* timestamp */
2892 aub_out(bufmgr_gem, 0); /* timestamp */
2893 aub_out(bufmgr_gem, 0); /* comment len */
2895 /* Set up the GTT. The max we can handle is 256M */
2896 aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | (5 - 2));
2897 aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_NONLOCAL | 0 | AUB_TRACE_OP_DATA_WRITE);
2898 aub_out(bufmgr_gem, 0); /* subtype */
2899 aub_out(bufmgr_gem, 0); /* offset */
2900 aub_out(bufmgr_gem, gtt_size); /* size */
2901 for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
2902 aub_out(bufmgr_gem, entry);
2903 }
2904 }
2906 drm_intel_context *
2907 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
2908 {
2909 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2910 struct drm_i915_gem_context_create create;
2911 drm_intel_context *context = NULL;
2912 int ret;
2914 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
2915 if (ret != 0) {
2916 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
2917 strerror(errno));
2918 return NULL;
2919 }
2921 context = calloc(1, sizeof(*context));
2922 context->ctx_id = create.ctx_id;
2923 context->bufmgr = bufmgr;
2925 return context;
2926 }
2928 void
2929 drm_intel_gem_context_destroy(drm_intel_context *ctx)
2930 {
2931 drm_intel_bufmgr_gem *bufmgr_gem;
2932 struct drm_i915_gem_context_destroy destroy;
2933 int ret;
2935 if (ctx == NULL)
2936 return;
2938 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
2939 destroy.ctx_id = ctx->ctx_id;
2940 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
2941 &destroy);
2942 if (ret != 0)
2943 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
2944 strerror(errno));
2946 free(ctx);
2947 }
2950 /**
2951 * Annotate the given bo for use in aub dumping.
2952 *
2953 * \param annotations is an array of drm_intel_aub_annotation objects
2954 * describing the type of data in various sections of the bo. Each
2955 * element of the array specifies the type and subtype of a section of
2956 * the bo, and the past-the-end offset of that section. The elements
2957 * of \c annotations must be sorted so that ending_offset is
2958 * increasing.
2959 *
2960 * \param count is the number of elements in the \c annotations array.
2961 * If \c count is zero, then \c annotations will not be dereferenced.
2962 *
2963 * Annotations are copied into a private data structure, so caller may
2964 * re-use the memory pointed to by \c annotations after the call
2965 * returns.
2966 *
2967 * Annotations are stored for the lifetime of the bo; to reset to the
2968 * default state (no annotations), call this function with a \c count
2969 * of zero.
2970 */
2971 void
2972 drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
2973 drm_intel_aub_annotation *annotations,
2974 unsigned count)
2975 {
2976 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2977 unsigned size = sizeof(*annotations) * count;
2978 drm_intel_aub_annotation *new_annotations =
2979 count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
2980 if (new_annotations == NULL) {
2981 free(bo_gem->aub_annotations);
2982 bo_gem->aub_annotations = NULL;
2983 bo_gem->aub_annotation_count = 0;
2984 return;
2985 }
2986 memcpy(new_annotations, annotations, size);
2987 bo_gem->aub_annotations = new_annotations;
2988 bo_gem->aub_annotation_count = count;
2989 }
2991 /**
2992 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
2993 * and manage map buffer objections.
2994 *
2995 * \param fd File descriptor of the opened DRM device.
2996 */
2997 drm_intel_bufmgr *
2998 drm_intel_bufmgr_gem_init(int fd, int batch_size)
2999 {
3000 drm_intel_bufmgr_gem *bufmgr_gem;
3001 struct drm_i915_gem_get_aperture aperture;
3002 drm_i915_getparam_t gp;
3003 int ret, tmp;
3004 bool exec2 = false;
3006 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3007 if (bufmgr_gem == NULL)
3008 return NULL;
3010 bufmgr_gem->fd = fd;
3012 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3013 free(bufmgr_gem);
3014 return NULL;
3015 }
3017 ret = drmIoctl(bufmgr_gem->fd,
3018 DRM_IOCTL_I915_GEM_GET_APERTURE,
3019 &aperture);
3021 if (ret == 0)
3022 bufmgr_gem->gtt_size = aperture.aper_available_size;
3023 else {
3024 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3025 strerror(errno));
3026 bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3027 fprintf(stderr, "Assuming %dkB available aperture size.\n"
3028 "May lead to reduced performance or incorrect "
3029 "rendering.\n",
3030 (int)bufmgr_gem->gtt_size / 1024);
3031 }
3033 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3035 if (IS_GEN2(bufmgr_gem->pci_device))
3036 bufmgr_gem->gen = 2;
3037 else if (IS_GEN3(bufmgr_gem->pci_device))
3038 bufmgr_gem->gen = 3;
3039 else if (IS_GEN4(bufmgr_gem->pci_device))
3040 bufmgr_gem->gen = 4;
3041 else if (IS_GEN5(bufmgr_gem->pci_device))
3042 bufmgr_gem->gen = 5;
3043 else if (IS_GEN6(bufmgr_gem->pci_device))
3044 bufmgr_gem->gen = 6;
3045 else if (IS_GEN7(bufmgr_gem->pci_device))
3046 bufmgr_gem->gen = 7;
3047 else
3048 assert(0);
3050 if (IS_GEN3(bufmgr_gem->pci_device) &&
3051 bufmgr_gem->gtt_size > 256*1024*1024) {
3052 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3053 * be used for tiled blits. To simplify the accounting, just
3054 * substract the unmappable part (fixed to 256MB on all known
3055 * gen3 devices) if the kernel advertises it. */
3056 bufmgr_gem->gtt_size -= 256*1024*1024;
3057 }
3059 VG_CLEAR(gp);
3060 gp.value = &tmp;
3062 gp.param = I915_PARAM_HAS_EXECBUF2;
3063 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3064 if (!ret)
3065 exec2 = true;
3067 gp.param = I915_PARAM_HAS_BSD;
3068 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3069 bufmgr_gem->has_bsd = ret == 0;
3071 gp.param = I915_PARAM_HAS_BLT;
3072 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3073 bufmgr_gem->has_blt = ret == 0;
3075 gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3076 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3077 bufmgr_gem->has_relaxed_fencing = ret == 0;
3079 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3080 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3081 bufmgr_gem->has_wait_timeout = ret == 0;
3083 gp.param = I915_PARAM_HAS_LLC;
3084 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3085 if (ret != 0) {
3086 /* Kernel does not supports HAS_LLC query, fallback to GPU
3087 * generation detection and assume that we have LLC on GEN6/7
3088 */
3089 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3090 IS_GEN7(bufmgr_gem->pci_device));
3091 } else
3092 bufmgr_gem->has_llc = ret == 0;
3094 if (bufmgr_gem->gen < 4) {
3095 gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3096 gp.value = &bufmgr_gem->available_fences;
3097 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3098 if (ret) {
3099 fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3100 errno);
3101 fprintf(stderr, "param: %d, val: %d\n", gp.param,
3102 *gp.value);
3103 bufmgr_gem->available_fences = 0;
3104 } else {
3105 /* XXX The kernel reports the total number of fences,
3106 * including any that may be pinned.
3107 *
3108 * We presume that there will be at least one pinned
3109 * fence for the scanout buffer, but there may be more
3110 * than one scanout and the user may be manually
3111 * pinning buffers. Let's move to execbuffer2 and
3112 * thereby forget the insanity of using fences...
3113 */
3114 bufmgr_gem->available_fences -= 2;
3115 if (bufmgr_gem->available_fences < 0)
3116 bufmgr_gem->available_fences = 0;
3117 }
3118 }
3120 /* Let's go with one relocation per every 2 dwords (but round down a bit
3121 * since a power of two will mean an extra page allocation for the reloc
3122 * buffer).
3123 *
3124 * Every 4 was too few for the blender benchmark.
3125 */
3126 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3128 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3129 bufmgr_gem->bufmgr.bo_alloc_for_render =
3130 drm_intel_gem_bo_alloc_for_render;
3131 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3132 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3133 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3134 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3135 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3136 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3137 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3138 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3139 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3140 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3141 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3142 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3143 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3144 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3145 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3146 /* Use the new one if available */
3147 if (exec2) {
3148 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3149 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3150 } else
3151 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3152 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3153 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3154 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy;
3155 bufmgr_gem->bufmgr.debug = 0;
3156 bufmgr_gem->bufmgr.check_aperture_space =
3157 drm_intel_gem_check_aperture_space;
3158 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3159 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3160 bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3161 drm_intel_gem_get_pipe_from_crtc_id;
3162 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3164 DRMINITLISTHEAD(&bufmgr_gem->named);
3165 init_cache_buckets(bufmgr_gem);
3167 DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3168 bufmgr_gem->vma_max = -1; /* unlimited by default */
3170 return &bufmgr_gem->bufmgr;
3171 }