/************************************************************************** * * Copyright © 2007 Red Hat Inc. * Copyright © 2007 Intel Corporation * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * **************************************************************************/ /* * Authors: Thomas Hellström * Keith Whitwell * Eric Anholt * Dave Airlie */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "errno.h" #include "libdrm_lists.h" #include "intel_bufmgr.h" #include "intel_bufmgr_priv.h" #include "intel_chipset.h" #include "string.h" #include "i915_drm.h" #define DBG(...) do { \ if (bufmgr_gem->bufmgr.debug) \ fprintf(stderr, __VA_ARGS__); \ } while (0) #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) typedef struct _drm_intel_bo_gem drm_intel_bo_gem; struct drm_intel_gem_bo_bucket { drmMMListHead head; unsigned long size; }; typedef struct _drm_intel_bufmgr_gem { drm_intel_bufmgr bufmgr; int fd; int max_relocs; pthread_mutex_t lock; struct drm_i915_gem_exec_object *exec_objects; struct drm_i915_gem_exec_object2 *exec2_objects; drm_intel_bo **exec_bos; int exec_size; int exec_count; /** Array of lists of cached gem objects of power-of-two sizes */ struct drm_intel_gem_bo_bucket cache_bucket[14 * 4]; int num_buckets; uint64_t gtt_size; int available_fences; int pci_device; int gen; char bo_reuse; char fenced_relocs; } drm_intel_bufmgr_gem; #define DRM_INTEL_RELOC_FENCE (1<<0) typedef struct _drm_intel_reloc_target_info { drm_intel_bo *bo; int flags; } drm_intel_reloc_target; struct _drm_intel_bo_gem { drm_intel_bo bo; atomic_t refcount; uint32_t gem_handle; const char *name; /** * Kenel-assigned global name for this object */ unsigned int global_name; /** * Index of the buffer within the validation list while preparing a * batchbuffer execution. */ int validate_index; /** * Current tiling mode */ uint32_t tiling_mode; uint32_t swizzle_mode; unsigned long stride; time_t free_time; /** Array passed to the DRM containing relocation information. */ struct drm_i915_gem_relocation_entry *relocs; /** * Array of info structs corresponding to relocs[i].target_handle etc */ drm_intel_reloc_target *reloc_target_info; /** Number of entries in relocs */ int reloc_count; /** Mapped address for the buffer, saved across map/unmap cycles */ void *mem_virtual; /** GTT virtual address for the buffer, saved across map/unmap cycles */ void *gtt_virtual; /** BO cache list */ drmMMListHead head; /** * Boolean of whether this BO and its children have been included in * the current drm_intel_bufmgr_check_aperture_space() total. */ char included_in_check_aperture; /** * Boolean of whether this buffer has been used as a relocation * target and had its size accounted for, and thus can't have any * further relocations added to it. */ char used_as_reloc_target; /** * Boolean of whether we have encountered an error whilst building the relocation tree. */ char has_error; /** * Boolean of whether this buffer can be re-used */ char reusable; /** * Size in bytes of this buffer and its relocation descendents. * * Used to avoid costly tree walking in * drm_intel_bufmgr_check_aperture in the common case. */ int reloc_tree_size; /** * Number of potential fence registers required by this buffer and its * relocations. */ int reloc_tree_fences; }; static unsigned int drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count); static unsigned int drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count); static int drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t * swizzle_mode); static int drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t stride); static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, time_t time); static void drm_intel_gem_bo_unreference(drm_intel_bo *bo); static void drm_intel_gem_bo_free(drm_intel_bo *bo); static unsigned long drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size, uint32_t *tiling_mode) { unsigned long min_size, max_size; unsigned long i; if (*tiling_mode == I915_TILING_NONE) return size; /* 965+ just need multiples of page size for tiling */ if (bufmgr_gem->gen >= 4) return ROUND_UP_TO(size, 4096); /* Older chips need powers of two, of at least 512k or 1M */ if (bufmgr_gem->gen == 3) { min_size = 1024*1024; max_size = 128*1024*1024; } else { min_size = 512*1024; max_size = 64*1024*1024; } if (size > max_size) { *tiling_mode = I915_TILING_NONE; return size; } for (i = min_size; i < size; i <<= 1) ; return i; } /* * Round a given pitch up to the minimum required for X tiling on a * given chip. We use 512 as the minimum to allow for a later tiling * change. */ static unsigned long drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long pitch, uint32_t tiling_mode) { unsigned long tile_width; unsigned long i; /* If untiled, then just align it so that we can do rendering * to it with the 3D engine. */ if (tiling_mode == I915_TILING_NONE) return ALIGN(pitch, 64); if (tiling_mode == I915_TILING_X) tile_width = 512; else tile_width = 128; /* 965 is flexible */ if (bufmgr_gem->gen >= 4) return ROUND_UP_TO(pitch, tile_width); /* Pre-965 needs power of two tile width */ for (i = tile_width; i < pitch; i <<= 1) ; return i; } static struct drm_intel_gem_bo_bucket * drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size) { int i; for (i = 0; i < bufmgr_gem->num_buckets; i++) { struct drm_intel_gem_bo_bucket *bucket = &bufmgr_gem->cache_bucket[i]; if (bucket->size >= size) { return bucket; } } return NULL; } static void drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem) { int i, j; for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; if (bo_gem->relocs == NULL) { DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle, bo_gem->name); continue; } for (j = 0; j < bo_gem->reloc_count; j++) { drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo; drm_intel_bo_gem *target_gem = (drm_intel_bo_gem *) target_bo; DBG("%2d: %d (%s)@0x%08llx -> " "%d (%s)@0x%08lx + 0x%08x\n", i, bo_gem->gem_handle, bo_gem->name, (unsigned long long)bo_gem->relocs[j].offset, target_gem->gem_handle, target_gem->name, target_bo->offset, bo_gem->relocs[j].delta); } } } static inline void drm_intel_gem_bo_reference(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; assert(atomic_read(&bo_gem->refcount) > 0); atomic_inc(&bo_gem->refcount); } /** * Adds the given buffer to the list of buffers to be validated (moved into the * appropriate memory type) with the next batch submission. * * If a buffer is validated multiple times in a batch submission, it ends up * with the intersection of the memory type flags and the union of the * access flags. */ static void drm_intel_add_validate_buffer(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int index; if (bo_gem->validate_index != -1) return; /* Extend the array of validation entries as necessary. */ if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { int new_size = bufmgr_gem->exec_size * 2; if (new_size == 0) new_size = 5; bufmgr_gem->exec_objects = realloc(bufmgr_gem->exec_objects, sizeof(*bufmgr_gem->exec_objects) * new_size); bufmgr_gem->exec_bos = realloc(bufmgr_gem->exec_bos, sizeof(*bufmgr_gem->exec_bos) * new_size); bufmgr_gem->exec_size = new_size; } index = bufmgr_gem->exec_count; bo_gem->validate_index = index; /* Fill in array entry */ bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle; bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count; bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs; bufmgr_gem->exec_objects[index].alignment = 0; bufmgr_gem->exec_objects[index].offset = 0; bufmgr_gem->exec_bos[index] = bo; bufmgr_gem->exec_count++; } static void drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; int index; if (bo_gem->validate_index != -1) { if (need_fence) bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= EXEC_OBJECT_NEEDS_FENCE; return; } /* Extend the array of validation entries as necessary. */ if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { int new_size = bufmgr_gem->exec_size * 2; if (new_size == 0) new_size = 5; bufmgr_gem->exec2_objects = realloc(bufmgr_gem->exec2_objects, sizeof(*bufmgr_gem->exec2_objects) * new_size); bufmgr_gem->exec_bos = realloc(bufmgr_gem->exec_bos, sizeof(*bufmgr_gem->exec_bos) * new_size); bufmgr_gem->exec_size = new_size; } index = bufmgr_gem->exec_count; bo_gem->validate_index = index; /* Fill in array entry */ bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle; bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count; bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs; bufmgr_gem->exec2_objects[index].alignment = 0; bufmgr_gem->exec2_objects[index].offset = 0; bufmgr_gem->exec_bos[index] = bo; bufmgr_gem->exec2_objects[index].flags = 0; bufmgr_gem->exec2_objects[index].rsvd1 = 0; bufmgr_gem->exec2_objects[index].rsvd2 = 0; if (need_fence) { bufmgr_gem->exec2_objects[index].flags |= EXEC_OBJECT_NEEDS_FENCE; } bufmgr_gem->exec_count++; } #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \ sizeof(uint32_t)) static void drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem, drm_intel_bo_gem *bo_gem) { int size; assert(!bo_gem->used_as_reloc_target); /* The older chipsets are far-less flexible in terms of tiling, * and require tiled buffer to be size aligned in the aperture. * This means that in the worst possible case we will need a hole * twice as large as the object in order for it to fit into the * aperture. Optimal packing is for wimps. */ size = bo_gem->bo.size; if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) size *= 2; bo_gem->reloc_tree_size = size; } static int drm_intel_setup_reloc_list(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; unsigned int max_relocs = bufmgr_gem->max_relocs; if (bo->size / 4 < max_relocs) max_relocs = bo->size / 4; bo_gem->relocs = malloc(max_relocs * sizeof(struct drm_i915_gem_relocation_entry)); bo_gem->reloc_target_info = malloc(max_relocs * sizeof(drm_intel_reloc_target)); if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) { bo_gem->has_error = 1; free (bo_gem->relocs); bo_gem->relocs = NULL; free (bo_gem->reloc_target_info); bo_gem->reloc_target_info = NULL; return 1; } return 0; } static int drm_intel_gem_bo_busy(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_busy busy; int ret; memset(&busy, 0, sizeof(busy)); busy.handle = bo_gem->gem_handle; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); } while (ret == -1 && errno == EINTR); return (ret == 0 && busy.busy); } static int drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem, drm_intel_bo_gem *bo_gem, int state) { struct drm_i915_gem_madvise madv; madv.handle = bo_gem->gem_handle; madv.madv = state; madv.retained = 1; ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } static int drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv) { return drm_intel_gem_bo_madvise_internal ((drm_intel_bufmgr_gem *) bo->bufmgr, (drm_intel_bo_gem *) bo, madv); } /* drop the oldest entries that have been purged by the kernel */ static void drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem, struct drm_intel_gem_bo_bucket *bucket) { while (!DRMLISTEMPTY(&bucket->head)) { drm_intel_bo_gem *bo_gem; bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); if (drm_intel_gem_bo_madvise_internal (bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) break; DRMLISTDEL(&bo_gem->head); drm_intel_gem_bo_free(&bo_gem->bo); } } static drm_intel_bo * drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned long flags) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; drm_intel_bo_gem *bo_gem; unsigned int page_size = getpagesize(); int ret; struct drm_intel_gem_bo_bucket *bucket; int alloc_from_cache; unsigned long bo_size; int for_render = 0; if (flags & BO_ALLOC_FOR_RENDER) for_render = 1; /* Round the allocated size up to a power of two number of pages. */ bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size); /* If we don't have caching at this size, don't actually round the * allocation up. */ if (bucket == NULL) { bo_size = size; if (bo_size < page_size) bo_size = page_size; } else { bo_size = bucket->size; } pthread_mutex_lock(&bufmgr_gem->lock); /* Get a buffer out of the cache if available */ retry: alloc_from_cache = 0; if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) { if (for_render) { /* Allocate new render-target BOs from the tail (MRU) * of the list, as it will likely be hot in the GPU * cache and in the aperture for us. */ bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.prev, head); DRMLISTDEL(&bo_gem->head); alloc_from_cache = 1; } else { /* For non-render-target BOs (where we're probably * going to map it first thing in order to fill it * with data), check if the last BO in the cache is * unbusy, and only reuse in that case. Otherwise, * allocating a new buffer is probably faster than * waiting for the GPU to finish. */ bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); if (!drm_intel_gem_bo_busy(&bo_gem->bo)) { alloc_from_cache = 1; DRMLISTDEL(&bo_gem->head); } } if (alloc_from_cache) { if (!drm_intel_gem_bo_madvise_internal (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) { drm_intel_gem_bo_free(&bo_gem->bo); drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem, bucket); goto retry; } } } pthread_mutex_unlock(&bufmgr_gem->lock); if (!alloc_from_cache) { struct drm_i915_gem_create create; bo_gem = calloc(1, sizeof(*bo_gem)); if (!bo_gem) return NULL; bo_gem->bo.size = bo_size; memset(&create, 0, sizeof(create)); create.size = bo_size; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CREATE, &create); } while (ret == -1 && errno == EINTR); bo_gem->gem_handle = create.handle; bo_gem->bo.handle = bo_gem->gem_handle; if (ret != 0) { free(bo_gem); return NULL; } bo_gem->bo.bufmgr = bufmgr; } bo_gem->name = name; atomic_set(&bo_gem->refcount, 1); bo_gem->validate_index = -1; bo_gem->reloc_tree_fences = 0; bo_gem->used_as_reloc_target = 0; bo_gem->has_error = 0; bo_gem->tiling_mode = I915_TILING_NONE; bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; bo_gem->stride = 0; bo_gem->reusable = 1; drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); DBG("bo_create: buf %d (%s) %ldb\n", bo_gem->gem_handle, bo_gem->name, size); return &bo_gem->bo; } static drm_intel_bo * drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned int alignment) { return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, BO_ALLOC_FOR_RENDER); } static drm_intel_bo * drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned int alignment) { return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0); } static drm_intel_bo * drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name, int x, int y, int cpp, uint32_t *tiling_mode, unsigned long *pitch, unsigned long flags) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; drm_intel_bo *bo; unsigned long size, stride; uint32_t tiling; int ret; do { unsigned long aligned_y; tiling = *tiling_mode; /* If we're tiled, our allocations are in 8 or 32-row blocks, * so failure to align our height means that we won't allocate * enough pages. * * If we're untiled, we still have to align to 2 rows high * because the data port accesses 2x2 blocks even if the * bottom row isn't to be rendered, so failure to align means * we could walk off the end of the GTT and fault. This is * documented on 965, and may be the case on older chipsets * too so we try to be careful. */ aligned_y = y; if (tiling == I915_TILING_NONE) aligned_y = ALIGN(y, 2); else if (tiling == I915_TILING_X) aligned_y = ALIGN(y, 8); else if (tiling == I915_TILING_Y) aligned_y = ALIGN(y, 32); stride = x * cpp; stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling); size = stride * aligned_y; size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode); } while (*tiling_mode != tiling); bo = drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags); if (!bo) return NULL; ret = drm_intel_gem_bo_set_tiling(bo, tiling_mode, stride); if (ret != 0) { drm_intel_gem_bo_unreference(bo); return NULL; } *pitch = stride; return bo; } /** * Returns a drm_intel_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ drm_intel_bo * drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr, const char *name, unsigned int handle) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; drm_intel_bo_gem *bo_gem; int ret; struct drm_gem_open open_arg; struct drm_i915_gem_get_tiling get_tiling; bo_gem = calloc(1, sizeof(*bo_gem)); if (!bo_gem) return NULL; memset(&open_arg, 0, sizeof(open_arg)); open_arg.name = handle; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_GEM_OPEN, &open_arg); } while (ret == -1 && errno == EINTR); if (ret != 0) { fprintf(stderr, "Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); free(bo_gem); return NULL; } bo_gem->bo.size = open_arg.size; bo_gem->bo.offset = 0; bo_gem->bo.virtual = NULL; bo_gem->bo.bufmgr = bufmgr; bo_gem->name = name; atomic_set(&bo_gem->refcount, 1); bo_gem->validate_index = -1; bo_gem->gem_handle = open_arg.handle; bo_gem->global_name = handle; bo_gem->reusable = 0; memset(&get_tiling, 0, sizeof(get_tiling)); get_tiling.handle = bo_gem->gem_handle; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) { drm_intel_gem_bo_unreference(&bo_gem->bo); return NULL; } bo_gem->tiling_mode = get_tiling.tiling_mode; bo_gem->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name); return &bo_gem->bo; } static void drm_intel_gem_bo_free(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_gem_close close; int ret; if (bo_gem->mem_virtual) munmap(bo_gem->mem_virtual, bo_gem->bo.size); if (bo_gem->gtt_virtual) munmap(bo_gem->gtt_virtual, bo_gem->bo.size); /* Close this object */ memset(&close, 0, sizeof(close)); close.handle = bo_gem->gem_handle; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { fprintf(stderr, "DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo_gem->gem_handle, bo_gem->name, strerror(errno)); } free(bo); } /** Frees all cached buffers significantly older than @time. */ static void drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time) { int i; for (i = 0; i < bufmgr_gem->num_buckets; i++) { struct drm_intel_gem_bo_bucket *bucket = &bufmgr_gem->cache_bucket[i]; while (!DRMLISTEMPTY(&bucket->head)) { drm_intel_bo_gem *bo_gem; bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); if (time - bo_gem->free_time <= 1) break; DRMLISTDEL(&bo_gem->head); drm_intel_gem_bo_free(&bo_gem->bo); } } } static void drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_intel_gem_bo_bucket *bucket; uint32_t tiling_mode; int i; /* Unreference all the target buffers */ for (i = 0; i < bo_gem->reloc_count; i++) { if (bo_gem->reloc_target_info[i].bo != bo) { drm_intel_gem_bo_unreference_locked_timed(bo_gem-> reloc_target_info[i].bo, time); } } bo_gem->reloc_count = 0; bo_gem->used_as_reloc_target = 0; DBG("bo_unreference final: %d (%s)\n", bo_gem->gem_handle, bo_gem->name); /* release memory associated with this object */ if (bo_gem->reloc_target_info) { free(bo_gem->reloc_target_info); bo_gem->reloc_target_info = NULL; } if (bo_gem->relocs) { free(bo_gem->relocs); bo_gem->relocs = NULL; } bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size); /* Put the buffer into our internal cache for reuse if we can. */ tiling_mode = I915_TILING_NONE; if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL && drm_intel_gem_bo_set_tiling(bo, &tiling_mode, 0) == 0 && drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) { bo_gem->free_time = time; bo_gem->name = NULL; bo_gem->validate_index = -1; DRMLISTADDTAIL(&bo_gem->head, &bucket->head); drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time); } else { drm_intel_gem_bo_free(bo); } } static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, time_t time) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; assert(atomic_read(&bo_gem->refcount) > 0); if (atomic_dec_and_test(&bo_gem->refcount)) drm_intel_gem_bo_unreference_final(bo, time); } static void drm_intel_gem_bo_unreference(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; assert(atomic_read(&bo_gem->refcount) > 0); if (atomic_dec_and_test(&bo_gem->refcount)) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); pthread_mutex_lock(&bufmgr_gem->lock); drm_intel_gem_bo_unreference_final(bo, time.tv_sec); pthread_mutex_unlock(&bufmgr_gem->lock); } } static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_domain set_domain; int ret; pthread_mutex_lock(&bufmgr_gem->lock); /* Allow recursive mapping. Mesa may recursively map buffers with * nested display loops. */ if (!bo_gem->mem_virtual) { struct drm_i915_gem_mmap mmap_arg; DBG("bo_map: %d (%s)\n", bo_gem->gem_handle, bo_gem->name); memset(&mmap_arg, 0, sizeof(mmap_arg)); mmap_arg.handle = bo_gem->gem_handle; mmap_arg.offset = 0; mmap_arg.size = bo->size; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); } while (ret == -1 && errno == EINTR); if (ret != 0) { ret = -errno; fprintf(stderr, "%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, bo_gem->name, strerror(errno)); pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; } DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, bo_gem->mem_virtual); bo->virtual = bo_gem->mem_virtual; set_domain.handle = bo_gem->gem_handle; set_domain.read_domains = I915_GEM_DOMAIN_CPU; if (write_enable) set_domain.write_domain = I915_GEM_DOMAIN_CPU; else set_domain.write_domain = 0; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); } while (ret == -1 && errno == EINTR); if (ret != 0) { ret = -errno; fprintf(stderr, "%s:%d: Error setting to CPU domain %d: %s\n", __FILE__, __LINE__, bo_gem->gem_handle, strerror(errno)); pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } pthread_mutex_unlock(&bufmgr_gem->lock); return 0; } int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_domain set_domain; int ret; pthread_mutex_lock(&bufmgr_gem->lock); /* Get a mapping of the buffer if we haven't before. */ if (bo_gem->gtt_virtual == NULL) { struct drm_i915_gem_mmap_gtt mmap_arg; DBG("bo_map_gtt: mmap %d (%s)\n", bo_gem->gem_handle, bo_gem->name); memset(&mmap_arg, 0, sizeof(mmap_arg)); mmap_arg.handle = bo_gem->gem_handle; /* Get the fake offset back... */ do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); } while (ret == -1 && errno == EINTR); if (ret != 0) { ret = -errno; fprintf(stderr, "%s:%d: Error preparing buffer map %d (%s): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, bo_gem->name, strerror(errno)); pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } /* and mmap it */ bo_gem->gtt_virtual = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr_gem->fd, mmap_arg.offset); if (bo_gem->gtt_virtual == MAP_FAILED) { bo_gem->gtt_virtual = NULL; ret = -errno; fprintf(stderr, "%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, bo_gem->name, strerror(errno)); pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } } bo->virtual = bo_gem->gtt_virtual; DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, bo_gem->gtt_virtual); /* Now move it to the GTT domain so that the CPU caches are flushed */ set_domain.handle = bo_gem->gem_handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); } while (ret == -1 && errno == EINTR); if (ret != 0) { ret = -errno; fprintf(stderr, "%s:%d: Error setting domain %d: %s\n", __FILE__, __LINE__, bo_gem->gem_handle, strerror(errno)); } pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int ret = 0; if (bo == NULL) return 0; assert(bo_gem->gtt_virtual != NULL); pthread_mutex_lock(&bufmgr_gem->lock); bo->virtual = NULL; pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int drm_intel_gem_bo_unmap(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_sw_finish sw_finish; int ret; if (bo == NULL) return 0; assert(bo_gem->mem_virtual != NULL); pthread_mutex_lock(&bufmgr_gem->lock); /* Cause a flush to happen if the buffer's pinned for scanout, so the * results show up in a timely manner. */ sw_finish.handle = bo_gem->gem_handle; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SW_FINISH, &sw_finish); } while (ret == -1 && errno == EINTR); ret = ret == -1 ? -errno : 0; bo->virtual = NULL; pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset, unsigned long size, const void *data) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_pwrite pwrite; int ret; memset(&pwrite, 0, sizeof(pwrite)); pwrite.handle = bo_gem->gem_handle; pwrite.offset = offset; pwrite.size = size; pwrite.data_ptr = (uint64_t) (uintptr_t) data; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite); } while (ret == -1 && errno == EINTR); if (ret != 0) { ret = -errno; fprintf(stderr, "%s:%d: Error writing data to buffer %d: (%d %d) %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, (int)size, strerror(errno)); } return ret; } static int drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id; int ret; get_pipe_from_crtc_id.crtc_id = crtc_id; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, &get_pipe_from_crtc_id); if (ret != 0) { /* We return -1 here to signal that we don't * know which pipe is associated with this crtc. * This lets the caller know that this information * isn't available; using the wrong pipe for * vblank waiting can cause the chipset to lock up */ return -1; } return get_pipe_from_crtc_id.pipe; } static int drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset, unsigned long size, void *data) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_pread pread; int ret; memset(&pread, 0, sizeof(pread)); pread.handle = bo_gem->gem_handle; pread.offset = offset; pread.size = size; pread.data_ptr = (uint64_t) (uintptr_t) data; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_PREAD, &pread); } while (ret == -1 && errno == EINTR); if (ret != 0) { ret = -errno; fprintf(stderr, "%s:%d: Error reading data from buffer %d: (%d %d) %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, (int)size, strerror(errno)); } return ret; } /** Waits for all GPU rendering to the object to have completed. */ static void drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo) { drm_intel_gem_bo_start_gtt_access(bo, 0); } /** * Sets the object to the GTT read and possibly write domain, used by the X * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt(). * * In combination with drm_intel_gem_bo_pin() and manual fence management, we * can do tiled pixmaps this way. */ void drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_domain set_domain; int ret; set_domain.handle = bo_gem->gem_handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); } while (ret == -1 && errno == EINTR); if (ret != 0) { fprintf(stderr, "%s:%d: Error setting memory domains %d (%08x %08x): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, set_domain.read_domains, set_domain.write_domain, strerror(errno)); } } static void drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; int i; free(bufmgr_gem->exec2_objects); free(bufmgr_gem->exec_objects); free(bufmgr_gem->exec_bos); pthread_mutex_destroy(&bufmgr_gem->lock); /* Free any cached buffer objects we were going to reuse */ for (i = 0; i < bufmgr_gem->num_buckets; i++) { struct drm_intel_gem_bo_bucket *bucket = &bufmgr_gem->cache_bucket[i]; drm_intel_bo_gem *bo_gem; while (!DRMLISTEMPTY(&bucket->head)) { bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); DRMLISTDEL(&bo_gem->head); drm_intel_gem_bo_free(&bo_gem->bo); } } free(bufmgr); } /** * Adds the target buffer to the validation list and adds the relocation * to the reloc_buffer's relocation list. * * The relocation entry at the given offset must already contain the * precomputed relocation value, because the kernel will optimize out * the relocation entry write when the buffer hasn't moved from the * last known offset in target_bo. */ static int do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain, int need_fence) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; if (bo_gem->has_error) return -ENOMEM; if (target_bo_gem->has_error) { bo_gem->has_error = 1; return -ENOMEM; } if (target_bo_gem->tiling_mode == I915_TILING_NONE) need_fence = 0; /* We never use HW fences for rendering on 965+ */ if (bufmgr_gem->gen >= 4) need_fence = 0; /* Create a new relocation list if needed */ if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo)) return -ENOMEM; /* Check overflow */ assert(bo_gem->reloc_count < bufmgr_gem->max_relocs); /* Check args */ assert(offset <= bo->size - 4); assert((write_domain & (write_domain - 1)) == 0); /* Make sure that we're not adding a reloc to something whose size has * already been accounted for. */ assert(!bo_gem->used_as_reloc_target); if (target_bo_gem != bo_gem) { target_bo_gem->used_as_reloc_target = 1; bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size; } /* An object needing a fence is a tiled buffer, so it won't have * relocs to other buffers. */ if (need_fence) target_bo_gem->reloc_tree_fences = 1; bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences; /* Flag the target to disallow further relocations in it. */ bo_gem->relocs[bo_gem->reloc_count].offset = offset; bo_gem->relocs[bo_gem->reloc_count].delta = target_offset; bo_gem->relocs[bo_gem->reloc_count].target_handle = target_bo_gem->gem_handle; bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains; bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain; bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset; bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo; if (target_bo != bo) drm_intel_gem_bo_reference(target_bo); if (need_fence) bo_gem->reloc_target_info[bo_gem->reloc_count].flags = DRM_INTEL_RELOC_FENCE; else bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0; bo_gem->reloc_count++; return 0; } static int drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; return do_bo_emit_reloc(bo, offset, target_bo, target_offset, read_domains, write_domain, !bufmgr_gem->fenced_relocs); } static int drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain) { return do_bo_emit_reloc(bo, offset, target_bo, target_offset, read_domains, write_domain, 1); } /** * Walk the tree of relocations rooted at BO and accumulate the list of * validations to be performed and update the relocation buffers with * index values into the validation list. */ static void drm_intel_gem_bo_process_reloc(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; if (bo_gem->relocs == NULL) return; for (i = 0; i < bo_gem->reloc_count; i++) { drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; if (target_bo == bo) continue; /* Continue walking the tree depth-first. */ drm_intel_gem_bo_process_reloc(target_bo); /* Add the target to the validate list */ drm_intel_add_validate_buffer(target_bo); } } static void drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; int i; if (bo_gem->relocs == NULL) return; for (i = 0; i < bo_gem->reloc_count; i++) { drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; int need_fence; if (target_bo == bo) continue; /* Continue walking the tree depth-first. */ drm_intel_gem_bo_process_reloc2(target_bo); need_fence = (bo_gem->reloc_target_info[i].flags & DRM_INTEL_RELOC_FENCE); /* Add the target to the validate list */ drm_intel_add_validate_buffer2(target_bo, need_fence); } } static void drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem) { int i; for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; /* Update the buffer offset */ if (bufmgr_gem->exec_objects[i].offset != bo->offset) { DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n", bo_gem->gem_handle, bo_gem->name, bo->offset, (unsigned long long)bufmgr_gem->exec_objects[i]. offset); bo->offset = bufmgr_gem->exec_objects[i].offset; } } } static void drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem) { int i; for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; /* Update the buffer offset */ if (bufmgr_gem->exec2_objects[i].offset != bo->offset) { DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n", bo_gem->gem_handle, bo_gem->name, bo->offset, (unsigned long long)bufmgr_gem->exec2_objects[i].offset); bo->offset = bufmgr_gem->exec2_objects[i].offset; } } } static int drm_intel_gem_bo_exec(drm_intel_bo *bo, int used, drm_clip_rect_t * cliprects, int num_cliprects, int DR4) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_execbuffer execbuf; int ret, i; if (bo_gem->has_error) return -ENOMEM; pthread_mutex_lock(&bufmgr_gem->lock); /* Update indices and set up the validate list. */ drm_intel_gem_bo_process_reloc(bo); /* Add the batch buffer to the validation list. There are no * relocations pointing to it. */ drm_intel_add_validate_buffer(bo); execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects; execbuf.buffer_count = bufmgr_gem->exec_count; execbuf.batch_start_offset = 0; execbuf.batch_len = used; execbuf.cliprects_ptr = (uintptr_t) cliprects; execbuf.num_cliprects = num_cliprects; execbuf.DR1 = 0; execbuf.DR4 = DR4; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_EXECBUFFER, &execbuf); } while (ret != 0 && errno == EINTR); if (ret != 0) { ret = -errno; if (errno == ENOSPC) { fprintf(stderr, "Execbuffer fails to pin. " "Estimate: %u. Actual: %u. Available: %u\n", drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, bufmgr_gem-> exec_count), drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, bufmgr_gem-> exec_count), (unsigned int)bufmgr_gem->gtt_size); } } drm_intel_update_buffer_offsets(bufmgr_gem); if (bufmgr_gem->bufmgr.debug) drm_intel_gem_dump_validation_list(bufmgr_gem); for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; /* Disconnect the buffer from the validate list */ bo_gem->validate_index = -1; bufmgr_gem->exec_bos[i] = NULL; } bufmgr_gem->exec_count = 0; pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used, drm_clip_rect_t *cliprects, int num_cliprects, int DR4, int ring_flag) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; struct drm_i915_gem_execbuffer2 execbuf; int ret, i; if ((ring_flag != I915_EXEC_RENDER) && (ring_flag != I915_EXEC_BSD)) return -EINVAL; pthread_mutex_lock(&bufmgr_gem->lock); /* Update indices and set up the validate list. */ drm_intel_gem_bo_process_reloc2(bo); /* Add the batch buffer to the validation list. There are no relocations * pointing to it. */ drm_intel_add_validate_buffer2(bo, 0); execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects; execbuf.buffer_count = bufmgr_gem->exec_count; execbuf.batch_start_offset = 0; execbuf.batch_len = used; execbuf.cliprects_ptr = (uintptr_t)cliprects; execbuf.num_cliprects = num_cliprects; execbuf.DR1 = 0; execbuf.DR4 = DR4; execbuf.flags = ring_flag; execbuf.rsvd1 = 0; execbuf.rsvd2 = 0; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); } while (ret != 0 && errno == EINTR); if (ret != 0) { ret = -errno; if (ret == -ENOMEM) { fprintf(stderr, "Execbuffer fails to pin. " "Estimate: %u. Actual: %u. Available: %u\n", drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, bufmgr_gem->exec_count), drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, bufmgr_gem->exec_count), (unsigned int) bufmgr_gem->gtt_size); } } drm_intel_update_buffer_offsets2(bufmgr_gem); if (bufmgr_gem->bufmgr.debug) drm_intel_gem_dump_validation_list(bufmgr_gem); for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; /* Disconnect the buffer from the validate list */ bo_gem->validate_index = -1; bufmgr_gem->exec_bos[i] = NULL; } bufmgr_gem->exec_count = 0; pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used, drm_clip_rect_t *cliprects, int num_cliprects, int DR4) { return drm_intel_gem_bo_mrb_exec2(bo, used, cliprects, num_cliprects, DR4, I915_EXEC_RENDER); } static int drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_pin pin; int ret; memset(&pin, 0, sizeof(pin)); pin.handle = bo_gem->gem_handle; pin.alignment = alignment; do { ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_PIN, &pin); } while (ret == -1 && errno == EINTR); if (ret != 0) return -errno; bo->offset = pin.offset; return 0; } static int drm_intel_gem_bo_unpin(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_unpin unpin; int ret; memset(&unpin, 0, sizeof(unpin)); unpin.handle = bo_gem->gem_handle; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin); if (ret != 0) return -errno; return 0; } static int drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t stride) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_tiling set_tiling; int ret; if (bo_gem->global_name == 0) return 0; if (*tiling_mode == bo_gem->tiling_mode && stride == bo_gem->stride) return 0; memset(&set_tiling, 0, sizeof(set_tiling)); set_tiling.handle = bo_gem->gem_handle; do { set_tiling.tiling_mode = *tiling_mode; set_tiling.stride = stride; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && errno == EINTR); if (ret == 0) { bo_gem->tiling_mode = set_tiling.tiling_mode; bo_gem->swizzle_mode = set_tiling.swizzle_mode; bo_gem->stride = stride; drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); } else ret = -errno; *tiling_mode = bo_gem->tiling_mode; return ret; } static int drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t * swizzle_mode) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; *tiling_mode = bo_gem->tiling_mode; *swizzle_mode = bo_gem->swizzle_mode; return 0; } static int drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_gem_flink flink; int ret; if (!bo_gem->global_name) { memset(&flink, 0, sizeof(flink)); flink.handle = bo_gem->gem_handle; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink); if (ret != 0) return -errno; bo_gem->global_name = flink.name; bo_gem->reusable = 0; } *name = bo_gem->global_name; return 0; } /** * Enables unlimited caching of buffer objects for reuse. * * This is potentially very memory expensive, as the cache at each bucket * size is only bounded by how many buffers of that size we've managed to have * in flight at once. */ void drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; bufmgr_gem->bo_reuse = 1; } /** * Enable use of fenced reloc type. * * New code should enable this to avoid unnecessary fence register * allocation. If this option is not enabled, all relocs will have fence * register allocated. */ void drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2) bufmgr_gem->fenced_relocs = 1; } /** * Return the additional aperture space required by the tree of buffer objects * rooted at bo. */ static int drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; int total = 0; if (bo == NULL || bo_gem->included_in_check_aperture) return 0; total += bo->size; bo_gem->included_in_check_aperture = 1; for (i = 0; i < bo_gem->reloc_count; i++) total += drm_intel_gem_bo_get_aperture_space(bo_gem-> reloc_target_info[i].bo); return total; } /** * Count the number of buffers in this list that need a fence reg * * If the count is greater than the number of available regs, we'll have * to ask the caller to resubmit a batch with fewer tiled buffers. * * This function over-counts if the same buffer is used multiple times. */ static unsigned int drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count) { int i; unsigned int total = 0; for (i = 0; i < count; i++) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; if (bo_gem == NULL) continue; total += bo_gem->reloc_tree_fences; } return total; } /** * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready * for the next drm_intel_bufmgr_check_aperture_space() call. */ static void drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; if (bo == NULL || !bo_gem->included_in_check_aperture) return; bo_gem->included_in_check_aperture = 0; for (i = 0; i < bo_gem->reloc_count; i++) drm_intel_gem_bo_clear_aperture_space_flag(bo_gem-> reloc_target_info[i].bo); } /** * Return a conservative estimate for the amount of aperture required * for a collection of buffers. This may double-count some buffers. */ static unsigned int drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count) { int i; unsigned int total = 0; for (i = 0; i < count; i++) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; if (bo_gem != NULL) total += bo_gem->reloc_tree_size; } return total; } /** * Return the amount of aperture needed for a collection of buffers. * This avoids double counting any buffers, at the cost of looking * at every buffer in the set. */ static unsigned int drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count) { int i; unsigned int total = 0; for (i = 0; i < count; i++) { total += drm_intel_gem_bo_get_aperture_space(bo_array[i]); /* For the first buffer object in the array, we get an * accurate count back for its reloc_tree size (since nothing * had been flagged as being counted yet). We can save that * value out as a more conservative reloc_tree_size that * avoids double-counting target buffers. Since the first * buffer happens to usually be the batch buffer in our * callers, this can pull us back from doing the tree * walk on every new batch emit. */ if (i == 0) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; bo_gem->reloc_tree_size = total; } } for (i = 0; i < count; i++) drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]); return total; } /** * Return -1 if the batchbuffer should be flushed before attempting to * emit rendering referencing the buffers pointed to by bo_array. * * This is required because if we try to emit a batchbuffer with relocations * to a tree of buffers that won't simultaneously fit in the aperture, * the rendering will return an error at a point where the software is not * prepared to recover from it. * * However, we also want to emit the batchbuffer significantly before we reach * the limit, as a series of batchbuffers each of which references buffers * covering almost all of the aperture means that at each emit we end up * waiting to evict a buffer from the last rendering, and we get synchronous * performance. By emitting smaller batchbuffers, we eat some CPU overhead to * get better parallelism. */ static int drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr; unsigned int total = 0; unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4; int total_fences; /* Check for fence reg constraints if necessary */ if (bufmgr_gem->available_fences) { total_fences = drm_intel_gem_total_fences(bo_array, count); if (total_fences > bufmgr_gem->available_fences) return -ENOSPC; } total = drm_intel_gem_estimate_batch_space(bo_array, count); if (total > threshold) total = drm_intel_gem_compute_batch_space(bo_array, count); if (total > threshold) { DBG("check_space: overflowed available aperture, " "%dkb vs %dkb\n", total / 1024, (int)bufmgr_gem->gtt_size / 1024); return -ENOSPC; } else { DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024, (int)bufmgr_gem->gtt_size / 1024); return 0; } } /* * Disable buffer reuse for objects which are shared with the kernel * as scanout buffers */ static int drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; bo_gem->reusable = 0; return 0; } static int drm_intel_gem_bo_is_reusable(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; return bo_gem->reusable; } static int _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; for (i = 0; i < bo_gem->reloc_count; i++) { if (bo_gem->reloc_target_info[i].bo == target_bo) return 1; if (bo == bo_gem->reloc_target_info[i].bo) continue; if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo, target_bo)) return 1; } return 0; } /** Return true if target_bo is referenced by bo's relocation tree. */ static int drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) { drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; if (bo == NULL || target_bo == NULL) return 0; if (target_bo_gem->used_as_reloc_target) return _drm_intel_gem_bo_references(bo, target_bo); return 0; } static void add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size) { unsigned int i = bufmgr_gem->num_buckets; assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket)); DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head); bufmgr_gem->cache_bucket[i].size = size; bufmgr_gem->num_buckets++; } static void init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem) { unsigned long size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr_gem, 4096); add_bucket(bufmgr_gem, 4096 * 2); add_bucket(bufmgr_gem, 4096 * 3); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * 4096; size <= cache_max_size; size *= 2) { add_bucket(bufmgr_gem, size); add_bucket(bufmgr_gem, size + size * 1 / 4); add_bucket(bufmgr_gem, size + size * 2 / 4); add_bucket(bufmgr_gem, size + size * 3 / 4); } } /** * Initializes the GEM buffer manager, which uses the kernel to allocate, map, * and manage map buffer objections. * * \param fd File descriptor of the opened DRM device. */ drm_intel_bufmgr * drm_intel_bufmgr_gem_init(int fd, int batch_size) { drm_intel_bufmgr_gem *bufmgr_gem; struct drm_i915_gem_get_aperture aperture; drm_i915_getparam_t gp; int ret; int exec2 = 0, has_bsd = 0; bufmgr_gem = calloc(1, sizeof(*bufmgr_gem)); if (bufmgr_gem == NULL) return NULL; bufmgr_gem->fd = fd; if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) { free(bufmgr_gem); return NULL; } ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); if (ret == 0) bufmgr_gem->gtt_size = aperture.aper_available_size; else { fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n", strerror(errno)); bufmgr_gem->gtt_size = 128 * 1024 * 1024; fprintf(stderr, "Assuming %dkB available aperture size.\n" "May lead to reduced performance or incorrect " "rendering.\n", (int)bufmgr_gem->gtt_size / 1024); } gp.param = I915_PARAM_CHIPSET_ID; gp.value = &bufmgr_gem->pci_device; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) { fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno); fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); } if (IS_GEN2(bufmgr_gem)) bufmgr_gem->gen = 2; else if (IS_GEN3(bufmgr_gem)) bufmgr_gem->gen = 3; else if (IS_GEN4(bufmgr_gem)) bufmgr_gem->gen = 4; else bufmgr_gem->gen = 6; gp.param = I915_PARAM_HAS_EXECBUF2; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (!ret) exec2 = 1; gp.param = I915_PARAM_HAS_BSD; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (!ret) has_bsd = 1; if (bufmgr_gem->gen < 4) { gp.param = I915_PARAM_NUM_FENCES_AVAIL; gp.value = &bufmgr_gem->available_fences; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) { fprintf(stderr, "get fences failed: %d [%d]\n", ret, errno); fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); bufmgr_gem->available_fences = 0; } else { /* XXX The kernel reports the total number of fences, * including any that may be pinned. * * We presume that there will be at least one pinned * fence for the scanout buffer, but there may be more * than one scanout and the user may be manually * pinning buffers. Let's move to execbuffer2 and * thereby forget the insanity of using fences... */ bufmgr_gem->available_fences -= 2; if (bufmgr_gem->available_fences < 0) bufmgr_gem->available_fences = 0; } } /* Let's go with one relocation per every 2 dwords (but round down a bit * since a power of two will mean an extra page allocation for the reloc * buffer). * * Every 4 was too few for the blender benchmark. */ bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2; bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc; bufmgr_gem->bufmgr.bo_alloc_for_render = drm_intel_gem_bo_alloc_for_render; bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled; bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference; bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference; bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map; bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap; bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata; bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata; bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering; bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc; bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence; bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin; bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin; bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling; bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling; bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink; /* Use the new one if available */ if (exec2) { bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2; if (has_bsd) bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2; } else bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec; bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy; bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise; bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy; bufmgr_gem->bufmgr.debug = 0; bufmgr_gem->bufmgr.check_aperture_space = drm_intel_gem_check_aperture_space; bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse; bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable; bufmgr_gem->bufmgr.get_pipe_from_crtc_id = drm_intel_gem_get_pipe_from_crtc_id; bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references; init_cache_buckets(bufmgr_gem); return &bufmgr_gem->bufmgr; }