/************************************************************************** * * Copyright © 2007 Red Hat Inc. * Copyright © 2007-2012 Intel Corporation * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * **************************************************************************/ /* * Authors: Thomas Hellström * Keith Whitwell * Eric Anholt * Dave Airlie */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "errno.h" #include "libdrm_lists.h" #include "intel_bufmgr.h" #include "intel_bufmgr_priv.h" #include "intel_chipset.h" #include "intel_aub.h" #include "string.h" #include "i915_drm.h" #ifdef HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif #define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s))) #define DBG(...) do { \ if (bufmgr_gem->bufmgr.debug) \ fprintf(stderr, __VA_ARGS__); \ } while (0) #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) typedef struct _drm_intel_bo_gem drm_intel_bo_gem; struct drm_intel_gem_bo_bucket { drmMMListHead head; unsigned long size; }; typedef struct _drm_intel_bufmgr_gem { drm_intel_bufmgr bufmgr; int fd; int max_relocs; pthread_mutex_t lock; struct drm_i915_gem_exec_object *exec_objects; struct drm_i915_gem_exec_object2 *exec2_objects; drm_intel_bo **exec_bos; int exec_size; int exec_count; /** Array of lists of cached gem objects of power-of-two sizes */ struct drm_intel_gem_bo_bucket cache_bucket[14 * 4]; int num_buckets; time_t time; drmMMListHead named; drmMMListHead vma_cache; int vma_count, vma_open, vma_max; uint64_t gtt_size; int available_fences; int pci_device; int gen; unsigned int has_bsd : 1; unsigned int has_blt : 1; unsigned int has_relaxed_fencing : 1; unsigned int has_llc : 1; unsigned int has_wait_timeout : 1; unsigned int bo_reuse : 1; unsigned int no_exec : 1; bool fenced_relocs; FILE *aub_file; uint32_t aub_offset; } drm_intel_bufmgr_gem; #define DRM_INTEL_RELOC_FENCE (1<<0) typedef struct _drm_intel_reloc_target_info { drm_intel_bo *bo; int flags; } drm_intel_reloc_target; struct _drm_intel_bo_gem { drm_intel_bo bo; atomic_t refcount; uint32_t gem_handle; const char *name; /** * Kenel-assigned global name for this object */ unsigned int global_name; drmMMListHead name_list; /** * Index of the buffer within the validation list while preparing a * batchbuffer execution. */ int validate_index; /** * Current tiling mode */ uint32_t tiling_mode; uint32_t swizzle_mode; unsigned long stride; time_t free_time; /** Array passed to the DRM containing relocation information. */ struct drm_i915_gem_relocation_entry *relocs; /** * Array of info structs corresponding to relocs[i].target_handle etc */ drm_intel_reloc_target *reloc_target_info; /** Number of entries in relocs */ int reloc_count; /** Mapped address for the buffer, saved across map/unmap cycles */ void *mem_virtual; /** GTT virtual address for the buffer, saved across map/unmap cycles */ void *gtt_virtual; int map_count; drmMMListHead vma_list; /** BO cache list */ drmMMListHead head; /** * Boolean of whether this BO and its children have been included in * the current drm_intel_bufmgr_check_aperture_space() total. */ bool included_in_check_aperture; /** * Boolean of whether this buffer has been used as a relocation * target and had its size accounted for, and thus can't have any * further relocations added to it. */ bool used_as_reloc_target; /** * Boolean of whether we have encountered an error whilst building the relocation tree. */ bool has_error; /** * Boolean of whether this buffer can be re-used */ bool reusable; /** * Size in bytes of this buffer and its relocation descendents. * * Used to avoid costly tree walking in * drm_intel_bufmgr_check_aperture in the common case. */ int reloc_tree_size; /** * Number of potential fence registers required by this buffer and its * relocations. */ int reloc_tree_fences; /** Flags that we may need to do the SW_FINSIH ioctl on unmap. */ bool mapped_cpu_write; uint32_t aub_offset; drm_intel_aub_annotation *aub_annotations; unsigned aub_annotation_count; }; static unsigned int drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count); static unsigned int drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count); static int drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t * swizzle_mode); static int drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, uint32_t tiling_mode, uint32_t stride); static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, time_t time); static void drm_intel_gem_bo_unreference(drm_intel_bo *bo); static void drm_intel_gem_bo_free(drm_intel_bo *bo); static unsigned long drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size, uint32_t *tiling_mode) { unsigned long min_size, max_size; unsigned long i; if (*tiling_mode == I915_TILING_NONE) return size; /* 965+ just need multiples of page size for tiling */ if (bufmgr_gem->gen >= 4) return ROUND_UP_TO(size, 4096); /* Older chips need powers of two, of at least 512k or 1M */ if (bufmgr_gem->gen == 3) { min_size = 1024*1024; max_size = 128*1024*1024; } else { min_size = 512*1024; max_size = 64*1024*1024; } if (size > max_size) { *tiling_mode = I915_TILING_NONE; return size; } /* Do we need to allocate every page for the fence? */ if (bufmgr_gem->has_relaxed_fencing) return ROUND_UP_TO(size, 4096); for (i = min_size; i < size; i <<= 1) ; return i; } /* * Round a given pitch up to the minimum required for X tiling on a * given chip. We use 512 as the minimum to allow for a later tiling * change. */ static unsigned long drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long pitch, uint32_t *tiling_mode) { unsigned long tile_width; unsigned long i; /* If untiled, then just align it so that we can do rendering * to it with the 3D engine. */ if (*tiling_mode == I915_TILING_NONE) return ALIGN(pitch, 64); if (*tiling_mode == I915_TILING_X || (IS_915(bufmgr_gem->pci_device) && *tiling_mode == I915_TILING_Y)) tile_width = 512; else tile_width = 128; /* 965 is flexible */ if (bufmgr_gem->gen >= 4) return ROUND_UP_TO(pitch, tile_width); /* The older hardware has a maximum pitch of 8192 with tiled * surfaces, so fallback to untiled if it's too large. */ if (pitch > 8192) { *tiling_mode = I915_TILING_NONE; return ALIGN(pitch, 64); } /* Pre-965 needs power of two tile width */ for (i = tile_width; i < pitch; i <<= 1) ; return i; } static struct drm_intel_gem_bo_bucket * drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size) { int i; for (i = 0; i < bufmgr_gem->num_buckets; i++) { struct drm_intel_gem_bo_bucket *bucket = &bufmgr_gem->cache_bucket[i]; if (bucket->size >= size) { return bucket; } } return NULL; } static void drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem) { int i, j; for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; if (bo_gem->relocs == NULL) { DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle, bo_gem->name); continue; } for (j = 0; j < bo_gem->reloc_count; j++) { drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo; drm_intel_bo_gem *target_gem = (drm_intel_bo_gem *) target_bo; DBG("%2d: %d (%s)@0x%08llx -> " "%d (%s)@0x%08lx + 0x%08x\n", i, bo_gem->gem_handle, bo_gem->name, (unsigned long long)bo_gem->relocs[j].offset, target_gem->gem_handle, target_gem->name, target_bo->offset, bo_gem->relocs[j].delta); } } } static inline void drm_intel_gem_bo_reference(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; atomic_inc(&bo_gem->refcount); } /** * Adds the given buffer to the list of buffers to be validated (moved into the * appropriate memory type) with the next batch submission. * * If a buffer is validated multiple times in a batch submission, it ends up * with the intersection of the memory type flags and the union of the * access flags. */ static void drm_intel_add_validate_buffer(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int index; if (bo_gem->validate_index != -1) return; /* Extend the array of validation entries as necessary. */ if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { int new_size = bufmgr_gem->exec_size * 2; if (new_size == 0) new_size = 5; bufmgr_gem->exec_objects = realloc(bufmgr_gem->exec_objects, sizeof(*bufmgr_gem->exec_objects) * new_size); bufmgr_gem->exec_bos = realloc(bufmgr_gem->exec_bos, sizeof(*bufmgr_gem->exec_bos) * new_size); bufmgr_gem->exec_size = new_size; } index = bufmgr_gem->exec_count; bo_gem->validate_index = index; /* Fill in array entry */ bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle; bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count; bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs; bufmgr_gem->exec_objects[index].alignment = 0; bufmgr_gem->exec_objects[index].offset = 0; bufmgr_gem->exec_bos[index] = bo; bufmgr_gem->exec_count++; } static void drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; int index; if (bo_gem->validate_index != -1) { if (need_fence) bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= EXEC_OBJECT_NEEDS_FENCE; return; } /* Extend the array of validation entries as necessary. */ if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { int new_size = bufmgr_gem->exec_size * 2; if (new_size == 0) new_size = 5; bufmgr_gem->exec2_objects = realloc(bufmgr_gem->exec2_objects, sizeof(*bufmgr_gem->exec2_objects) * new_size); bufmgr_gem->exec_bos = realloc(bufmgr_gem->exec_bos, sizeof(*bufmgr_gem->exec_bos) * new_size); bufmgr_gem->exec_size = new_size; } index = bufmgr_gem->exec_count; bo_gem->validate_index = index; /* Fill in array entry */ bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle; bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count; bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs; bufmgr_gem->exec2_objects[index].alignment = 0; bufmgr_gem->exec2_objects[index].offset = 0; bufmgr_gem->exec_bos[index] = bo; bufmgr_gem->exec2_objects[index].flags = 0; bufmgr_gem->exec2_objects[index].rsvd1 = 0; bufmgr_gem->exec2_objects[index].rsvd2 = 0; if (need_fence) { bufmgr_gem->exec2_objects[index].flags |= EXEC_OBJECT_NEEDS_FENCE; } bufmgr_gem->exec_count++; } #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \ sizeof(uint32_t)) static void drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem, drm_intel_bo_gem *bo_gem) { int size; assert(!bo_gem->used_as_reloc_target); /* The older chipsets are far-less flexible in terms of tiling, * and require tiled buffer to be size aligned in the aperture. * This means that in the worst possible case we will need a hole * twice as large as the object in order for it to fit into the * aperture. Optimal packing is for wimps. */ size = bo_gem->bo.size; if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) { int min_size; if (bufmgr_gem->has_relaxed_fencing) { if (bufmgr_gem->gen == 3) min_size = 1024*1024; else min_size = 512*1024; while (min_size < size) min_size *= 2; } else min_size = size; /* Account for worst-case alignment. */ size = 2 * min_size; } bo_gem->reloc_tree_size = size; } static int drm_intel_setup_reloc_list(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; unsigned int max_relocs = bufmgr_gem->max_relocs; if (bo->size / 4 < max_relocs) max_relocs = bo->size / 4; bo_gem->relocs = malloc(max_relocs * sizeof(struct drm_i915_gem_relocation_entry)); bo_gem->reloc_target_info = malloc(max_relocs * sizeof(drm_intel_reloc_target)); if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) { bo_gem->has_error = true; free (bo_gem->relocs); bo_gem->relocs = NULL; free (bo_gem->reloc_target_info); bo_gem->reloc_target_info = NULL; return 1; } return 0; } static int drm_intel_gem_bo_busy(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_busy busy; int ret; VG_CLEAR(busy); busy.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); return (ret == 0 && busy.busy); } static int drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem, drm_intel_bo_gem *bo_gem, int state) { struct drm_i915_gem_madvise madv; VG_CLEAR(madv); madv.handle = bo_gem->gem_handle; madv.madv = state; madv.retained = 1; drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } static int drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv) { return drm_intel_gem_bo_madvise_internal ((drm_intel_bufmgr_gem *) bo->bufmgr, (drm_intel_bo_gem *) bo, madv); } /* drop the oldest entries that have been purged by the kernel */ static void drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem, struct drm_intel_gem_bo_bucket *bucket) { while (!DRMLISTEMPTY(&bucket->head)) { drm_intel_bo_gem *bo_gem; bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); if (drm_intel_gem_bo_madvise_internal (bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) break; DRMLISTDEL(&bo_gem->head); drm_intel_gem_bo_free(&bo_gem->bo); } } static drm_intel_bo * drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned long flags, uint32_t tiling_mode, unsigned long stride) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; drm_intel_bo_gem *bo_gem; unsigned int page_size = getpagesize(); int ret; struct drm_intel_gem_bo_bucket *bucket; bool alloc_from_cache; unsigned long bo_size; bool for_render = false; if (flags & BO_ALLOC_FOR_RENDER) for_render = true; /* Round the allocated size up to a power of two number of pages. */ bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size); /* If we don't have caching at this size, don't actually round the * allocation up. */ if (bucket == NULL) { bo_size = size; if (bo_size < page_size) bo_size = page_size; } else { bo_size = bucket->size; } pthread_mutex_lock(&bufmgr_gem->lock); /* Get a buffer out of the cache if available */ retry: alloc_from_cache = false; if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) { if (for_render) { /* Allocate new render-target BOs from the tail (MRU) * of the list, as it will likely be hot in the GPU * cache and in the aperture for us. */ bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.prev, head); DRMLISTDEL(&bo_gem->head); alloc_from_cache = true; } else { /* For non-render-target BOs (where we're probably * going to map it first thing in order to fill it * with data), check if the last BO in the cache is * unbusy, and only reuse in that case. Otherwise, * allocating a new buffer is probably faster than * waiting for the GPU to finish. */ bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); if (!drm_intel_gem_bo_busy(&bo_gem->bo)) { alloc_from_cache = true; DRMLISTDEL(&bo_gem->head); } } if (alloc_from_cache) { if (!drm_intel_gem_bo_madvise_internal (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) { drm_intel_gem_bo_free(&bo_gem->bo); drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem, bucket); goto retry; } if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, tiling_mode, stride)) { drm_intel_gem_bo_free(&bo_gem->bo); goto retry; } } } pthread_mutex_unlock(&bufmgr_gem->lock); if (!alloc_from_cache) { struct drm_i915_gem_create create; bo_gem = calloc(1, sizeof(*bo_gem)); if (!bo_gem) return NULL; bo_gem->bo.size = bo_size; VG_CLEAR(create); create.size = bo_size; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CREATE, &create); bo_gem->gem_handle = create.handle; bo_gem->bo.handle = bo_gem->gem_handle; if (ret != 0) { free(bo_gem); return NULL; } bo_gem->bo.bufmgr = bufmgr; bo_gem->tiling_mode = I915_TILING_NONE; bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; bo_gem->stride = 0; if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, tiling_mode, stride)) { drm_intel_gem_bo_free(&bo_gem->bo); return NULL; } DRMINITLISTHEAD(&bo_gem->name_list); DRMINITLISTHEAD(&bo_gem->vma_list); } bo_gem->name = name; atomic_set(&bo_gem->refcount, 1); bo_gem->validate_index = -1; bo_gem->reloc_tree_fences = 0; bo_gem->used_as_reloc_target = false; bo_gem->has_error = false; bo_gem->reusable = true; bo_gem->aub_annotations = NULL; bo_gem->aub_annotation_count = 0; drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); DBG("bo_create: buf %d (%s) %ldb\n", bo_gem->gem_handle, bo_gem->name, size); return &bo_gem->bo; } static drm_intel_bo * drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned int alignment) { return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, BO_ALLOC_FOR_RENDER, I915_TILING_NONE, 0); } static drm_intel_bo * drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned int alignment) { return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0); } static drm_intel_bo * drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name, int x, int y, int cpp, uint32_t *tiling_mode, unsigned long *pitch, unsigned long flags) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; unsigned long size, stride; uint32_t tiling; do { unsigned long aligned_y, height_alignment; tiling = *tiling_mode; /* If we're tiled, our allocations are in 8 or 32-row blocks, * so failure to align our height means that we won't allocate * enough pages. * * If we're untiled, we still have to align to 2 rows high * because the data port accesses 2x2 blocks even if the * bottom row isn't to be rendered, so failure to align means * we could walk off the end of the GTT and fault. This is * documented on 965, and may be the case on older chipsets * too so we try to be careful. */ aligned_y = y; height_alignment = 2; if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE) height_alignment = 16; else if (tiling == I915_TILING_X || (IS_915(bufmgr_gem->pci_device) && tiling == I915_TILING_Y)) height_alignment = 8; else if (tiling == I915_TILING_Y) height_alignment = 32; aligned_y = ALIGN(y, height_alignment); stride = x * cpp; stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode); size = stride * aligned_y; size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode); } while (*tiling_mode != tiling); *pitch = stride; if (tiling == I915_TILING_NONE) stride = 0; return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags, tiling, stride); } /** * Returns a drm_intel_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ drm_intel_bo * drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr, const char *name, unsigned int handle) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; drm_intel_bo_gem *bo_gem; int ret; struct drm_gem_open open_arg; struct drm_i915_gem_get_tiling get_tiling; drmMMListHead *list; /* At the moment most applications only have a few named bo. * For instance, in a DRI client only the render buffers passed * between X and the client are named. And since X returns the * alternating names for the front/back buffer a linear search * provides a sufficiently fast match. */ for (list = bufmgr_gem->named.next; list != &bufmgr_gem->named; list = list->next) { bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list); if (bo_gem->global_name == handle) { drm_intel_gem_bo_reference(&bo_gem->bo); return &bo_gem->bo; } } bo_gem = calloc(1, sizeof(*bo_gem)); if (!bo_gem) return NULL; VG_CLEAR(open_arg); open_arg.name = handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (ret != 0) { DBG("Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); free(bo_gem); return NULL; } bo_gem->bo.size = open_arg.size; bo_gem->bo.offset = 0; bo_gem->bo.virtual = NULL; bo_gem->bo.bufmgr = bufmgr; bo_gem->name = name; atomic_set(&bo_gem->refcount, 1); bo_gem->validate_index = -1; bo_gem->gem_handle = open_arg.handle; bo_gem->bo.handle = open_arg.handle; bo_gem->global_name = handle; bo_gem->reusable = false; VG_CLEAR(get_tiling); get_tiling.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) { drm_intel_gem_bo_unreference(&bo_gem->bo); return NULL; } bo_gem->tiling_mode = get_tiling.tiling_mode; bo_gem->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); DRMINITLISTHEAD(&bo_gem->vma_list); DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named); DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name); return &bo_gem->bo; } static void drm_intel_gem_bo_free(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_gem_close close; int ret; DRMLISTDEL(&bo_gem->vma_list); if (bo_gem->mem_virtual) { VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0)); munmap(bo_gem->mem_virtual, bo_gem->bo.size); bufmgr_gem->vma_count--; } if (bo_gem->gtt_virtual) { munmap(bo_gem->gtt_virtual, bo_gem->bo.size); bufmgr_gem->vma_count--; } /* Close this object */ VG_CLEAR(close); close.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo_gem->gem_handle, bo_gem->name, strerror(errno)); } free(bo_gem->aub_annotations); free(bo); } static void drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo) { #if HAVE_VALGRIND drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; if (bo_gem->mem_virtual) VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size); if (bo_gem->gtt_virtual) VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size); #endif } /** Frees all cached buffers significantly older than @time. */ static void drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time) { int i; if (bufmgr_gem->time == time) return; for (i = 0; i < bufmgr_gem->num_buckets; i++) { struct drm_intel_gem_bo_bucket *bucket = &bufmgr_gem->cache_bucket[i]; while (!DRMLISTEMPTY(&bucket->head)) { drm_intel_bo_gem *bo_gem; bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); if (time - bo_gem->free_time <= 1) break; DRMLISTDEL(&bo_gem->head); drm_intel_gem_bo_free(&bo_gem->bo); } } bufmgr_gem->time = time; } static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem) { int limit; DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__, bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max); if (bufmgr_gem->vma_max < 0) return; /* We may need to evict a few entries in order to create new mmaps */ limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open; if (limit < 0) limit = 0; while (bufmgr_gem->vma_count > limit) { drm_intel_bo_gem *bo_gem; bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bufmgr_gem->vma_cache.next, vma_list); assert(bo_gem->map_count == 0); DRMLISTDELINIT(&bo_gem->vma_list); if (bo_gem->mem_virtual) { munmap(bo_gem->mem_virtual, bo_gem->bo.size); bo_gem->mem_virtual = NULL; bufmgr_gem->vma_count--; } if (bo_gem->gtt_virtual) { munmap(bo_gem->gtt_virtual, bo_gem->bo.size); bo_gem->gtt_virtual = NULL; bufmgr_gem->vma_count--; } } } static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem, drm_intel_bo_gem *bo_gem) { bufmgr_gem->vma_open--; DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache); if (bo_gem->mem_virtual) bufmgr_gem->vma_count++; if (bo_gem->gtt_virtual) bufmgr_gem->vma_count++; drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); } static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem, drm_intel_bo_gem *bo_gem) { bufmgr_gem->vma_open++; DRMLISTDEL(&bo_gem->vma_list); if (bo_gem->mem_virtual) bufmgr_gem->vma_count--; if (bo_gem->gtt_virtual) bufmgr_gem->vma_count--; drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); } static void drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_intel_gem_bo_bucket *bucket; int i; /* Unreference all the target buffers */ for (i = 0; i < bo_gem->reloc_count; i++) { if (bo_gem->reloc_target_info[i].bo != bo) { drm_intel_gem_bo_unreference_locked_timed(bo_gem-> reloc_target_info[i].bo, time); } } bo_gem->reloc_count = 0; bo_gem->used_as_reloc_target = false; DBG("bo_unreference final: %d (%s)\n", bo_gem->gem_handle, bo_gem->name); /* release memory associated with this object */ if (bo_gem->reloc_target_info) { free(bo_gem->reloc_target_info); bo_gem->reloc_target_info = NULL; } if (bo_gem->relocs) { free(bo_gem->relocs); bo_gem->relocs = NULL; } /* Clear any left-over mappings */ if (bo_gem->map_count) { DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count); bo_gem->map_count = 0; drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); drm_intel_gem_bo_mark_mmaps_incoherent(bo); } DRMLISTDEL(&bo_gem->name_list); bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size); /* Put the buffer into our internal cache for reuse if we can. */ if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL && drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) { bo_gem->free_time = time; bo_gem->name = NULL; bo_gem->validate_index = -1; DRMLISTADDTAIL(&bo_gem->head, &bucket->head); } else { drm_intel_gem_bo_free(bo); } } static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, time_t time) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; assert(atomic_read(&bo_gem->refcount) > 0); if (atomic_dec_and_test(&bo_gem->refcount)) drm_intel_gem_bo_unreference_final(bo, time); } static void drm_intel_gem_bo_unreference(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; assert(atomic_read(&bo_gem->refcount) > 0); if (atomic_dec_and_test(&bo_gem->refcount)) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); pthread_mutex_lock(&bufmgr_gem->lock); drm_intel_gem_bo_unreference_final(bo, time.tv_sec); drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec); pthread_mutex_unlock(&bufmgr_gem->lock); } } static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_domain set_domain; int ret; pthread_mutex_lock(&bufmgr_gem->lock); if (bo_gem->map_count++ == 0) drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); if (!bo_gem->mem_virtual) { struct drm_i915_gem_mmap mmap_arg; DBG("bo_map: %d (%s), map_count=%d\n", bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); VG_CLEAR(mmap_arg); mmap_arg.handle = bo_gem->gem_handle; mmap_arg.offset = 0; mmap_arg.size = bo->size; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { ret = -errno; DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, bo_gem->name, strerror(errno)); if (--bo_gem->map_count == 0) drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; } DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, bo_gem->mem_virtual); bo->virtual = bo_gem->mem_virtual; VG_CLEAR(set_domain); set_domain.handle = bo_gem->gem_handle; set_domain.read_domains = I915_GEM_DOMAIN_CPU; if (write_enable) set_domain.write_domain = I915_GEM_DOMAIN_CPU; else set_domain.write_domain = 0; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); if (ret != 0) { DBG("%s:%d: Error setting to CPU domain %d: %s\n", __FILE__, __LINE__, bo_gem->gem_handle, strerror(errno)); } if (write_enable) bo_gem->mapped_cpu_write = true; drm_intel_gem_bo_mark_mmaps_incoherent(bo); VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size)); pthread_mutex_unlock(&bufmgr_gem->lock); return 0; } static int map_gtt(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int ret; if (bo_gem->map_count++ == 0) drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); /* Get a mapping of the buffer if we haven't before. */ if (bo_gem->gtt_virtual == NULL) { struct drm_i915_gem_mmap_gtt mmap_arg; DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); VG_CLEAR(mmap_arg); mmap_arg.handle = bo_gem->gem_handle; /* Get the fake offset back... */ ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); if (ret != 0) { ret = -errno; DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, bo_gem->name, strerror(errno)); if (--bo_gem->map_count == 0) drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); return ret; } /* and mmap it */ bo_gem->gtt_virtual = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr_gem->fd, mmap_arg.offset); if (bo_gem->gtt_virtual == MAP_FAILED) { bo_gem->gtt_virtual = NULL; ret = -errno; DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, bo_gem->name, strerror(errno)); if (--bo_gem->map_count == 0) drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); return ret; } } bo->virtual = bo_gem->gtt_virtual; DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, bo_gem->gtt_virtual); return 0; } int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_domain set_domain; int ret; pthread_mutex_lock(&bufmgr_gem->lock); ret = map_gtt(bo); if (ret) { pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } /* Now move it to the GTT domain so that the GPU and CPU * caches are flushed and the GPU isn't actively using the * buffer. * * The pagefault handler does this domain change for us when * it has unbound the BO from the GTT, but it's up to us to * tell it when we're about to use things if we had done * rendering and it still happens to be bound to the GTT. */ VG_CLEAR(set_domain); set_domain.handle = bo_gem->gem_handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); if (ret != 0) { DBG("%s:%d: Error setting domain %d: %s\n", __FILE__, __LINE__, bo_gem->gem_handle, strerror(errno)); } drm_intel_gem_bo_mark_mmaps_incoherent(bo); VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); pthread_mutex_unlock(&bufmgr_gem->lock); return 0; } /** * Performs a mapping of the buffer object like the normal GTT * mapping, but avoids waiting for the GPU to be done reading from or * rendering to the buffer. * * This is used in the implementation of GL_ARB_map_buffer_range: The * user asks to create a buffer, then does a mapping, fills some * space, runs a drawing command, then asks to map it again without * synchronizing because it guarantees that it won't write over the * data that the GPU is busy using (or, more specifically, that if it * does write over the data, it acknowledges that rendering is * undefined). */ int drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; int ret; /* If the CPU cache isn't coherent with the GTT, then use a * regular synchronized mapping. The problem is that we don't * track where the buffer was last used on the CPU side in * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so * we would potentially corrupt the buffer even when the user * does reasonable things. */ if (!bufmgr_gem->has_llc) return drm_intel_gem_bo_map_gtt(bo); pthread_mutex_lock(&bufmgr_gem->lock); ret = map_gtt(bo); pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int drm_intel_gem_bo_unmap(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int ret = 0; if (bo == NULL) return 0; pthread_mutex_lock(&bufmgr_gem->lock); if (bo_gem->map_count <= 0) { DBG("attempted to unmap an unmapped bo\n"); pthread_mutex_unlock(&bufmgr_gem->lock); /* Preserve the old behaviour of just treating this as a * no-op rather than reporting the error. */ return 0; } if (bo_gem->mapped_cpu_write) { struct drm_i915_gem_sw_finish sw_finish; /* Cause a flush to happen if the buffer's pinned for * scanout, so the results show up in a timely manner. * Unlike GTT set domains, this only does work if the * buffer should be scanout-related. */ VG_CLEAR(sw_finish); sw_finish.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SW_FINISH, &sw_finish); ret = ret == -1 ? -errno : 0; bo_gem->mapped_cpu_write = false; } /* We need to unmap after every innovation as we cannot track * an open vma for every bo as that will exhaasut the system * limits and cause later failures. */ if (--bo_gem->map_count == 0) { drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); drm_intel_gem_bo_mark_mmaps_incoherent(bo); bo->virtual = NULL; } pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo) { return drm_intel_gem_bo_unmap(bo); } static int drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset, unsigned long size, const void *data) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_pwrite pwrite; int ret; VG_CLEAR(pwrite); pwrite.handle = bo_gem->gem_handle; pwrite.offset = offset; pwrite.size = size; pwrite.data_ptr = (uint64_t) (uintptr_t) data; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite); if (ret != 0) { ret = -errno; DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, (int)size, strerror(errno)); } return ret; } static int drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id; int ret; VG_CLEAR(get_pipe_from_crtc_id); get_pipe_from_crtc_id.crtc_id = crtc_id; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, &get_pipe_from_crtc_id); if (ret != 0) { /* We return -1 here to signal that we don't * know which pipe is associated with this crtc. * This lets the caller know that this information * isn't available; using the wrong pipe for * vblank waiting can cause the chipset to lock up */ return -1; } return get_pipe_from_crtc_id.pipe; } static int drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset, unsigned long size, void *data) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_pread pread; int ret; VG_CLEAR(pread); pread.handle = bo_gem->gem_handle; pread.offset = offset; pread.size = size; pread.data_ptr = (uint64_t) (uintptr_t) data; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_PREAD, &pread); if (ret != 0) { ret = -errno; DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, (int)size, strerror(errno)); } return ret; } /** Waits for all GPU rendering with the object to have completed. */ static void drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo) { drm_intel_gem_bo_start_gtt_access(bo, 1); } /** * Waits on a BO for the given amount of time. * * @bo: buffer object to wait for * @timeout_ns: amount of time to wait in nanoseconds. * If value is less than 0, an infinite wait will occur. * * Returns 0 if the wait was successful ie. the last batch referencing the * object has completed within the allotted time. Otherwise some negative return * value describes the error. Of particular interest is -ETIME when the wait has * failed to yield the desired result. * * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows * the operation to give up after a certain amount of time. Another subtle * difference is the internal locking semantics are different (this variant does * not hold the lock for the duration of the wait). This makes the wait subject * to a larger userspace race window. * * The implementation shall wait until the object is no longer actively * referenced within a batch buffer at the time of the call. The wait will * not guarantee that the buffer is re-issued via another thread, or an flinked * handle. Userspace must make sure this race does not occur if such precision * is important. */ int drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_wait wait; int ret; if (!bufmgr_gem->has_wait_timeout) { DBG("%s:%d: Timed wait is not supported. Falling back to " "infinite wait\n", __FILE__, __LINE__); if (timeout_ns) { drm_intel_gem_bo_wait_rendering(bo); return 0; } else { return drm_intel_gem_bo_busy(bo) ? -ETIME : 0; } } wait.bo_handle = bo_gem->gem_handle; wait.timeout_ns = timeout_ns; wait.flags = 0; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); if (ret == -1) return -errno; return ret; } /** * Sets the object to the GTT read and possibly write domain, used by the X * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt(). * * In combination with drm_intel_gem_bo_pin() and manual fence management, we * can do tiled pixmaps this way. */ void drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_domain set_domain; int ret; VG_CLEAR(set_domain); set_domain.handle = bo_gem->gem_handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); if (ret != 0) { DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n", __FILE__, __LINE__, bo_gem->gem_handle, set_domain.read_domains, set_domain.write_domain, strerror(errno)); } } static void drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; int i; free(bufmgr_gem->exec2_objects); free(bufmgr_gem->exec_objects); free(bufmgr_gem->exec_bos); pthread_mutex_destroy(&bufmgr_gem->lock); /* Free any cached buffer objects we were going to reuse */ for (i = 0; i < bufmgr_gem->num_buckets; i++) { struct drm_intel_gem_bo_bucket *bucket = &bufmgr_gem->cache_bucket[i]; drm_intel_bo_gem *bo_gem; while (!DRMLISTEMPTY(&bucket->head)) { bo_gem = DRMLISTENTRY(drm_intel_bo_gem, bucket->head.next, head); DRMLISTDEL(&bo_gem->head); drm_intel_gem_bo_free(&bo_gem->bo); } } free(bufmgr); } /** * Adds the target buffer to the validation list and adds the relocation * to the reloc_buffer's relocation list. * * The relocation entry at the given offset must already contain the * precomputed relocation value, because the kernel will optimize out * the relocation entry write when the buffer hasn't moved from the * last known offset in target_bo. */ static int do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain, bool need_fence) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; bool fenced_command; if (bo_gem->has_error) return -ENOMEM; if (target_bo_gem->has_error) { bo_gem->has_error = true; return -ENOMEM; } /* We never use HW fences for rendering on 965+ */ if (bufmgr_gem->gen >= 4) need_fence = false; fenced_command = need_fence; if (target_bo_gem->tiling_mode == I915_TILING_NONE) need_fence = false; /* Create a new relocation list if needed */ if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo)) return -ENOMEM; /* Check overflow */ assert(bo_gem->reloc_count < bufmgr_gem->max_relocs); /* Check args */ assert(offset <= bo->size - 4); assert((write_domain & (write_domain - 1)) == 0); /* Make sure that we're not adding a reloc to something whose size has * already been accounted for. */ assert(!bo_gem->used_as_reloc_target); if (target_bo_gem != bo_gem) { target_bo_gem->used_as_reloc_target = true; bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size; } /* An object needing a fence is a tiled buffer, so it won't have * relocs to other buffers. */ if (need_fence) target_bo_gem->reloc_tree_fences = 1; bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences; bo_gem->relocs[bo_gem->reloc_count].offset = offset; bo_gem->relocs[bo_gem->reloc_count].delta = target_offset; bo_gem->relocs[bo_gem->reloc_count].target_handle = target_bo_gem->gem_handle; bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains; bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain; bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset; bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo; if (target_bo != bo) drm_intel_gem_bo_reference(target_bo); if (fenced_command) bo_gem->reloc_target_info[bo_gem->reloc_count].flags = DRM_INTEL_RELOC_FENCE; else bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0; bo_gem->reloc_count++; return 0; } static int drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; return do_bo_emit_reloc(bo, offset, target_bo, target_offset, read_domains, write_domain, !bufmgr_gem->fenced_relocs); } static int drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain) { return do_bo_emit_reloc(bo, offset, target_bo, target_offset, read_domains, write_domain, true); } int drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; return bo_gem->reloc_count; } /** * Removes existing relocation entries in the BO after "start". * * This allows a user to avoid a two-step process for state setup with * counting up all the buffer objects and doing a * drm_intel_bufmgr_check_aperture_space() before emitting any of the * relocations for the state setup. Instead, save the state of the * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the * state, and then check if it still fits in the aperture. * * Any further drm_intel_bufmgr_check_aperture_space() queries * involving this buffer in the tree are undefined after this call. */ void drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); assert(bo_gem->reloc_count >= start); /* Unreference the cleared target buffers */ for (i = start; i < bo_gem->reloc_count; i++) { if (bo_gem->reloc_target_info[i].bo != bo) { drm_intel_gem_bo_unreference_locked_timed(bo_gem-> reloc_target_info[i].bo, time.tv_sec); } } bo_gem->reloc_count = start; } /** * Walk the tree of relocations rooted at BO and accumulate the list of * validations to be performed and update the relocation buffers with * index values into the validation list. */ static void drm_intel_gem_bo_process_reloc(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; if (bo_gem->relocs == NULL) return; for (i = 0; i < bo_gem->reloc_count; i++) { drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; if (target_bo == bo) continue; drm_intel_gem_bo_mark_mmaps_incoherent(bo); /* Continue walking the tree depth-first. */ drm_intel_gem_bo_process_reloc(target_bo); /* Add the target to the validate list */ drm_intel_add_validate_buffer(target_bo); } } static void drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; int i; if (bo_gem->relocs == NULL) return; for (i = 0; i < bo_gem->reloc_count; i++) { drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; int need_fence; if (target_bo == bo) continue; drm_intel_gem_bo_mark_mmaps_incoherent(bo); /* Continue walking the tree depth-first. */ drm_intel_gem_bo_process_reloc2(target_bo); need_fence = (bo_gem->reloc_target_info[i].flags & DRM_INTEL_RELOC_FENCE); /* Add the target to the validate list */ drm_intel_add_validate_buffer2(target_bo, need_fence); } } static void drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem) { int i; for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; /* Update the buffer offset */ if (bufmgr_gem->exec_objects[i].offset != bo->offset) { DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n", bo_gem->gem_handle, bo_gem->name, bo->offset, (unsigned long long)bufmgr_gem->exec_objects[i]. offset); bo->offset = bufmgr_gem->exec_objects[i].offset; } } } static void drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem) { int i; for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; /* Update the buffer offset */ if (bufmgr_gem->exec2_objects[i].offset != bo->offset) { DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n", bo_gem->gem_handle, bo_gem->name, bo->offset, (unsigned long long)bufmgr_gem->exec2_objects[i].offset); bo->offset = bufmgr_gem->exec2_objects[i].offset; } } } static void aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data) { fwrite(&data, 1, 4, bufmgr_gem->aub_file); } static void aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size) { fwrite(data, 1, size, bufmgr_gem->aub_file); } static void aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; uint32_t *data; unsigned int i; data = malloc(bo->size); drm_intel_bo_get_subdata(bo, offset, size, data); /* Easy mode: write out bo with no relocations */ if (!bo_gem->reloc_count) { aub_out_data(bufmgr_gem, data, size); free(data); return; } /* Otherwise, handle the relocations while writing. */ for (i = 0; i < size / 4; i++) { int r; for (r = 0; r < bo_gem->reloc_count; r++) { struct drm_i915_gem_relocation_entry *reloc; drm_intel_reloc_target *info; reloc = &bo_gem->relocs[r]; info = &bo_gem->reloc_target_info[r]; if (reloc->offset == offset + i * 4) { drm_intel_bo_gem *target_gem; uint32_t val; target_gem = (drm_intel_bo_gem *)info->bo; val = reloc->delta; val += target_gem->aub_offset; aub_out(bufmgr_gem, val); data[i] = val; break; } } if (r == bo_gem->reloc_count) { /* no relocation, just the data */ aub_out(bufmgr_gem, data[i]); } } free(data); } static void aub_bo_get_address(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; /* Give the object a graphics address in the AUB file. We * don't just use the GEM object address because we do AUB * dumping before execution -- we want to successfully log * when the hardware might hang, and we might even want to aub * capture for a driver trying to execute on a different * generation of hardware by disabling the actual kernel exec * call. */ bo_gem->aub_offset = bufmgr_gem->aub_offset; bufmgr_gem->aub_offset += bo->size; /* XXX: Handle aperture overflow. */ assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024); } static void aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype, uint32_t offset, uint32_t size) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | (5 - 2)); aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE); aub_out(bufmgr_gem, subtype); aub_out(bufmgr_gem, bo_gem->aub_offset + offset); aub_out(bufmgr_gem, size); aub_write_bo_data(bo, offset, size); } /** * Break up large objects into multiple writes. Otherwise a 128kb VBO * would overflow the 16 bits of size field in the packet header and * everything goes badly after that. */ static void aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype, uint32_t offset, uint32_t size) { uint32_t block_size; uint32_t sub_offset; for (sub_offset = 0; sub_offset < size; sub_offset += block_size) { block_size = size - sub_offset; if (block_size > 8 * 4096) block_size = 8 * 4096; aub_write_trace_block(bo, type, subtype, offset + sub_offset, block_size); } } static void aub_write_bo(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; uint32_t offset = 0; unsigned i; aub_bo_get_address(bo); /* Write out each annotated section separately. */ for (i = 0; i < bo_gem->aub_annotation_count; ++i) { drm_intel_aub_annotation *annotation = &bo_gem->aub_annotations[i]; uint32_t ending_offset = annotation->ending_offset; if (ending_offset > bo->size) ending_offset = bo->size; if (ending_offset > offset) { aub_write_large_trace_block(bo, annotation->type, annotation->subtype, offset, ending_offset - offset); offset = ending_offset; } } /* Write out any remaining unannotated data */ if (offset < bo->size) { aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0, offset, bo->size - offset); } } /* * Make a ringbuffer on fly and dump it */ static void aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t batch_buffer, int ring_flag) { uint32_t ringbuffer[4096]; int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */ int ring_count = 0; if (ring_flag == I915_EXEC_BSD) ring = AUB_TRACE_TYPE_RING_PRB1; /* Make a ring buffer to execute our batchbuffer. */ memset(ringbuffer, 0, sizeof(ringbuffer)); ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START; ringbuffer[ring_count++] = batch_buffer; /* Write out the ring. This appears to trigger execution of * the ring in the simulator. */ aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | (5 - 2)); aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE); aub_out(bufmgr_gem, 0); /* general/surface subtype */ aub_out(bufmgr_gem, bufmgr_gem->aub_offset); aub_out(bufmgr_gem, ring_count * 4); /* FIXME: Need some flush operations here? */ aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4); /* Update offset pointer */ bufmgr_gem->aub_offset += 4096; } void drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo, int x1, int y1, int width, int height, enum aub_dump_bmp_format format, int pitch, int offset) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; uint32_t cpp; switch (format) { case AUB_DUMP_BMP_FORMAT_8BIT: cpp = 1; break; case AUB_DUMP_BMP_FORMAT_ARGB_4444: cpp = 2; break; case AUB_DUMP_BMP_FORMAT_ARGB_0888: case AUB_DUMP_BMP_FORMAT_ARGB_8888: cpp = 4; break; default: printf("Unknown AUB dump format %d\n", format); return; } if (!bufmgr_gem->aub_file) return; aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4); aub_out(bufmgr_gem, (y1 << 16) | x1); aub_out(bufmgr_gem, (format << 24) | (cpp << 19) | pitch / 4); aub_out(bufmgr_gem, (height << 16) | width); aub_out(bufmgr_gem, bo_gem->aub_offset + offset); aub_out(bufmgr_gem, ((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) | ((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0)); } static void aub_exec(drm_intel_bo *bo, int ring_flag, int used) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; bool batch_buffer_needs_annotations; if (!bufmgr_gem->aub_file) return; /* If batch buffer is not annotated, annotate it the best we * can. */ batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0; if (batch_buffer_needs_annotations) { drm_intel_aub_annotation annotations[2] = { { AUB_TRACE_TYPE_BATCH, 0, used }, { AUB_TRACE_TYPE_NOTYPE, 0, bo->size } }; drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2); } /* Write out all buffers to AUB memory */ for (i = 0; i < bufmgr_gem->exec_count; i++) { aub_write_bo(bufmgr_gem->exec_bos[i]); } /* Remove any annotations we added */ if (batch_buffer_needs_annotations) drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0); /* Dump ring buffer */ aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag); fflush(bufmgr_gem->aub_file); /* * One frame has been dumped. So reset the aub_offset for the next frame. * * FIXME: Can we do this? */ bufmgr_gem->aub_offset = 0x10000; } static int drm_intel_gem_bo_exec(drm_intel_bo *bo, int used, drm_clip_rect_t * cliprects, int num_cliprects, int DR4) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_execbuffer execbuf; int ret, i; if (bo_gem->has_error) return -ENOMEM; pthread_mutex_lock(&bufmgr_gem->lock); /* Update indices and set up the validate list. */ drm_intel_gem_bo_process_reloc(bo); /* Add the batch buffer to the validation list. There are no * relocations pointing to it. */ drm_intel_add_validate_buffer(bo); VG_CLEAR(execbuf); execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects; execbuf.buffer_count = bufmgr_gem->exec_count; execbuf.batch_start_offset = 0; execbuf.batch_len = used; execbuf.cliprects_ptr = (uintptr_t) cliprects; execbuf.num_cliprects = num_cliprects; execbuf.DR1 = 0; execbuf.DR4 = DR4; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_EXECBUFFER, &execbuf); if (ret != 0) { ret = -errno; if (errno == ENOSPC) { DBG("Execbuffer fails to pin. " "Estimate: %u. Actual: %u. Available: %u\n", drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, bufmgr_gem-> exec_count), drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, bufmgr_gem-> exec_count), (unsigned int)bufmgr_gem->gtt_size); } } drm_intel_update_buffer_offsets(bufmgr_gem); if (bufmgr_gem->bufmgr.debug) drm_intel_gem_dump_validation_list(bufmgr_gem); for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; /* Disconnect the buffer from the validate list */ bo_gem->validate_index = -1; bufmgr_gem->exec_bos[i] = NULL; } bufmgr_gem->exec_count = 0; pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx, drm_clip_rect_t *cliprects, int num_cliprects, int DR4, unsigned int flags) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; struct drm_i915_gem_execbuffer2 execbuf; int ret = 0; int i; switch (flags & 0x7) { default: return -EINVAL; case I915_EXEC_BLT: if (!bufmgr_gem->has_blt) return -EINVAL; break; case I915_EXEC_BSD: if (!bufmgr_gem->has_bsd) return -EINVAL; break; case I915_EXEC_RENDER: case I915_EXEC_DEFAULT: break; } pthread_mutex_lock(&bufmgr_gem->lock); /* Update indices and set up the validate list. */ drm_intel_gem_bo_process_reloc2(bo); /* Add the batch buffer to the validation list. There are no relocations * pointing to it. */ drm_intel_add_validate_buffer2(bo, 0); VG_CLEAR(execbuf); execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects; execbuf.buffer_count = bufmgr_gem->exec_count; execbuf.batch_start_offset = 0; execbuf.batch_len = used; execbuf.cliprects_ptr = (uintptr_t)cliprects; execbuf.num_cliprects = num_cliprects; execbuf.DR1 = 0; execbuf.DR4 = DR4; execbuf.flags = flags; if (ctx == NULL) i915_execbuffer2_set_context_id(execbuf, 0); else i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id); execbuf.rsvd2 = 0; aub_exec(bo, flags, used); if (bufmgr_gem->no_exec) goto skip_execution; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); if (ret != 0) { ret = -errno; if (ret == -ENOSPC) { DBG("Execbuffer fails to pin. " "Estimate: %u. Actual: %u. Available: %u\n", drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, bufmgr_gem->exec_count), drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, bufmgr_gem->exec_count), (unsigned int) bufmgr_gem->gtt_size); } } drm_intel_update_buffer_offsets2(bufmgr_gem); skip_execution: if (bufmgr_gem->bufmgr.debug) drm_intel_gem_dump_validation_list(bufmgr_gem); for (i = 0; i < bufmgr_gem->exec_count; i++) { drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; /* Disconnect the buffer from the validate list */ bo_gem->validate_index = -1; bufmgr_gem->exec_bos[i] = NULL; } bufmgr_gem->exec_count = 0; pthread_mutex_unlock(&bufmgr_gem->lock); return ret; } static int drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used, drm_clip_rect_t *cliprects, int num_cliprects, int DR4) { return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, I915_EXEC_RENDER); } static int drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used, drm_clip_rect_t *cliprects, int num_cliprects, int DR4, unsigned int flags) { return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, flags); } int drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx, int used, unsigned int flags) { return do_exec2(bo, used, ctx, NULL, 0, 0, flags); } static int drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_pin pin; int ret; VG_CLEAR(pin); pin.handle = bo_gem->gem_handle; pin.alignment = alignment; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_PIN, &pin); if (ret != 0) return -errno; bo->offset = pin.offset; return 0; } static int drm_intel_gem_bo_unpin(drm_intel_bo *bo) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_unpin unpin; int ret; VG_CLEAR(unpin); unpin.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin); if (ret != 0) return -errno; return 0; } static int drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, uint32_t tiling_mode, uint32_t stride) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; struct drm_i915_gem_set_tiling set_tiling; int ret; if (bo_gem->global_name == 0 && tiling_mode == bo_gem->tiling_mode && stride == bo_gem->stride) return 0; memset(&set_tiling, 0, sizeof(set_tiling)); do { /* set_tiling is slightly broken and overwrites the * input on the error path, so we have to open code * rmIoctl. */ set_tiling.handle = bo_gem->gem_handle; set_tiling.tiling_mode = tiling_mode; set_tiling.stride = stride; ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret == -1) return -errno; bo_gem->tiling_mode = set_tiling.tiling_mode; bo_gem->swizzle_mode = set_tiling.swizzle_mode; bo_gem->stride = set_tiling.stride; return 0; } static int drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t stride) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int ret; /* Linear buffers have no stride. By ensuring that we only ever use * stride 0 with linear buffers, we simplify our code. */ if (*tiling_mode == I915_TILING_NONE) stride = 0; ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride); if (ret == 0) drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); *tiling_mode = bo_gem->tiling_mode; return ret; } static int drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, uint32_t * swizzle_mode) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; *tiling_mode = bo_gem->tiling_mode; *swizzle_mode = bo_gem->swizzle_mode; return 0; } drm_intel_bo * drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; int ret; uint32_t handle; drm_intel_bo_gem *bo_gem; struct drm_i915_gem_get_tiling get_tiling; ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle); if (ret) { fprintf(stderr,"ret is %d %d\n", ret, errno); return NULL; } bo_gem = calloc(1, sizeof(*bo_gem)); if (!bo_gem) return NULL; bo_gem->bo.size = size; bo_gem->bo.handle = handle; bo_gem->bo.bufmgr = bufmgr; bo_gem->gem_handle = handle; atomic_set(&bo_gem->refcount, 1); bo_gem->name = "prime"; bo_gem->validate_index = -1; bo_gem->reloc_tree_fences = 0; bo_gem->used_as_reloc_target = false; bo_gem->has_error = false; bo_gem->reusable = false; DRMINITLISTHEAD(&bo_gem->name_list); DRMINITLISTHEAD(&bo_gem->vma_list); VG_CLEAR(get_tiling); get_tiling.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) { drm_intel_gem_bo_unreference(&bo_gem->bo); return NULL; } bo_gem->tiling_mode = get_tiling.tiling_mode; bo_gem->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem); return &bo_gem->bo; } int drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int ret; if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle, DRM_CLOEXEC, prime_fd) != 0) return -errno; bo_gem->reusable = false; return 0; } static int drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int ret; if (!bo_gem->global_name) { struct drm_gem_flink flink; VG_CLEAR(flink); flink.handle = bo_gem->gem_handle; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink); if (ret != 0) return -errno; bo_gem->global_name = flink.name; bo_gem->reusable = false; DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named); } *name = bo_gem->global_name; return 0; } /** * Enables unlimited caching of buffer objects for reuse. * * This is potentially very memory expensive, as the cache at each bucket * size is only bounded by how many buffers of that size we've managed to have * in flight at once. */ void drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; bufmgr_gem->bo_reuse = true; } /** * Enable use of fenced reloc type. * * New code should enable this to avoid unnecessary fence register * allocation. If this option is not enabled, all relocs will have fence * register allocated. */ void drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2) bufmgr_gem->fenced_relocs = true; } /** * Return the additional aperture space required by the tree of buffer objects * rooted at bo. */ static int drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; int total = 0; if (bo == NULL || bo_gem->included_in_check_aperture) return 0; total += bo->size; bo_gem->included_in_check_aperture = true; for (i = 0; i < bo_gem->reloc_count; i++) total += drm_intel_gem_bo_get_aperture_space(bo_gem-> reloc_target_info[i].bo); return total; } /** * Count the number of buffers in this list that need a fence reg * * If the count is greater than the number of available regs, we'll have * to ask the caller to resubmit a batch with fewer tiled buffers. * * This function over-counts if the same buffer is used multiple times. */ static unsigned int drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count) { int i; unsigned int total = 0; for (i = 0; i < count; i++) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; if (bo_gem == NULL) continue; total += bo_gem->reloc_tree_fences; } return total; } /** * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready * for the next drm_intel_bufmgr_check_aperture_space() call. */ static void drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; if (bo == NULL || !bo_gem->included_in_check_aperture) return; bo_gem->included_in_check_aperture = false; for (i = 0; i < bo_gem->reloc_count; i++) drm_intel_gem_bo_clear_aperture_space_flag(bo_gem-> reloc_target_info[i].bo); } /** * Return a conservative estimate for the amount of aperture required * for a collection of buffers. This may double-count some buffers. */ static unsigned int drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count) { int i; unsigned int total = 0; for (i = 0; i < count; i++) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; if (bo_gem != NULL) total += bo_gem->reloc_tree_size; } return total; } /** * Return the amount of aperture needed for a collection of buffers. * This avoids double counting any buffers, at the cost of looking * at every buffer in the set. */ static unsigned int drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count) { int i; unsigned int total = 0; for (i = 0; i < count; i++) { total += drm_intel_gem_bo_get_aperture_space(bo_array[i]); /* For the first buffer object in the array, we get an * accurate count back for its reloc_tree size (since nothing * had been flagged as being counted yet). We can save that * value out as a more conservative reloc_tree_size that * avoids double-counting target buffers. Since the first * buffer happens to usually be the batch buffer in our * callers, this can pull us back from doing the tree * walk on every new batch emit. */ if (i == 0) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; bo_gem->reloc_tree_size = total; } } for (i = 0; i < count; i++) drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]); return total; } /** * Return -1 if the batchbuffer should be flushed before attempting to * emit rendering referencing the buffers pointed to by bo_array. * * This is required because if we try to emit a batchbuffer with relocations * to a tree of buffers that won't simultaneously fit in the aperture, * the rendering will return an error at a point where the software is not * prepared to recover from it. * * However, we also want to emit the batchbuffer significantly before we reach * the limit, as a series of batchbuffers each of which references buffers * covering almost all of the aperture means that at each emit we end up * waiting to evict a buffer from the last rendering, and we get synchronous * performance. By emitting smaller batchbuffers, we eat some CPU overhead to * get better parallelism. */ static int drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr; unsigned int total = 0; unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4; int total_fences; /* Check for fence reg constraints if necessary */ if (bufmgr_gem->available_fences) { total_fences = drm_intel_gem_total_fences(bo_array, count); if (total_fences > bufmgr_gem->available_fences) return -ENOSPC; } total = drm_intel_gem_estimate_batch_space(bo_array, count); if (total > threshold) total = drm_intel_gem_compute_batch_space(bo_array, count); if (total > threshold) { DBG("check_space: overflowed available aperture, " "%dkb vs %dkb\n", total / 1024, (int)bufmgr_gem->gtt_size / 1024); return -ENOSPC; } else { DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024, (int)bufmgr_gem->gtt_size / 1024); return 0; } } /* * Disable buffer reuse for objects which are shared with the kernel * as scanout buffers */ static int drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; bo_gem->reusable = false; return 0; } static int drm_intel_gem_bo_is_reusable(drm_intel_bo *bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; return bo_gem->reusable; } static int _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; int i; for (i = 0; i < bo_gem->reloc_count; i++) { if (bo_gem->reloc_target_info[i].bo == target_bo) return 1; if (bo == bo_gem->reloc_target_info[i].bo) continue; if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo, target_bo)) return 1; } return 0; } /** Return true if target_bo is referenced by bo's relocation tree. */ static int drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) { drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; if (bo == NULL || target_bo == NULL) return 0; if (target_bo_gem->used_as_reloc_target) return _drm_intel_gem_bo_references(bo, target_bo); return 0; } static void add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size) { unsigned int i = bufmgr_gem->num_buckets; assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket)); DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head); bufmgr_gem->cache_bucket[i].size = size; bufmgr_gem->num_buckets++; } static void init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem) { unsigned long size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr_gem, 4096); add_bucket(bufmgr_gem, 4096 * 2); add_bucket(bufmgr_gem, 4096 * 3); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * 4096; size <= cache_max_size; size *= 2) { add_bucket(bufmgr_gem, size); add_bucket(bufmgr_gem, size + size * 1 / 4); add_bucket(bufmgr_gem, size + size * 2 / 4); add_bucket(bufmgr_gem, size + size * 3 / 4); } } void drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; bufmgr_gem->vma_max = limit; drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); } /** * Get the PCI ID for the device. This can be overridden by setting the * INTEL_DEVID_OVERRIDE environment variable to the desired ID. */ static int get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem) { char *devid_override; int devid; int ret; drm_i915_getparam_t gp; if (geteuid() == getuid()) { devid_override = getenv("INTEL_DEVID_OVERRIDE"); if (devid_override) { bufmgr_gem->no_exec = true; return strtod(devid_override, NULL); } } VG_CLEAR(devid); VG_CLEAR(gp); gp.param = I915_PARAM_CHIPSET_ID; gp.value = &devid; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) { fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno); fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); } return devid; } int drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; return bufmgr_gem->pci_device; } /** * Sets up AUB dumping. * * This is a trace file format that can be used with the simulator. * Packets are emitted in a format somewhat like GPU command packets. * You can set up a GTT and upload your objects into the referenced * space, then send off batchbuffers and get BMPs out the other end. */ void drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; int entry = 0x200003; int i; int gtt_size = 0x10000; if (!enable) { if (bufmgr_gem->aub_file) { fclose(bufmgr_gem->aub_file); bufmgr_gem->aub_file = NULL; } } if (geteuid() != getuid()) return; bufmgr_gem->aub_file = fopen("intel.aub", "w+"); if (!bufmgr_gem->aub_file) return; /* Start allocating objects from just after the GTT. */ bufmgr_gem->aub_offset = gtt_size; /* Start with a (required) version packet. */ aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2)); aub_out(bufmgr_gem, (4 << AUB_HEADER_MAJOR_SHIFT) | (0 << AUB_HEADER_MINOR_SHIFT)); for (i = 0; i < 8; i++) { aub_out(bufmgr_gem, 0); /* app name */ } aub_out(bufmgr_gem, 0); /* timestamp */ aub_out(bufmgr_gem, 0); /* timestamp */ aub_out(bufmgr_gem, 0); /* comment len */ /* Set up the GTT. The max we can handle is 256M */ aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | (5 - 2)); aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_NONLOCAL | 0 | AUB_TRACE_OP_DATA_WRITE); aub_out(bufmgr_gem, 0); /* subtype */ aub_out(bufmgr_gem, 0); /* offset */ aub_out(bufmgr_gem, gtt_size); /* size */ for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) { aub_out(bufmgr_gem, entry); } } drm_intel_context * drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; struct drm_i915_gem_context_create create; drm_intel_context *context = NULL; int ret; VG_CLEAR(create); ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); if (ret != 0) { DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno)); return NULL; } context = calloc(1, sizeof(*context)); context->ctx_id = create.ctx_id; context->bufmgr = bufmgr; return context; } void drm_intel_gem_context_destroy(drm_intel_context *ctx) { drm_intel_bufmgr_gem *bufmgr_gem; struct drm_i915_gem_context_destroy destroy; int ret; if (ctx == NULL) return; VG_CLEAR(destroy); bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; destroy.ctx_id = ctx->ctx_id; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &destroy); if (ret != 0) fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n", strerror(errno)); free(ctx); } int drm_intel_reg_read(drm_intel_bufmgr *bufmgr, uint32_t offset, uint64_t *result) { drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; struct drm_i915_reg_read reg_read; int ret; VG_CLEAR(reg_read); reg_read.offset = offset; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read); *result = reg_read.val; return ret; } /** * Annotate the given bo for use in aub dumping. * * \param annotations is an array of drm_intel_aub_annotation objects * describing the type of data in various sections of the bo. Each * element of the array specifies the type and subtype of a section of * the bo, and the past-the-end offset of that section. The elements * of \c annotations must be sorted so that ending_offset is * increasing. * * \param count is the number of elements in the \c annotations array. * If \c count is zero, then \c annotations will not be dereferenced. * * Annotations are copied into a private data structure, so caller may * re-use the memory pointed to by \c annotations after the call * returns. * * Annotations are stored for the lifetime of the bo; to reset to the * default state (no annotations), call this function with a \c count * of zero. */ void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo, drm_intel_aub_annotation *annotations, unsigned count) { drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; unsigned size = sizeof(*annotations) * count; drm_intel_aub_annotation *new_annotations = count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL; if (new_annotations == NULL) { free(bo_gem->aub_annotations); bo_gem->aub_annotations = NULL; bo_gem->aub_annotation_count = 0; return; } memcpy(new_annotations, annotations, size); bo_gem->aub_annotations = new_annotations; bo_gem->aub_annotation_count = count; } /** * Initializes the GEM buffer manager, which uses the kernel to allocate, map, * and manage map buffer objections. * * \param fd File descriptor of the opened DRM device. */ drm_intel_bufmgr * drm_intel_bufmgr_gem_init(int fd, int batch_size) { drm_intel_bufmgr_gem *bufmgr_gem; struct drm_i915_gem_get_aperture aperture; drm_i915_getparam_t gp; int ret, tmp; bool exec2 = false; bufmgr_gem = calloc(1, sizeof(*bufmgr_gem)); if (bufmgr_gem == NULL) return NULL; bufmgr_gem->fd = fd; if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) { free(bufmgr_gem); return NULL; } ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); if (ret == 0) bufmgr_gem->gtt_size = aperture.aper_available_size; else { fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n", strerror(errno)); bufmgr_gem->gtt_size = 128 * 1024 * 1024; fprintf(stderr, "Assuming %dkB available aperture size.\n" "May lead to reduced performance or incorrect " "rendering.\n", (int)bufmgr_gem->gtt_size / 1024); } bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem); if (IS_GEN2(bufmgr_gem->pci_device)) bufmgr_gem->gen = 2; else if (IS_GEN3(bufmgr_gem->pci_device)) bufmgr_gem->gen = 3; else if (IS_GEN4(bufmgr_gem->pci_device)) bufmgr_gem->gen = 4; else if (IS_GEN5(bufmgr_gem->pci_device)) bufmgr_gem->gen = 5; else if (IS_GEN6(bufmgr_gem->pci_device)) bufmgr_gem->gen = 6; else if (IS_GEN7(bufmgr_gem->pci_device)) bufmgr_gem->gen = 7; else { free(bufmgr_gem); return NULL; } if (IS_GEN3(bufmgr_gem->pci_device) && bufmgr_gem->gtt_size > 256*1024*1024) { /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't * be used for tiled blits. To simplify the accounting, just * substract the unmappable part (fixed to 256MB on all known * gen3 devices) if the kernel advertises it. */ bufmgr_gem->gtt_size -= 256*1024*1024; } VG_CLEAR(gp); gp.value = &tmp; gp.param = I915_PARAM_HAS_EXECBUF2; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (!ret) exec2 = true; gp.param = I915_PARAM_HAS_BSD; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); bufmgr_gem->has_bsd = ret == 0; gp.param = I915_PARAM_HAS_BLT; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); bufmgr_gem->has_blt = ret == 0; gp.param = I915_PARAM_HAS_RELAXED_FENCING; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); bufmgr_gem->has_relaxed_fencing = ret == 0; gp.param = I915_PARAM_HAS_WAIT_TIMEOUT; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); bufmgr_gem->has_wait_timeout = ret == 0; gp.param = I915_PARAM_HAS_LLC; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret != 0) { /* Kernel does not supports HAS_LLC query, fallback to GPU * generation detection and assume that we have LLC on GEN6/7 */ bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) | IS_GEN7(bufmgr_gem->pci_device)); } else bufmgr_gem->has_llc = *gp.value; if (bufmgr_gem->gen < 4) { gp.param = I915_PARAM_NUM_FENCES_AVAIL; gp.value = &bufmgr_gem->available_fences; ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) { fprintf(stderr, "get fences failed: %d [%d]\n", ret, errno); fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); bufmgr_gem->available_fences = 0; } else { /* XXX The kernel reports the total number of fences, * including any that may be pinned. * * We presume that there will be at least one pinned * fence for the scanout buffer, but there may be more * than one scanout and the user may be manually * pinning buffers. Let's move to execbuffer2 and * thereby forget the insanity of using fences... */ bufmgr_gem->available_fences -= 2; if (bufmgr_gem->available_fences < 0) bufmgr_gem->available_fences = 0; } } /* Let's go with one relocation per every 2 dwords (but round down a bit * since a power of two will mean an extra page allocation for the reloc * buffer). * * Every 4 was too few for the blender benchmark. */ bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2; bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc; bufmgr_gem->bufmgr.bo_alloc_for_render = drm_intel_gem_bo_alloc_for_render; bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled; bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference; bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference; bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map; bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap; bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata; bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata; bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering; bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc; bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence; bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin; bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin; bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling; bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling; bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink; /* Use the new one if available */ if (exec2) { bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2; bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2; } else bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec; bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy; bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise; bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy; bufmgr_gem->bufmgr.debug = 0; bufmgr_gem->bufmgr.check_aperture_space = drm_intel_gem_check_aperture_space; bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse; bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable; bufmgr_gem->bufmgr.get_pipe_from_crtc_id = drm_intel_gem_get_pipe_from_crtc_id; bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references; DRMINITLISTHEAD(&bufmgr_gem->named); init_cache_buckets(bufmgr_gem); DRMINITLISTHEAD(&bufmgr_gem->vma_cache); bufmgr_gem->vma_max = -1; /* unlimited by default */ return &bufmgr_gem->bufmgr; }