

MJPEG Decoder on HDVICP2 and Media
Controller Based Platform

User’s Guide

Literature Number: SPRUH44
March 2016

 This page is intentionally left blank

 IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes
to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of
order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and
conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support
this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications
using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by
TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from
TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all
express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning
its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be
provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate
dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take
appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI
components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help
enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.
Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have
executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which
have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-
designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

 Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright© 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

This page is intentionally left blank

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) MJPEG Decoder implementation on the IVAHD and Media Controller
based platform. It also provides a detailed Application Programming
Interface (API) reference and information on the sample application that
accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate TI’s
codecs with other software to build a multimedia system based on the
IVAHD based platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital signal
processors, and DSP applications. Good knowledge of eXpressDSP
Algorithm Interface Standard (XDAIS) and eXpressDSP Digital Media
(XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

 Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

 Chapter 5 – Frequently Asked Questions, answers few frequently
asked questions related to using MJPEG Decoder on HDVICP2 and
Media Controller Based Platform.

Read This First

 Chapter 6 – Picture Format, provides information on format of YUV
buffers provided to decoder.

 Chapter 7 – Debug Trace Usage, describes the debug trace feature
supported by codec and its usage.

 Chapter 8 – Data Sync API Usage, explains the sub-frame level
data synchronization API usage for MJPEG Decoder from
application point of view.

 Chapter 9 – Error Handling, explains the error handling and error
robustness features of this MJPEG Decoder.

 Chapter 10 – Slice Level Decoding, describes the slice level
decoding feature supported by MJPEG Decoder and its usage.

 Chapter 11 – Limited Pixel Range, explains the support of Limited
Pixel Range Feature.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such as,
XDAIS and XDM. To obtain a copy of any of these TI documents, visit the
Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Inteface Standard (also known as XDAIS)
specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

 Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5), describes the IRES interface definition
and function calling sequence

Related Documentation

You can use the following documents to supplement this user guide:

http://www.ti.com/

 Read This First

 ISO/IEC IS 10918-1 Information Technology - Digital Compression
and Coding of Continuous-Tone Still Images -- Part 1: Requirements
and Guidelines | CCITT Recommendation T.81

Abbreviations

The following abbreviations are used in this document.

List of Abbreviations

Abbreviation Description

BIOS TI’s simple RTOS for DSPs

CSL Chip Support Library

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform

DMA Direct Memory Access

EVM Evaluation Module

HDTV High Definition Television

IRES Interface standard to request and receive
handles to resources

ISO International Standards Organization

IVA Image Video Accelerator

MCU Minimum Coded Unit

JPEG Joint Photographic Experts Group

NTSC National Television Standards Committee

RMAN Resource Manager

RTOS Real Time Operating System

VGA Video Graphics Array (640 x 480
resolution)

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

Read This First

Abbreviation Description

YUV Color space in luminance and
chrominance form

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and

command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(MJPEG Decoder on IVAHD) and version number. The version number of
the codec is included in the title of the Release Notes that accompanies
this codec.

Trademarks

Code Composer Studio, DSP/BIOS, eXpressDSP, TMS320, HDVICP2 are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

Contents

PREFACE .. V
READ THIS FIRST .. V
CONTENTS ... IX
FIGURES ..XIII
TABLES .. XV
CHAPTER 1 .. 1-1
INTRODUCTION ... 1-1
1.1 OVERVIEW OF XDAIS AND XDM .. 1-2

1.1.1 XDAIS OVERVIEW ... 1-2
1.1.2 XDM OVERVIEW .. 1-3
1.1.3 IRES OVERVIEW ... 1-4

1.2 OVERVIEW OF MJPEG DECODER ... 1-5
1.3 SUPPORTED SERVICES AND FEATURES .. 1-6
CHAPTER 2 .. 2-1
INSTALLATION OVERVIEW ... 2-1
2.1 SYSTEM REQUIREMENTS ... 2-2

2.1.1 HARDWARE .. 2-2
2.1.2 SOFTWARE ... 2-2

2.2 INSTALLING THE COMPONENT .. 2-3
2.3 BEFORE BUILDING THE SAMPLE TEST APPLICATION .. 2-4
2.4 BUILDING AND RUNNING THE SAMPLE TEST APPLICATION 2-6

2.4.1 BUILDING THE SAMPLE TEST APPLICATION .. 2-6
2.4.2 RUNNING THE SAMPLE TEST APPLICATION ON NETRA HDVICP2 SIMULATOR ... 2-6
2.4.3 RUNNING THE SAMPLE TEST APPLICATION ON DM816X EVM .. 2-7

2.5 CONFIGURATION FILES .. 2-8
2.5.1 GENERIC CONFIGURATION FILE .. 2-8
2.5.2 DECODER CONFIGURATION FILE ... 2-9

2.6 STANDARDS CONFORMANCE AND USER-DEFINED INPUTS 2-9
2.7 UNINSTALLING THE COMPONENT ... 2-10
CHAPTER 3 .. 3-1
SAMPLE USAGE ... 3-1
3.1 OVERVIEW OF THE TEST APPLICATION .. 3-2

3.1.1 PARAMETER SETUP .. 3-3
3.1.2 ALGORITHM INSTANCE CREATION AND INITIALIZATION .. 3-3
3.1.3 PROCESS CALL .. 3-4
3.1.4 ALGORITHM INSTANCE DELETION ... 3-6

3.2 HANDSHAKING BETWEEN APPLICATION AND ALGORITHM 3-6
3.3 ADDRESS TRANSLATIONS .. 3-7
3.4 SAMPLE TEST APPLICATION .. 3-8
CHAPTER 4 .. 4-1
API REFERENCE .. 4-1
4.1 SYMBOLIC CONSTANTS AND ENUMERATED DATA TYPES .. 4-2

Contents

4.2 DATA STRUCTURES.. 4-20
4.2.1 COMMON XDM DATA STRUCTURES ... 4-20

4.2.1.1 XDM2_SingleBufDesc .. 4-21
4.2.1.2 XDM2_BufSize ... 4-21
4.2.1.3 XDM2_BufDesc ... 4-22
4.2.1.4 XDM1_AlgBufInfo ... 4-22
4.2.1.5 XDM_DataSyncDesc .. 4-23
4.2.1.6 IVIDEO2_BufDesc .. 4-24
4.2.1.7 IVIDDEC3_Fxns .. 4-27
4.2.1.8 IVIDDEC3_Params ... 4-27
4.2.1.9 IVIDDEC3_DynamicParams ... 4-29
4.2.1.10 IVIDDEC3_InArgs ... 4-30
4.2.1.11 IVIDDEC3_Status ... 4-31
4.2.1.12 IVIDDEC3_OutArgs .. 4-33

4.2.2 MJPEG DECODER DATA STRUCTURES ... 4-35
4.2.2.1 IJPEGVDEC_Params ... 4-35
4.2.2.2 IJPEGVDEC_DynamicParams ... 4-37
4.2.2.3 IJPEGVDEC_InArgs... 4-39
4.2.2.4 IJPEGVDEC_Status ... 4-39
4.2.2.5 IJPEGVDEC_OutArgs .. 4-40

4.3 INTERFACE FUNCTIONS ... 4-40
4.3.1 CREATION APIS... 4-42
4.3.2 INITIALIZATION API .. 4-44
4.3.3 CONTROL API ... 4-45
4.3.4 DATA PROCESSING API .. 4-46
4.3.5 TERMINATION API ... 4-49

CHAPTER 5 .. 5-1
FREQUENTY ASKED QUESTIONS .. 5-1
5.1 CODE BUILD AND EXECUTION ... 5-1
5.2 ISSUES WITH TOOLS VERSION ... 5-1
5.3 ALGORITHM RELATED ... 5-1
CHAPTER 6 .. 6-1
PICTURE FORMAT .. 6-1
6.1 NV12 CHROMA FORMAT .. 6-1
6.2 PROGRESSIVE PICTURE FORMAT ... 6-2
6.3 CONSTRAINTS ON BUFFER ALLOCATION FOR DECODER .. 6-3
CHAPTER 7 .. 7-1
DEBUG TRACE USAGE .. 7-1
7.1 INTRODUCTION ... 7-1
7.2 ENABLING AND USING DEBUG INFORMATION .. 7-1

7.2.1 DEBUGTRACELEVEL .. 7-2
7.2.2 LASTNFRAMESTOLOG .. 7-2

7.3 DEBUG TRACE LEVELS .. 7-3
7.4 REQUIREMENTS ON THE APPLICATION ... 7-3
CHAPTER 8 .. 8-1
DATA SYNC API USAGE .. 8-1
8.1 DESCRIPTION .. 8-1
8.2 MJPEG DECODER INPUT WITH SUB-FRAME LEVEL SYNCHRONIZATION 8-1

8.2.1 FOR INPUT MODE EQUAL TO IVIDEO_SLICEMODE ... 8-2
8.2.2 FOR INPUT MODE EQUAL TO IVIDEO_FIXEDLENGTH .. 8-4

8.3 MJPEG DECODER OUTPUT WITH SUB-FRAME LEVEL SYNCHRONIZATION 8-5
CHAPTER 9 .. 9-1
ERROR HANDLING ... 9-1

 Contents

9.1 DESCRIPTION .. 9-1
CHAPTER 10... 10-1
SLICE LEVEL DECODING .. 10-1
10.1 INTRODUCTION ... 10-1
10.2 ENABLING AND USING SLICE LEVEL DECODING ... 10-1

10.2.1 SLICESWITCHON .. 10-2
10.2.2 NUMSWITCHPERFRAME ... 10-2
10.2.3 NUMRESTARTMARKERPERSWITCH... 10-2

10.3 REQUIREMENTS ON THE APPLICATION ... 10-2
10.4 SLICE LEVEL DECODING WITH INPUT DATA SYNC - IVIDEO_SLICEMODE 10-3

10.4.1 INTRODUCTION .. 10-3
10.4.2 HOW TO ENABLE THIS FEATURE.. 10-3
10.4.3 REQUIREMENTS ON THE APPLICATION .. 10-3

CHAPTER 11... 11-1
LIMITED PIXEL RANGE ... 11-1
11.1 DESCRIPTION .. 11-1
11.2 ENABLING AND USING LIMITED PIXEL RANGE FEATURE .. 11-1

This page is intentionally left blank

Figures

FIGURE 1-1 IRES INTERFACE DEFINITION AND FUNCTION CALLING SEQUENCE ... 1-5
FIGURE 1-2 BLOCK DIAGRAM OF SIMPLE JPEG ENCODER-DECODER ... 1-6
FIGURE 2-1. COMPONENT DIRECTORY STRUCTURE ... 2-3
FIGURE 3-1 TEST APPLICATION SAMPLE IMPLEMENTATION .. 3-2
FIGURE 3-2. PROCESS CALL WITH HOST RELEASE .. 3-5
FIGURE 3-3. INTERACTION BETWEEN APPLICATION AND CODEC .. 3-6

This page is intentionally left blank

Tables

TABLE 1-1 CHROMA FORMATS SUPPORTED .. 1-8
TABLE 2-1 COMPONENT DIRECTORIES .. 2-3
TABLE 3-1 PROCESS() IMPLEMENTATION ... 3-8
TABLE 4-1 LIST OF ENUMERATED DATATYPES .. 4-2
TABLE 8-1 CREATION TIME PARAMETER RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR

INPUT-DATA OF MJPEG DECODER ... 8-1
TABLE 8-2 DYNAMIC PARAMETERS RELATED TO SUB–FRAME LEVEL DATA COMMUNICATION FOR INPUT

DATA OF MJPEG DECODER ... 8-2
TABLE 8-3 HANDSHAKE PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR INPUT

DATA OF MJPEG DECODER (INPUTDATAMODE = IVIDEO_SLICEMODE) 8-3
TABLE 8-4 HANDSHAKE PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR INPUT

DATA OF MJPEG DECODER (INPUTDATAMODE = IVIDEO_FIXEDLENGTH) 8-4
TABLE 8-5 CREATION TIME PARAMETER RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR

OUTPUT DATA OF MJPEG DECODER .. 8-6
TABLE 8-6 DYNAMIC PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR OUTPUT

DATA OF MJPEG DECODER .. 8-6
TABLE 8-7 HANDSHAKE PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR OUTPUT

DATA OF MJPEG DECODER .. 8-7
TABLE 9-1 ERROR CODES USED TO SET THE EXTENDEDERROR FIELD IN IVIDDEC3_OUTARGS AND

IVIDDEC3_STATUS .. 9-1
TABLE 9-2 ERROR CODES USED TO SET THE EXTENDEDERRORCODE0 ,EXTENDEDERRORCODE1,

EXTENDEDERRORCODE2 AND EXTENDEDERRORCODE3 FIELDS IN IJPEGVDEC_STATUS 9-3

This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI’s implementation of the MJPEG Decoder on the
IVAHD and Media Controller based platform and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of MJPEG Decoder 1-5

1.3 Supported Services and Features 1-6

Introduction

1-2

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to be
moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the

algorithm to initialize the memory allocated by the client application. The

algFree() API allows the algorithm to communicate the memory to be

freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process data

in real-time. The algActivate() API provides a notification to the

algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods

have been run, the client application calls the algDeactivate() API prior

to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),

algNumAlloc(), and algMoved(). For more details on these APIs, see

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

Introduction

1-3

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a video
decoder system, you can use any of the available video decoders (such as
MPEG4, H.263, or MJPEG) in your system. To enable easy integration with
the client application, it is important that all codecs with similar functionality
use similar APIs. XDM was primarily defined as an extension to XDAIS to
ensure uniformity across different classes of codecs (for example audio,
video, image, and speech). The XDM standard defines the following two
APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm

instance and receive status information from the algorithm in real-time. The

control() API replaces the algControl() API defined as part of the

IALG interface. The process() API does the basic processing

(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass to
these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-compliant
MPEG4 video decoder, then you can easily replace MPEG4 with another
XDM-compliant video decoder, say H.263, with minimal changes to the
client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements, and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an
algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that are
requested. The framework calls the IRES interface functions, in addition to
the IALG functions, to perform IRES resource initialization, activation, and
deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages
and grants concrete IRES resources to algorithms and applications.
RMAN uses a new standard interface, the IRESMAN, to support run-
time registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Introduction

1-5

Figure 1-1 IRES Interface Definition and Function Calling Sequence

For more details, see Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5).

1.2 Overview of MJPEG Decoder

JPEG is an international standard for color image compression. This
standard is defined in the ISO 10918-1 JPEG Draft International Standard |
CCITT Recommendation T.81. It is a widely used Image compression
algorithm that uses Inverse Quantization, Inverse Discrete Cosine
Transform (IDCT) coding of the residual data and Huffman entropy coding.

Some important JPEG modes are:

 Sequential DCT based
 Progressive DCT based
 Hierarchical
 Lossless

Following are the supported processes and features as per JPEG standard:

Baseline:

 8bit samples per component

 Sequential only

 Huffman coding uses 2 AC and 2 DC tables

 Extended:

 8 or 12 bit samples per component

 Both Sequential and Progressive

 Huffman or Arithmetic coding has 4 AC and 4DC Tables

Introduction

1-6

Figure 1-2 Block diagram of Simple JPEG encoder-decoder

From this point onwards, all references to MJPEG Decoder means JPEG
Baseline Sequential Decoder used in video mode (i.e. in continuous multiple
JPEG image decoding mode).

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of MJPEG Decoder on
the HDVICP2 platform.

This version of the codec has the following supported features:

 eXpressDSP Digital Media (XDM IVIDDEC3) compliant

 Supports baseline sequential mode with both interleaved and non-
interleaved input formats

 Supports 8bpp per component

 Supports extended sequential mode with some constraints. Does not
support arithmetic decoding and 12 bits per sample.

 Supports YUV444, YUV422, YUV420 and YUV400 chroma sub-
sampling formats for input

 Both horizontal down sampling and vertical down sampling supported
for input YUV422 images i.e. this MJPEG decoder can decode both
horizontally downsampled and vertically downsampled YUV422
images

Introduction

1-7

 Supports YUV 444 planar, YUV 422 IBE (YUYV) and YUV 420 semi-
planar chroma sub-sampling formats for output. Please refer to Table
1-1.

 Supports a maximum of three components

 Supports all resolutions up to 4096x4096

 Supports 8-bit and 16-bit quantization tables

 Supports a maximum of four Huffman tables each for AC and DC DCT
coefficients

 Supports decoding of custom Huffman tables

 Supports decoding of JPEG File Interchange Format (JFIF) header

 Supports parsing of Comment marker

 Supports decoding of EXIF marker

 Supports parsing of restart marker

 Skips all unsupported markers

 Supports sub-frame data synchronization for input and output

 Supports graceful exit under error conditions

 Supports Limited Pixel Range

 Supports multi-channel functionality

 Supports thumbnail for preview. The thumbnail can be JFIF or EXIF.
Thumbnail can be RGB as well as JPG. The user can also specify that
a downsampled version of the image be given out as thumbnail.

 Supports scaling for YUV444 and YUV400 images

 Supports error concealment (for YUV420 interleaved input only)

 Supports slice level decoding through user configurable parameters

 Supports debug trace dump

Limitations:

 Does not support arithmetic decoding

 Does not support 12 bits per sample

 Does not support return of metadata present in JFIF, Exif and
comment markers to application (but supports decoding of thumbnail
images embedded in JFIF or Exif markers)

 Does not support post-processing algorithms such as (a) Rotation (b)
Scaling with arbitrary ratio (c) Flipping (d) out of loop de-blocking filter
(e) out loop de-ring filter (f) chroma conversion (g) alpha blending

Introduction

1-8

 Does not support slice level switching and sub frame level data
synchronization simultaneously. Their support is mutually exclusive.

 Table 1-1 Chroma Formats Supported

Input Image Format Output chroma formats supported

420 Interleaved YUV420 Semi Planar

422 (Horizontally
downsampled) Interleaved

YUV422 IBE (YUYV)
(1)

, YUV420 Semi
Planar

422 (Vertically
downsampled) Interleaved

YUV422 Planar

444 Interleaved YUV444 Planar, YUV420 Semi
Planar

(1)

400 (Grayscale) YUV420 Semi Planar with chroma set
to 0x80

Non-interleaved (multiple
scan) images

The output will be planar with the same
chroma subsampling format as input

(1)
 These output formats require conversion by software. So, significant

performance deviation would be seen for these output formats as
compared to the other supported output formats.

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-3

2.3 Before Building the Sample Test Application 2-4

2.4 Building and Running the Sample Test Application 2-6

2.5 Configuration Files 2-8

2.6 Standards Conformance and User-Defined Inputs 2-9

2.7 Uninstalling the Component 2-10

Installation Overview

2-2

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been tested on the HDVICP2 and Media Controller based
OMAP4 ES1.0 and DM816x DDR2 EVM REV-B hardware platforms.

2.1.2 Software

The following are the software requirements for the normal functioning of the
codec:

 Development Environment: This project has been developed using
Code Composer Studio (Code Composer Studio v4) version
4.2.0.09000.

http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/s
etup_CCS_4.2.0.09000.zip

 Code Generation Tools: This codec has been compiled, assembled,
archived, and linked using the code generation tools version 4.5.1 for
HDVICP2 processors only.

All though CG tools v 4.5.1 is a part of Code Composer Studio v4
installation, it is recommended that you re-install CG tools by
downloading from the following link.

https://www-
a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Media Controller processor is compiled with code generation tools
version 5.0.3.

 HDVICP2 Simulator: This codec has been tested using HDVICP2
Simulator version 5.0.16 (HDVICP2 Simulation CSP 1.1.5). This
release can be obtained by software updates on Code Composer
Studio v4. Ensure that the following site is listed as part of “Update
sites to visit”

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/ivahd/site
.xml

This codec has also been tested using Netra CSP (Simulation) version
0.7.1. This version of Simulator can be downloaded through software
updates on Code Composer Studio v4. Ensure that the following site is
listed as part of “Update sites to visit”.

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/s
ite.xml

http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/ivahd/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/ivahd/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/ivahd/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml

Installation Overview

2-3

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a directory called 500.V.MJPEG.D.IVAHD.01.00 under
which under which the directory named IVAHD_001 is created:

 The sub directory structures for IVAHD_001 are depicted in Figure 2-1.

Figure 2-1. Component Directory Structure

Table 2-1 provides a description of the sub-directories created in the
500.V.MJPEG.D.IVAHD.01.00/IVAHD_001 directory.

Table 2-1 Component Directories

Sub-Directory Description

\client\build\TestAppDeviceName Contains the Media Controller cmd file. The name of this
directory will not be same as exactly mentioned here. Instead of
DeviceName string, actual name of Device will be present.

\client\build\TestAppDeviceName\mak
e

Contains the make file for the test application project. The name
of this directory will not be same as exactly mentioned here.
Instead of DeviceName string, actual name of Device will be
present.

\client\build\TestAppDeviceName\map Contains the memory map generated on compilation of the code

Installation Overview

2-4

Sub-Directory Description

\client\build\TestAppDeviceName\obj Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\client\build\TestAppDeviceName\Out Contains the final application executable (.out) file generated by
the sample test application

\client\test\inc Contains header files needed for the application code

\client\test\src Contains application C files

\client\test\testvecs\config Contains sample configuration file for MJPEG Decoder

\client\test\testvecs\input Contains input test vectors

\client\test\testvecs\output Contains output generated by the codec. It is empty directory as
part of release.

\client\test\testvecs\reference Contains read-only reference output to be used for cross-
checking against codec output

\docs Contains user guide, data sheet

\inc Contains interface header files of MJPEG Decoder

\lib Contains jpegvdec_ti_host.lib – HDVICP2 MJPEG Decoder built as
a library on Media Controller

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need TI Framework Components (FC).

This version of the codec has been validated with Framework Components
(FC) version 3.24.00.06.eng.

To run the Simulator version of the codec, the HDVICP2 simulator has to be
installed. The version of the simulator is 5.0.16. This can be done using the
“Help->Software Updates->Find and Install” option in CCSv4. Detailed
instructions to set up the configuration can be found in
Iivahd_sim_user_guide.pdf present in <CCSv4 Installation
Dir>\simulation_csp_omap4\docs\pdf\ directory.

This codec has also been validated on Netra Video Processing Simulator
that simulates all the three HDVICP2s in DM816x. The simulator required for
this is Netra CSP (Simulation) version 0.7.1. This simulator can also be
installed using the “Help->Software Updates->Find and Install” option in
CCSv4. Detailed instructions to set up the configuration can be found in
netra_sim_user_guide.pdf present in <CCSv4 Installation Dir>\
simulation_netra\docs\user_guide directory.

Install CG Tools version 4.5.1 for ARM (TMS470) at the following location in
your system: <CCSv4.2_InstallFolder>\ccsv4\tools\compiler\tms470.
CGTools 4.5.1 can be downloaded from

Installation Overview

2-5

 https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Please note that CG Tools 4.5.1 is installed at the location mentioned above
along with the CCS v4.2 installation by default. But, as some problems have
been reported about this, we recommend that you install CG Tools 4.5.1
again with the installer obtained from the above link.

Set environment variable CG_TOOL_DIR for HDVICP2 processor to
<CCSv4.2_InstallFolder>\ccsv4\tools\compiler\tms470.

CG Tools 5.0.3 could be installed in local directory and set environment
variable CG_TOOL_DIR_M3 for Media Controlled processors to <Installed
Dir>

Set environment variables HDVICP2_INSTALL_DIR and
CSP_INSTALL_DIR to the locations where the HDVICP20 API library and
HDVICP2 CSL are present. The HDVICP20 API library and the HDVICP2
CSL can be downloaded from the same place as the codec package. The
HDVICP20 API .lib files should be present at HDVICP2_INSTALL_DIR/lib
and HDVICP20 API interface header files at HDVICP2_INSTALL_DIR/inc.
The folders csl_HDVICP2 and csl_soc of HDVICP2 CSL should be present
at CSP_INSTALL_DIR/.

This version of the codec has been validated with HDVICP2.0 API library
version 01.00.00.23 and HDVICP2.0 CSL Version 00.05.02.

Set the system environment variable TI_DIR to the CCSv4 installation path.
Example: TI_DIR = <CCSv4 Installation Dir>\ccsv4.

Add gmake (GNU Make version 3.78.1) utility folder path (for example,
“C:\CCStudioV4.0\ccsv4\utils\gmake”) at the beginning of the PATH
environment variable.

The version of the XDC tools required is 3.20.04.68 GA.

2.3.1 Installing Framework Component (FC)

You can download FC from the TI website:

Extract the FC zip file to the some location and set the system environment
variable FC_INSTALL_DIR to this path. For example: if the zip file was
extracted to C:\CCSv4\, set FC_INSTALL_DIR as C:\CCSv4\
framework_components_3_24_00_06_eng.

The test application uses the following IRES and XDM files:

 HDVICP related IRES header files, these are available in the
FC_INSTALL_DIR\packages\ti\sdo\fc\ires\hdvicp directory.

 Tiled memory related Header file, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\sdo\fc\ires\tiledmemory
directory.

 XDM related header files, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\xdais directory

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Installation Overview

2-6

2.3.2 Installing XDC Tools

XDC Tools is required to build the test application. The test application uses
the standard files like <std.h> from XDC tools. This decoder has been
validated with XDC version 3.20.04.68 GA. The XDC tools can be
downloaded and installed from the following URL:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index
_FDS.html

Also, ensure that the environment variable XDCROOT is set to the XDC
installation directory.

2.4 Building and Running the Sample Test Application

2.4.1 Building the Sample Test Application

This library release of MJPEG Decoder on HDVICP2 and Media Controller
based platform contains the following projects.

Project Make file Path Output files

Test

Application

\client\build\<TestAppDeviceNam

e>\make\

\client\build\TestApp<DeviceName>\out

\jpegvdec_ti_testapp.out

The make file for the project can be built using the following commands.

gmake –k –s deps

gmake –k –s all

Use the following command to clean previous builds.

gmake –k –s clean

2.4.2 Running the Sample Test Application on Netra HDVICP2 Simulator

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on HDVICP2 Simulator, follow these steps:

1) Ensure that you have installed IVAHD CSP (Simulation) version 1.1.5.

2) Start Code Composer Studio v4 and set up the target configuration for Netra
IVA-HD Simulator.

3) Select the Debug perspective in the workbench. Launch Netra IVA-HD
simulator in CCSv4 (View > Target Configurations > %Netra
Simulator%).

4) Select M3_Video device and Target > Load Program, browse to the
\500.V.MJPEG.D.IVAHD.01.00\IVAHD_001\client\build\TestAppDeviceNam
e\out\ sub-directory, select the codec executable

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html

Installation Overview

2-7

“jpegvdec_ti_hosttestapp.out” and load it into Code Composer Studio in
preparation for execution.

5) Select IVAHD_0_ICONT1 device and Target > Run to give iCont1 device a
free run.

6) Select IVAHD_0_ICONT2 device and Target > Run to give iCont2 device a
free run.

7) Select Target > Run to execute the application for M3_Video device.

8) Test application will take input streams from
\500.V.MJPEG.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\input\
directory and generates outputs in
\500.V.MJPEG.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\output\
directory.

2.4.3 Running the Sample Test Application on DM816x EVM

To run the sample test application on DM816x DDR2 EVM, follow these
steps:

1) Start Code Composer Studio v4 and set up the target configuration for
DM816x EVM Emulator.

2) Ensure that the clock is enabled for Media Controller and HDVICP2.

3) Select the Debug perspective in the workbench. Launch DM816x EVM
Emulator configuration in CCSv4 (View > Target Configurations >
%DM816x EVM%).

4) Select Cortex_M3_RTOS_0 device, right click and choose “Connect Target”
and wait for emulator to connect to CortexM3.

5) Select Cortex_M3_RTOS_0 device and Target > Load Program, browse to
\500.V.MJPEG.D.IVAHD.01.00\IVAHD_001\client\build\TestAppDM816x\out
\ sub-directory, select the codec executable “jpegvdec_ti_hosttestapp.out”
and load it in preparation for execution.

6) Select Target > Run to execute the application for Cortex_M3_RTOS_0
device.

7) Test application will take input streams from
\500.V.MJPEG.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\input\
directory and generates outputs in
\500.V.MJPEG.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\output\
directory.

Note:

Order of connecting to the devices is important and it should be as
mentioned in above steps.

Installation Overview

2-8

2.5 Configuration Files

This codec is shipped along with:

 Generic configuration file (Testvecs.cfg) – specifies input and reference
files for the sample test application.

 Decoder configuration file (Testparams.cfg) – specifies the
configuration parameters used by the test application to configure the
Decoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The Testvecs.cfg file is
available in the \client\test\testvecs\config sub-directory.

The format of the Testvecs.cfg file is:

Mode

Config

Input

Output

where:

 Mode may be set as:

o 1 - for compliance checking.

o 0 - for writing the output to the output file

 Config is the Decoder configuration file. For details, see Section 2.5.2

 Input is the input file name (use complete path).

 Output is the output .yuv file name

A sample Testvecs.cfg file is as shown:

0

..\..\Test\TestVecs\Config\Testparams.cfg

..\..\Test\TestVecs\Input\davincieffect_qcif_yuv420_5fr.mjpg

..\..\Test\TestVecs\Output\davincieffect_qcif_yuv420_5fr.yuv

In compliance mode of operation, the decoder compares the reference and
the generated output and declares Pass/Fail message. If output dump mode
is selected(X set to 0), then the decoder dumps the output to the specified
file. Compliance mode has not been implemented in this release of JPEG
Decoder.

Installation Overview

2-9

2.5.2 Decoder Configuration File

The decoder configuration file, Testparams.cfg contains the configuration
parameters required for the decoder. The Testparams.cfg file is available in
the \Client\Test\TestVecs\Config sub-directory.

A sample Testparams.cfg file is as shown:

<ParameterName> = <ParameterValue> # Comment

Parameters

ImageWidth = 4096 # Max image width in Pels

ImageHeight = 4096 # Max image height in Pels

ChromaFormat = 9 # Output Chroma Format

 # 9=>YUV420SP

 # 5=>YUV444P

 # 3=>YUV422 YUYV

FramesToDecode = 1 # Number of frames to be decoded

DumpFrom = 0 # Start dumping from this frame

sliceSwitchON = 0 # enable/disable slice level

switch

numSwitchPerFrame = 0 # number of switches per frame

 # when sliceSwitchON is enabled

numRestartMarkerPerSwitch = 0 # number of RST markers to

 # decode per switch

ErrorConcealmentON = 1 # Enable/Disable error

 # concealment

debugTraceLevel = 0 # Set debug trace level

lastNFramesToLog = 0 # Number of frames to log debug

 # trace if enabled

rangeReduction = 0 # enable/disable limited pixel

 range feature.

Note:

Please see Table 1-1 for the list of supported input and output chroma
formats.

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4. To check
the conformance of the codec for other input files of your choice, follow
these steps:

 Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory

Installation Overview

2-10

 Copy the reference files to the \Client\Test\TestVecs\Reference
subdirectory.

Edit the configuration file, TestVecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of the
TestVecs.cfg file, see Section 2.5.1.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-2

3.2 Handshaking Between Application and Algorithm 3-6

3.3 Address Translations 3-7

3.4 Sample Test Application 3-8

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDDEC3 base class of the MJPEG

Decoder library. The main test application files are
jpegvdec_ti_hosttestapp.c and jpegvdec_rman_config.c. These files are
available in the \IVAHD_001\client\test\src directory.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application. Currently, the test application does not use RMAN resource
manager. However, all the resource allocations happens through IRES
interfaces.

Figure 3-1 Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters such
as video height, video width, and so on. The test application obtains the
required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the compliance
checking parameter, Decoder configuration file name (Testparams.cfg),
input file name, and output/reference file name.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm. For more details
on the configuration files, see Section 2.4.3.

3) Sets the IVIDDEC3_Params structure based on the values it reads from the

Testparams.cfg file.

4) Reads the input bit-stream into the application input buffer.

After successful completion of these steps, the test application does the
algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory

records it requires.

2) algAlloc() - To query the algorithm about the memory requirement to be

filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures provided

by the application.

A sample implementation of the create function that calls algNumAlloc(),

algAlloc(), and algInit() in sequence is provided in the

ALG_create() function implemented in the alg_create.c file.

Sample Usage

3-4

Note:

 Decoder requests only one memory buffer through algNumAlloc.

This buffer is for the algorithm handle.

 Other memory buffer requirements are done through IRES
interfaces.

After successful creation of the algorithm instance, the test application does
HDVICP Resource and memory buffer allocation for the algorithm.
Currently, RMAN resource manager is not used. However, all the resource
allocations happen through IRES interfaces:

4) numResourceDescriptors() - To understand the number of resources

(HDVICP and buffers) needed by algorithm.

5) getResourceDescriptors() – To get the attributes of the resources.

6) initResources() - After resources are created, application gives the

resources to algorithm through this API.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run-time) by calling the

control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the

process()function call. The input and output buffer descriptors are

obtained by calling the control() function with the XDM_GETBUFINFO

command.

3) Implements the process call based on the non-blocking mode of operation
explained in step 4. The behavior of the algorithm can be controlled using
various dynamic parameters (see Section 4.2.1.9). The inputs to the

process()functions are input and output buffer descriptors, pointer to the

IVIDDEC3_InArgs and IVIDDEC3_OutArgs structures.

4) On the call to the process() function for decoding a single frame of data,

the software triggers the start of decode. After triggering the start of the

decode frame, the video task can be put to SEM-pend state using

semaphores. On receipt of interrupt signal at the end of frame decode, the
application releases the semaphore and resume the video task, which does
any book-keeping operations by the codec and updates the output

parameter of IVIDDEC3_OutArgs structure.

Sample Usage

3-5

Figure 3-2. Process call with Host release

The control() and process() functions should be called only within the

scope of the algActivate() and algDeactivate() XDAIS functions

which activate and deactivate the algorithm instance respectively. Once an

algorithm is activated, there could be any ordering of control() and

process() functions. The following APIs are called in a sequence:

5) algActivate() - To activate the algorithm instance.

6) control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control commands.

7) process() - To call the Decoder with appropriate input/output buffer and

arguments information.

8) control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control commands.

9) algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates picture level process() call and updates

the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process() call from file operations by placing

appropriate calls for cache operations. The test application does a cache

invalidate for the valid input buffers before process() and a cache write

back invalidate for output buffers after a control() call with GET_STATUS

command.

In the sample test application, after calling algDeactivate(), the output

data is either dumped to a file or compared with a reference file.

Host
System

application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

Transfer of
tasks at Host

MB level tasks for

frame n+1

Process call frame n+1

Host system
tasks

HDVICP Busy

Interrupt between
HDVICP and Host

Sample Usage

3-6

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application frees the memory
resources and deletes the current algorithm instance. The following APIs
are called in sequence:

1) numResourceDescriptors() - To get the number of resources and free

them. If the application needs handles to the resources, it can call

getResourceDescriptors().

2) algNumAlloc() - To query the algorithm about the number of memory

records it used.

3) algFree() - To query the algorithm for memory, to free when removing an

instance.

A sample implementation of the delete function that calls algNumAlloc()

and algFree() in sequence is provided in the ALG_delete() function

implemented in the alg_create.c file.

3.2 Handshaking Between Application and Algorithm

Application provides the algorithm with its implementation of functions for

the video task to move to SEM-pend state, when the execution happens in

the co-processor. The algorithm calls these application functions to move
the video task to SEM-pend state.

Figure 3-3. Interaction Between Application and Codec

Framework Provided
HDVICP Callback APIs

process()

Application Side

Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDDEC3::process() {

 :

//Call to Acquire API */

HDVICP_Acquire(handle,

iresHandle, yieldCtxt,

reloadHDVICP);

 …. set up for frame decode

 HDVICP_Configure(jpgd, jpgd-

>hdvicpHandle,

 jpgDISRFunction);

 HDVICP_Wait(jpegd, jpegd-

>hdvicpHandle);

 // Release of HOST

 …. End of frame processing

}

void jpgDISRFunction(IALG_Handle

handle)

{ jpgD_TI_Obj *jpgd = (void

*)handle;

 HDVICP_done(jpegd ,

 jpegd-

>hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

HDVICP_Wait(handle,

hdVicpHandle){

SEM_pend(_doneSemaphore);

}

HDVICP_Done(handle,

hdVicpHandle) {

 SEM_post(_doneSemaphore)

}

Sample Usage

3-7

Note:

 Process call architecture to share Host resource among multiple
threads.

 ISR ownership is with the Host layer resource manager – outside the
codec.

 The actual codec routine to be executed during ISR is provided by the
codec.

 OS/System related calls (SEM_pend, SEM_post) also outside the

codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

 void HDVICP_Acquire(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle, IRES_YieldContext *

yieldCtxt, Bool *reloadHDVICP)

This function is called by the algorithm to acquire the HDVICP2
resource.

 HDVICP_Configure(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle,

void(*IRES_HDVICP2_CallbackFxn)(IALG_Handle handle,

void *cbArgs), void *cbArgs)

This function is called by the algorithm to register its ISR function,
which the application needs to call when it receives interrupts
pertaining to the video task.

 HDVICP_Wait (void *hdvicpHandle)

This function is called by the algorithm to move the video task to SEM-

pend state.

 HDVICP_Done (void *hdvicpHandle)

This function is called by the algorithm to release the video task from
SEM-pend state. In the sample test application, these functions are

implemented in hdvicp_framework.c file. The application can
implement it in a way considering the underlying system.

3.3 Address Translations

The buffers addresses(DDR addresses) as seen by Ducati(Media
Controller) and HDVICP2(VDMA) will be different. Hence, address
translations are needed to convert from one address view to another. The
application needs to implement a MEMUTILS function for this address
translation (which will be later implemented by the framework components).
An example of the address translation function is as shown. The codec will
make a call to this function from the host (Media Controller) library.
Therefore, the function name and arguments should follow the example
provided below. For a given input address, this function returns the VDMA
view of the buffer (that is, address as seen by HDVICP2).

Sample Usage

3-8

void *MEMUTILS_getPhysicalAddr(Ptr Addr)

{

return ((void *)((unsigned int)Addr & VDMAVIEW_EXTMEM));

}

Sample settings for the macro VDMAVIEW_EXTMEM is as shown.

#if defined(HOSTARM968_FPGA)

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#elif defined(HOSTCORTEXM3_OMAP4)

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#elif defined(HOSTCORTEXM3_NETRA)

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#else

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#endif

3.4 Sample Test Application

The test application exercises the IVIDDEC3 base class of the MJPEG

Decoder.

 Table 3-1 Process() Implementation

/*Main Function acting as a client for Video Decode Call*/

 TestApp_SetInitParams(¶ms.viddecParams);

 /*---------------- Decoder creation -----------------*/

 handle = (IALG_Handle) jpgVDEC_create();

 /* Optional: Set Run-time parameters in the Algorithm

via control() */

 jpgVDEC_control(handle, XDM_SETPARAMS);

 /* Get Buffer information */

 jpgVDEC_control(handle, XDM_GETBUFINFO);

 /* Do-While Loop for Decode Call for a given stream */

 do

 {

 /* Read the bitstream in the Application Input Buffer */

 validBytes = ReadByteStream(inFile);

/*--*/

/* Start the process : To start decoding a frame */

/*--*/

 retVal = jpgVDEC_decodeFrame

 (

 handle,

 (XDM1_BufDesc *)&inputBufDesc,

 (XDM_BufDesc *)&outputBufDesc,

 (IVIDDEC3_InArgs *)&inArgs,

 (IVIDDEC3_OutArgs *)&outArgs

);

 /* Get the status of the decoder using control */

Sample Usage

3-9

 jpgVDEC_control(handle, XDM_GETSTATUS);

 /* Get Buffer information */

 jpgVDEC_control(handle, XDM_GETBUFINFO);

} while(1);

/* end of Do-While loop - which decodes frames */

ALG_delete (handle);

Note:

This sample test application does not depict the actual function
parameter or control code. It shows the basic flow of the code.

Sample Usage

3-10

This page is intentionally left blank

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-20

4.3 Interface Functions 4-40

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

Table 4-1 List of Enumerated Datatypes

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_ContentType IVIDEO_CONTENTTYPE_NA Content type is not applicable

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE_FRAM

E

Progressive video content. Not
applicable for MJPEG decoder.

IVIDEO_INTERLACED

IVIDEO_INTERLACED_FRAME

Interlaced video content. Not
applicable for MJPEG decoder.

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Top field.
Not applicable for MJPEG decoder.

IVIDEO_INTERLACED_BOTTO

MFIELD

Interlaced video content, Bottom
field. Not applicable for MJPEG
decoder.

IVIDEO_CONTENTTYPE_DEFA

ULT

Default set to
IVIDEO_PROGRESSIVE

IVIDEO_FrameSkip IVIDEO_NO_SKIP Do not skip the current frame.
Not applicable for MJPEG decoder.

IVIDEO_SKIP_P Skip forward inter coded frame.
Not applicable for MJPEG decoder.

IVIDEO_SKIP_B Skip bi-directional inter coded frame.
Not applicable for MJPEG decoder.

IVIDEO_SKIP_I Skip intra coded frame.
Not applicable for MJPEG decoder.

IVIDEO_SKIP_IP Skip I and P frame/field(s)
Not applicable for MJPEG decoder.

IVIDEO_SKIP_IB Skip I and B frame/field(s).
Not applicable for MJPEG decoder.

IVIDEO_SKIP_PB Skip P and B frame/field(s).
Not applicable for MJPEG decoder.

IVIDEO_SKIP_IPB Skip I/P/B/BI frames
Not applicable for MJPEG decoder.

API Reference

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_SKIP_IDR Skip IDR Frame
Not applicable for MJPEG decoder.

IVIDEO_SKIP_NONREFERENC

E

Skip non reference frame
Not applicable for MJPEG decoder.

IVIDEO_SKIP_DEFAULT Default set to IVIDEO_NO_SKIP

IVIDEO_VideoLayout IVIDEO_FIELD_INTERLEAVE

D

Buffer layout is interleaved. This
enum is not applicable for MJPEG
Decoder.

IVIDEO_FIELD_SEPARATED Buffer layout is field separated. This
enum is not applicable for MJPEG
Decoder.

IVIDEO_TOP_ONLY Buffer contains only top field. This
enum is not applicable for MJPEG
Decoder.

IVIDEO_BOTTOM_ONLY Buffer contains only bottom field.
This enum is not applicable for
MJPEG Decoder.

IVIDEO_OperatingMode IVIDEO_DECODE_ONLY Decoding Mode

IVIDEO_ENCODE_ONLY Encoding Mode. Not applicable for
MJPEG decoder.

IVIDEO_TRANSCODE_FRAMEL

EVEL

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the frame level. Not applicable for
MJPEG decoder.

IVIDEO_TRANSCODE_MBLEVE

L

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the MB level. Not applicable for
MJPEG decoder.

IVIDEO_TRANSRATE_FRAMEL

EVEL

Transrate Mode of operation for
encoder, which consumes transrate
information at the frame level. Not
applicable for MJPEG decoder.

IVIDEO_TRANSRATE_MBLEVE

L

Transrate Mode of operation for
encoder, which consumes transrate
information at the MB level. Not
applicable for MJPEG decoder.

IVIDEO_OutputFrameStatus IVIDEO_FRAME_NOERROR Output buffer is available.

IVIDEO_FRAME_NOTAVAILAB

LE

Codec does not have any output
buffers.

API Reference

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FRAME_ERROR Output buffer is available and
corrupted.

IVIDEO_FRAME_OUTPUTSKIP The video frame was skipped (that
is not decoded)

IVIDEO_OUTPUTFRAMESTATU

S_DEFAULT

Default set to
IVIDEO_FRAME_NOERROR

IVIDEO_PictureType IVIDEO_NA_PICTURE Frame type not available. This enum
is not applicable for MJPEG
Decoder.

IVIDEO_I_PICTURE Intra coded picture. This enum is not
applicable for MJPEG Decoder.

IVIDEO_P_PICTURE Forward inter coded picture. This
enum is not applicable for MJPEG
Decoder.

IVIDEO_B_PICTURE Bi-directional inter coded picture.
This enum is not applicable for
MJPEG Decoder.

IVIDEO_DataMode IVIDEO_FIXEDLENGTH Input to the decoder is in multiples
of a fixed length (example, 4K)
(input side for decoder).

IVIDEO_SLICEMODE Slice mode of operation (Input side
for decoder).

IVIDEO_NUMROWS Number of MCU rows (output side
for decoder).

IVIDEO_ENTIREFRAME Processing of entire frame data
(default value)

IVIDDEC3_displayDelay IVIDDEC3_DISPLAY_DELAY_

AUTO

Decoder decides the display delay.
Not supported in this version of
MJPEG Decoder.

IVIDDEC3_DECODE_ORDER Display frames are in decoded order
without delay. Not applicable for
MJPEG decoder.

IVIDDEC3_DISPLAY_DELAY_

1

Display the frames with 1 frame
delay. Not applicable for MJPEG
decoder.

IVIDDEC3_DISPLAY_DELAY_

2

Display the frames with 2 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

3

Display the frames with 3 frame
delay. Not supported in this version
of MJPEG Decoder.

API Reference

4-5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDDEC3_DISPLAY_DELAY_

4

Display the frames with 4 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

5

Display the frames with 5 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

6

Display the frames with 6 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

7

Display the frames with 7 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

8

Display the frames with 8 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

9

Display the frames with 9 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

10

Display the frames with 10 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

11

Display the frames with 11 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

12

Display the frames with 12 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

13

Display the frames with 13 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

14

Display the frames with 14 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

15

Display the frames with 15 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAY_DELAY_

16

Display the frames with 16 frame
delay. Not supported in this version
of MJPEG Decoder.

IVIDDEC3_DISPLAYDELAY_D

EFAULT

Same as
IVIDDEC3_DISPLAY_DELAY_AU

TO. Not supported in this version of

MJPEG Decoder.

API Reference

4-6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_DataFormat XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
MJPEG Decoder.

XDM_LE_32 32-bit little endian stream.
Not supported in this version of
MJPEG Decoder.

XDM_LE_64 64-bit little endian stream.
Not supported in this version of
MJPEG Decoder.

XDM_BE_16 16-bit big endian stream.
Not supported in this version of
MJPEG Decoder.

XDM_BE_32 32-bit big endian stream.
Not supported in this version of
MJPEG Decoder.

XDM_BE_64 64-bit big endian stream.
Not supported in this version of
MJPEG Decoder.

XDM_ChromaFormat XDM_YUV_420P YUV 4:2:0 planar. Supported for
non-interleaved inputs in this version
of MJPEG Decoder.

XDM_YUV_422P YUV 4:2:2 planar. Supported for
non-interleaved inputs in this version
of MJPEG Decoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian).
Not supported in this version of
MJPEG Decoder.

XDM_YUV_444P YUV 4:4:4 planar.

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of
MJPEG Decoder.

XDM_GRAY Gray format. Supported only for
input.

XDM_RGB RGB color format. Supported for
thumbnail output.

XDM_YUV_420SP YUV 4:2:0 chroma semi-planar
(default value)

API Reference

4-7

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_ARGB8888 ARGB8888 color format.
Not supported in this version of
MJPEG Decoder.

XDM_RGB555 RGB555 color format.
Not supported in this version of
MJPEG Decoder.

XDM_RGB565 RGB565 color format.
Not supported in this version of
MJPEG Decoder.

XDM_YUV_444ILE YUV 4:4:4 interleaved (little endian)
color format.
Not supported in this version of
MJPEG Decoder.

XDM_MemoryType XDM_MEMTYPE_ROW Raw Memory Type (deprecated)

XDM_MEMTYPE_RAW Raw Memory Type i.e., Linear
(standard) memory.

XDM_MEMTYPE_TILED8 2D memory in 8-bit container of tiled
memory space.

XDM_MEMTYPE_TILED16 2D memory in 16-bit container of
tiled memory space.

XDM_MEMTYPE_TILED32 2D memory in 32-bit container of
tiled memory space. Not supported
in this MJPEG Decoder.

XDM_MEMTYPE_TILEDPAGE 2D memory in page container of
tiled memory space.

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill

Status structure

XDM_SETPARAMS Set run-time dynamic parameters

via the DynamicParams structure

XDM_RESET Reset the algorithm.

XDM_SETDEFAULT Initialize all fields in Params

structure to default values specified
in the library.

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

API Reference

4-8

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_GETVERSION Query the algorithm’s version. The
result will be returned in the data

field of the Status structure.

Application has to allocate memory
for a buffer passed through data
field. The minimum buffer size
required is 96 bytes.

XDM_GETCONTEXTINFO Query a split codec part for its
context needs. Not supported in this
version of MJPEG Decoder.

XDM_GETDYNPARAMSDEFAULT Query algorithm instance regarding
the dynamic parameters default
values

XDM_SETLATEACQUIREARG Set an algorithm's 'late acquire'
argument.

XDM_AccessMode XDM_ACCESSMODE_READ The algorithm read from the buffer
using the CPU

XDM_ACCESSMODE_WRITE The algorithm wrote from the buffer
using the CPU

XDM_ErrorBit XDM_APPLIEDCONCEALMENT Bit 9
1 - applied concealment
0 – Error not found

XDM_INSUFFICIENTDATA Bit 10
1 - Insufficient data
0 – Error not found

XDM_CORRUPTEDDATA Bit 11
1 - Data problem/corruption
0 - Error not found

XDM_CORRUPTEDHEADER Bit 12
1 - Header problem/corruption
0 - Error not found

XDM_UNSUPPORTEDINPUT Bit 13
1 - Unsupported feature/parameter in
input
0 - Error not found

XDM_UNSUPPORTEDPARAM Bit 14
1 - Unsupported input parameter or
configuration
0 - Error not found

API Reference

4-9

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_FATALERROR Bit 15
1 - Fatal error
0 - Recoverable error

IJPEGDEC_ExtendedErrorCod

es

IJPEGDEC_ERR_UNSUPPORTE

D_VIDDEC3PARAMS

Bit 0
This error code has been
deprecated.

IJPEGDEC_ERR_UNSUPPORTE

D_VIDDEC3DYNAMICPARAMS

Bit 1
1 - Unsupported
VIDDEC3DYNAMICPARAMS have
been passed to the codec
0 - Error not found

IJPEGDEC_ERR_UNSUPPORTE

D_JPEGDECDYNAMICPARAMS

Bit 2
1 - Unsupported
JPEGDECDYNAMICPARAMS (i.e.,
extended) have been passed to the
codec
0 - Error not found

IJPEGDEC_ERR_NOSLICE Bit 3
1 - Image does not have any slices
and application is using slice level
decoding.
0 - Error not found

IJPEGDEC_ERR_MBDATA Bit 4
1 - Invalid Input in MB data
0 - Error not found

IJPEGDEC_ERR_STANDBY Bit 5
1- HDVICP was not in standby
 when given to codec
0 - Error not found

IJPEGDEC_ERR_INVALID_MB

OX_MESSAGE

Bit 6
1 - Invalid MailBox Message
has been received
0 - Error not found

IJPEGDEC_ERR_HDVICP_RES

ET

Bit 7
1 – HDVICP is not put into RESET
mode successfully
0 - Error not found

IJPEGDEC_ERR_HDVICP_WAI

T_NOT_CLEAN_EXIT

Bit 16
1 - Exit from HDVICP2 is not clean
0 - Error not found

API Reference

4-10

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGDEC_ERR_FRAME_HDR Bit 17
1 – Invalid Frame Header Information
in the Input Stream which is passed to
the codec.
0 - Error not found

IJPEGDEC_ERR_SCAN_HDR Bit 18
1 – Invalid Scan Header parameters
in the Input Stream which is passed to
the codec.
0 - Error not found

IJPEGDEC_ERR_HUFF_TBL_H

DR

Bit 19
1 – Invalid Huffman table Header
parameters in the Input Stream which
is passed to the codec.
0 - Error not found

IJPEGDEC_ERR_QUANT_TBL_

HDR

Bit 20
1 – Invalid Quantization table Header
parameters in the Input Stream which
is passed to the codec.
0 - Error not found

IJPEGDEC_ERR_OUTCHROMAF

ORMAT

Bit 21
1 – Not supported output chroma
format set by the application to the
codec
0 - Error not found

IJPEGDEC_ERR_UNSUPPORTE

D_MARKER

Bit 22
1 – Un Supported Marker in the Input
stream.
0 - Error not found

IJPEGDEC_ERR_THUMBNAIL Bit 23
1 – Error in JFIF thumbnail marker.
0 - Error not found

IJPEGDEC_ERR_IRES_HANDL

E

Bit 24
1 – Handle provided the Resource
Manager is NULL.
0 - Error not found

IJPEGDEC_ERR_DYNAMIC_PA

RAMS_HANDLE

Bit 25
1 - Dynamic Params pointer passed
to codec is NULL
0 - Error not found

IJPEGDEC_ERR_DATASYNC Bit 26
1 – Data Sync Error
0 - Error not found

API Reference

4-11

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGDEC_ERR_DOWNSAMPLE

_INPUT_FORMAT

Bit 27
1 – Scaling/Downsampling has been
enabled for unsupported chroma
format combination
0 - Error not found

 IJPEGDEC_ERR_NOT_SUPPOR

TED_FEATURE

Bit 28
1 – Scaling/Downsampling or
Thumbnail mode of decoding has
been enabled when slice level
decoding is ON.
0 - Error not found

 IJPEGDEC_ERR_NOT_SUPPOR

TED_RESOLUTION

Bit 29
1 – Unsupported Width/Height are
given to the codec.
0 - Error not found

IjpegVDEC_ErrorStatus JPEG_DECODE_THUMBNAIL_E

RROR

Bit 0 of extendedErrorCode0

1 – Unsupported value passed to
codec for ‘decodeThumbnail’
parameter
0 - Error not found

JPEG_DYNAMIC_PARAMS_HAN

DLE_ERROR

Bit 1 of extendedErrorCode0

1 - Dynamic Params pointer passed
to codec is NULL
0 - Error not found

JPEG_THUMBNAIL_MODE_ERR

OR

Bit 2 of extendedErrorCode0

1 - Unsupported value passed to
codec for ‘thumbnailMode’ parameter
0 - Error not found

JPEG_DOWNSAMPLING_FACTO

R_ERROR

Bit 3 of extendedErrorCode0

1 - Unsupported value passed to
codec for ‘downsamplingFactor ‘
parameter
0 - Error not found

JPEG_STREAMING_COMPLIAN

T_ERROR

Bit 4 of extendedErrorCode0

1 - Unsupported value passed to
codec for ‘streamingCompliant ‘
parameter
0 - Error not found

API Reference

4-12

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_NON_INTERLEAVED_ST

REAMING_COMPLIANT_ERROR

Bit 5 of extendedErrorCode0

1 - ‘streamingCompliant ‘ enabled for
a non-interleaved image
0 - Error not found

JPEG_DECODE_HEADER_ERRO

R

Bit 6 of extendedErrorCode0

1 - Unsupported value passed to
codec for ‘decodeHeader ‘ dynamic
parameter
0 - Error not found

JPEG_DISPLAY_WIDTH_ERRO

R

Bit 7 of extendedErrorCode0

1 - Unsupported value passed to
codec for ‘displayWidth ‘ dynamic
parameter
0 - Error not found

JPEG_DYNAMIC_PARAMS_SIZ

E_ERROR

Bit 8 of extendedErrorCode0

1 - Unsupported value passed to
codec for ‘size ‘ parameter of dynamic
parmeters
0 - Error not found

JPEG_NULL_INSTANCE_HAND

LE_ERROR

Bit 9 of extendedErrorCode0

1 – Instance handle passed as NULL
0 - Error not found

JPEG_NULL_INARGS_POINTE

R_ERROR

Bit 10 of extendedErrorCode0

1 – InArgs pointer passed as NULL in
process call
0 - Error not found

JPEG_NULL_OUTARGS_POINT

ER_ERROR

Bit 11 of extendedErrorCode0

1 – OutArgs pointer passed as NULL
in process call
0 - Error not found

JPEG_NULL_INPUT_BUF_DES

C_ERROR

Bit 12 of extendedErrorCode0

1 – inbufdesc pointer passed as
NULL in process call
0 - Error not found

JPEG_NULL_OUTPUT_BUF_DE

SC_ERROR

Bit 13 of extendedErrorCode0

1 – outbufdesc pointer passed as
NULL in process call
0 - Error not found

API Reference

4-13

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_INVALID_INARGS_SIZ

E

Bit 14 of extendedErrorCode0

1 – Invalide ‘size’ parmeter for inArgs
passed in process call
0 - Error not found

JPEG_INVALID_OUTARGS_SI

ZE

Bit 15
1 – Invalide ‘size’ parameter for
outArgs passed in process call
0 - Error not found

JPEG_NULL_INPUT_BUFFER_

POINTER_ERROR

Bit 16 of extendedErrorCode0

1 – Input buffer passed is NULL
0 - Error not found

JPEG_NULL_OUTPUT_BUF_DE

SC_POINTER_ERROR

Bit 17 of extendedErrorCode0

1 – pointer to outArgs->displaybufs
passed is NULL
0 - Error not found

JPEG_INVALID_NUM_OF_INP

UT_BUFFERS_ERROR

Bit 18 of extendedErrorCode0

1 – Invalid number of input buffers
passed
0 - Error not found

JPEG_INVALID_INPUT_BYTE

S_ERROR

Bit 19 of extendedErrorCode0

1 – Invalid input buffer size
0 - Error not found

JPEG_INVALID_INPUT_BUFF

ER_MEMORY_TYPE_ERROR

Bit 20 of extendedErrorCode0

1 – Unsupported memory region
type for input buffer
0 - Error not found

JPEG_INVALID_NUM_OF_OUT

PUT_BUFFERS_ERROR

Bit 21 of extendedErrorCode0

1 – Invalid number of output buffers
0 - Error not found

JPEG_NULL_OUTPUT_BUFFER

_POINTER0_ERROR

Bit 22 of extendedErrorCode0

1 – Output buffer -0 is passed as
NULL to the codec
0 - Error not found

JPEG_INVALID_OUTPUT_BUF

FER0_SIZE_ERROR

Bit 23 of extendedErrorCode0

1 – Output buffer -0 size is invalid
0 - Error not found

API Reference

4-14

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_INVALID_OUTPUT_BUF

FER0_MEMTYPE_ERROR

Bit 24 of extendedErrorCode0

1 – Unsupported memory region
passed for Output buffer -0
0 - Error not found

JPEG_NULL_OUTPUT_BUFFER

_POINTER1_ERROR

Bit 25 of extendedErrorCode0

1 – Output buffer -1 is passed as
NULL to the codec
0 - Error not found

JPEG_INVALID_OUTPUT_BUF

FER1_SIZE_ERROR
Bit 26 of extendedErrorCode0

1 – Output buffer -1 size is invalid
0 - Error not found

JPEG_INVALID_OUTPUT_BUF

FER1_MEMTYPE_ERROR

Bit 27 of extendedErrorCode0

1 – Unsupported memory region
passed for Output buffer -1
0 - Error not found

JPEG_NULL_OUTPUT_BUFFER

_POINTER2_ERROR

Bit 28 of extendedErrorCode0

1 – Output buffer -2 is passed as
NULL to the codec
0 - Error not found

JPEG_INVALID_OUTPUT_BUF

FER2_SIZE_ERROR

Bit 29 of extendedErrorCode0

1 – Output buffer -2 size is invalid
0 - Error not found

JPEG_INVALID_OUTPUT_BUF

FER2_MEMTYPE_ERROR

Bit 30 of extendedErrorCode0

1 – Unsupported memory region
passed for Output buffer -2
0 - Error not found

JPEG_INVALID_INPUT_ID_E

RROR

Bit 31 of extendedErrorCode0

1 – Invalid inputID passed to
process call
0 - Error not found

JPEG_NUM_VDMA_DESC_EXCE

EDS_ERROR

Bit 0 of extendedErrorCode1

1 – Error in VDMA open
0 - Error not found

JPEG_INVALID_SOI_MARKER

_ERROR

Bit 1 of extendedErrorCode1

1 – No start of image (SOI) maker
found in the input stream
0 - Error not found

API Reference

4-15

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_INVALID_MARKER_SEG

_LENGTH_ERROR

Bit 2 of extendedErrorCode1

1 – Invalid marker segment length
0 - Error not found

JPEG_NON_STANDARD_MARKE

R_CODE_ERROR

Bit 3 of extendedErrorCode1

1 – Marker Code is invalid
0 - Error not found

JPEG_INVALID_QUANT_TABL

E_TYPE_ERROR

Bit 4 of extendedErrorCode1

1 – Number of Q tables in DQT is
more than supported
0 - Error not found

JPEG_QUANT_TABLE_BYTES_

READ_ERROR

Bit 5 of extendedErrorCode1

1 – Error in Q table reading
0 - Error not found

JPEG_INVALID_HUFFMAN_TA

BLE_TYPE_ERROR

Bit 6 of extendedErrorCode1

1 – Error in Huffman table reading
0 - Error not found

JPEG_HUFFMAN_CODE_LENGT

H_SIZE_EXCEED_ERROR

Bit 7 of extendedErrorCode1

1 – Error in Huffman table code
length
0 - Error not found

JPEG_HUFFMAN_TABLE_MARK

ER_SEG_SIZE_ERROR

Bit 8 of extendedErrorCode1

1 – Error in Huffman table marker
syntax
0 - Error not found

JPEG_HUFFMAN_TABLE_BYTE

S_READ_ERROR

Bit 9 of extendedErrorCode1

1 – Error in Huffman table number of
bytes to be read
0 - Error not found

JPEG_INVALID_SAMPLE_PRE

CISION_ERROR

Bit 10 of extendedErrorCode1

1 – Error in sample precision (only
8-bit samples are supported)
0 - Error not found

JPEG_INVALID_NUM_COMPON

ENTS_ERROR

Bit 11 of extendedErrorCode1

1 – Unsupported number of
components in the header
0 - Error not found

API Reference

4-16

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_FRAME_HDR_BYTES_RE

AD_ERROR

Bit 12 of extendedErrorCode1

1 – Error in frame header bytes
0 - Error not found

JPEG_NOT_SUPPORTED_FORM

AT_ERROR

Bit 13 of extendedErrorCode1

1 – Unsupported chroma format
0 - Error not found

JPEG_ARITHMETIC_DECODIN

G_NOT_SUPPORTED_MARKER_

ERROR

Bit 14 of extendedErrorCode1

1 – Arithmetic decoding found,
which is not supported
0 - Error not found

JPEG_PROG_DECODING_NOT_

SUPPORTED_MARKER_ERROR

Bit 15 of extendedErrorCode1

1 – Arithmetic ext decoding found,
which is not supported
0 - Error not found

JPEG_LOSSLESS_DECODING_

NOT_SUPPORTED_MARKER_ER

ROR

Bit 16 of extendedErrorCode1

1 –Lossless decoding found, which
is not supported
0 - Error not found

JPEG_DIFFERENTIAL_DECOD

ING_NOT_SUPPORTED_MARKE

R_ERROR

Bit 17 of extendedErrorCode1

1 –Differential decoding found,
which is not supported
0 - Error not found

JPEG_JFIF_THUMBNAIL_IDE

NTIFIER_ERROR

Bit 18 of extendedErrorCode1

1 –Error in JFIF identifier
0 - Error not found

JPEG_JFIF_THUMBNAIL_BYT

ES_READ_ERROR

Bit 19 of extendedErrorCode1

1 –Error in JFIF bytes
0 - Error not found

JPEG_JFIF_EXTN_NO_SOI_E

RROR

Bit 20 of extendedErrorCode1

1 –SOI not found in JFIF extension
0 - Error not found

JPEG_JFIF_NOT_SUPPORTED

_FEATURE_ERROR

Bit 21 of extendedErrorCode1

1 –Unsupported JFIF extension
found
0 - Error not found

API Reference

4-17

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_FORCECHROMA_OUTPUT

CHROMA_FORMAT_MISMATCH_

ERROR

Bit 22 of extendedErrorCode1

1 –Unsupported force chroma
format selected for the given input
image
0 - Error not found

JPEG_INVALID_VERT_SCAN_

FREQ_ERROR

Bit 23 of extendedErrorCode1

1 –Error in vertical scan frequency
for one of the components
0 - Error not found

JPEG_INVALID_HORI_SCAN_

FREQ_ERROR

Bit 24 of extendedErrorCode1

1 –Error in horizontal scan
frequency for one of the
components
0 - Error not found

JPEG_INVALID_QUANT_DEST

_SELECTOR_ERROR

Bit 25 of extendedErrorCode1

1 –Error in Q table ID for one of the
components
0 - Error not found

JPEG_DC_ENTROPY_CODING_

DEST_ERROR

Bit 26 of extendedErrorCode1

1 –Error in scan header parsing- DC
component
0 - Error not found

JPEG_AC_ENTROPY_CODING_

DEST_ERROR

Bit 27 of extendedErrorCode1

1 –Error in scan header parsing- AC
component
0 - Error not found

JPEG_ECD_VLD_OUT_OF_TAB

LE_ERROR

Bit 28 of extendedErrorCode1

1 – ECD error: vld out of table
0 - Error not found

JPEG_ECD_RESTART_INTERV

AL_ERROR

Bit 29 of extendedErrorCode1

1 – ECD error: invalid RST interval
0 - Error not found

JPEG_ECD_BLOCK_COEFF_NU

M_ERROR

Bit 30 of extendedErrorCode1

1 – ECD error: invalid number of
coefficients
0 - Error not found

API Reference

4-18

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_GET_DATA_SYNC_NULL

_FUNC_POINTER_ERROR

Bit 31 of extendedErrorCode1

1 – parameter ‘getDataFxn’ in
dynamic params is NULL
0 - Error not found

JPEG_PUT_DATA_SYNC_NULL

_FUNC_POINTER_ERROR

Bit 0 of extendedErrorCode2

1 – parameter ‘putDataFxn ‘ in
dynamic params is NULL
0 - Error not found

JPEG_HDVICP_ACQUIRE_AND

_CONFIGURE_ERROR
Bit 1 of extendedErrorCode2

1 – Error in HDVICP acquire
0 - Error not found

JPEG_NULL_ALGORITHM_HAN

DLE_ERROR

Bit 2 of extendedErrorCode2

1 – Algorithm handle provided is
NULL
0 - Error not found

JPEG_GETVERSION_NULL_BU

F_POINTER_ERROR

Bit 3 of extendedErrorCode2

1 – Error in the buffer provided in
GETVERSION through status->data
0 - Error not found

JPEG_IRES_RESOURCE_DESC

_ERROR

Bit 4 of extendedErrorCode2

1 – resource descriptor pointer
passed through IRES interface is
NULL
0 - Error not found

JPEG_IRES_RESOURCE_DESC

_HANDLE_ERROR

Bit 5 of extendedErrorCode2

1 – handle to a resource passed
through IRES interface is NULL
0 - Error not found

JPEG_NULL_STATUS_DATA_B

UF

Bit 6 of extendedErrorCode2

1 – NULL buffer passed through
status->data.buf field for
GETVERSION call
0 - Error not found

JPEG_EXCEED_BYTES_CONSU

MED_ERROR

Bit 7 of extendedErrorCode2

1 – number of bytes consumed is
more than total input bytes provided
0 - Error not found

API Reference

4-19

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_INPUT_DATASYNC_NUM

BLOCKS_ERROR

Bit 8 of extendedErrorCode2

1 – unsupported number of blocks
in input data sync
0 - Error not found

JPEG_INPUT_DATASYNC_BUF

F_POINTER_ERROR

Bit 9 of extendedErrorCode2

1 – base address for input data
sync provided is NULL
0 - Error not found

JPEG_INPUT_DATASYNC_BLO

CKSIZE_ERROR
Bit 10 of extendedErrorCode2

1 – block size provided through
input data sync is zero
0 - Error not found

JPEG_INPUT_DATASYNC_NOT

_VALID

Bit 11 of extendedErrorCode2

1 – unsupported combination of
input data sync mode
0 - Error not found

JPEG_OUTPUT_DATASYNC_NU

MBLOCKS_ERROR

Bit 12 of extendedErrorCode2

1 – unsupported number of blocks
for output data sync call
0 - Error not found

JPEG_SLICE_LEVEL_INPUT_

NO_RST_MARKER_ERROR

Bit 13 of extendedErrorCode2

1 – No RST marker found for slice
level input data sync
0 - Error not found

JPEG_DOWNSAMPLING_IN_NO

N_TILED_ERROR

Bit 14 of extendedErrorCode2

1 – Scaling/Downsampling has been
enabled when the output buffer
provided to codec is not in TILED
region
0 - Error not found

JPEG_DOWNSAMPLING_NOT_S

UPPORTED_FORMAT_ERROR

Bit 15 of extendedErrorCode2

1 – Scaling/Downsampling has been
enabled for unsupported chroma
format combination
0 - Error not found

API Reference

4-20

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

JPEG_DOWNSAMPLING_NOT_S

UPPORTED_FEATURE_ERROR

Bit 16 of extendedErrorCode2

1 – Scaling/Downsampling has been
enabled when data sync or slice
level decoding is enabled.
0 - Error not found

JPEG_THUMBNAIL_NOT_SUPP

ORTED_FEATURE_ERROR

Bit 17 of extendedErrorCode2

1 – Thumbnail decoding has been
enabled when when data sync or
slice level decoding is enabled.
0 - Error not found

JPEG_NOT_SUPPORTED_WIDT

H_ERROR

Bit 18 of extendedErrorCode2

1 – unsupported
MaximumWidth/MinimumWidth of
Image is given to the codec .
0 - Error not found

JPEG_NOT_SUPPORTED_HEIG

HT_ERROR

Bit 19 of extendedErrorCode2

1 – unsupported
MaximumHeight/MinimumHeigh of
Image is given to the codec .
0 - Error not found

JPEG_DECODE_LIMITED_PIX

EL_RANGE_ERROR

Bit 20 of extendedErrorCode2

1 – invalid input value for this
parameter is given to the codec .
0 - Error not found

XDM_MemoryUsageMode XDM_MEMUSAGE_DATASYNC Bit 0 - Data Sync mode. If this bit is
set, the memory will be used in data
sync mode. Not supported in this
version of MJPEG Decoder.

4.2 Data Structures

This section describes the XDM defined data structures, which are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM2_SingleBufDesc

 XDM2_BufDesc

 XDM1_AlgBufInfo

API Reference

4-21

 XDM_DataSyncDesc

 IVIDEO2_BufDesc

 IVIDDEC3_Fxns

 IVIDDEC3_Params

 IVIDDEC3_DynamicParams

 IVIDDEC3_InArgs

 IVIDDEC3_Status

 IVIDDEC3_OutArgs

4.2.1.1 XDM2_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Data Type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

memType XDAS_Int16 Input Type of memory. See XDM_MemoryType

enumeration for more details.

usageMode XDAS_Int16 Input Memory usage descriptor.

bufSize XDM2_BufSize Input Size of the buffer(for tile memory/row memory)

accessMask XDAS_Int32 Output If the buffer was not accessed by the algorithm
processor (for example, it was filled by DMA or other
hardware accelerator that does not write through the
algorithm CPU), then bits in this mask should not be
set.

4.2.1.2 XDM2_BufSize

║ Description

This defines the union describing a buffer size.
║ Fields

Field Data Type Input/
Output

Description

width XDAS_Int32 Input Width of buffer in 8-bit bytes.
Required only for tiled memory.

API Reference

4-22

Field Data Type Input/
Output

Description

height XDAS_Int32 Input Height of buffer in 8-bit bytes.
Required only for tiled memory.

bytes XDAS_Int32 Input Size of the buffer in bytes

4.2.1.3 XDM2_BufDesc

║ Description

This structure defines the buffer descriptor for output buffers.
║ Fields

Field Data Type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX

_IO_BUFFERS]

XDM2_Singl

eBufDesc

Input Array of buffer descriptors

4.2.1.4 XDM1_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output

buffers. This structure is filled when you invoke the control() function with

the XDM_GETBUFINFO command.

║ Fields

Field Data Type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_MAX_IO

_BUFFERS]

XDM2_BufSize Output Size required for each input buffer

minOutBufSize[XDM_MAX_I

O_BUFFERS]

XDM2_BufSize Output Size required for each output buffer

inBufMemoryType[XDM_MAX

_IO_BUFFERS]

XDAS_Int32 Output Memory type for each input buffer

outBufMemoryType[XDM_MA

X_IO_BUFFERS]

XDAS_Int32 Output Memory type for each output buffer

minNumBufSets XDAS_Int32 Output Minimum number of buffer sets for

API Reference

4-23

Field Data Type Input/
Output

Description

buffer management

Note:

For MJPEG Decoder, the buffer details are:

 Number of input buffers required is 1.

 Number of output buffers required is based on output chroma
format.

 There is no restriction on input buffer size except that it should
contain atleast one frame of encoded data.

 The memory types supported for input buffers are XDM_MEMTYPE_RAW

and XDM_MEMTYPE_TILEDPAGE.

 The memory types supported for luma output buffers are

XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILEDPAGE and
XDM_MEMTYPE_RAW.

 The memory types supported for chroma output buffers are
XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILED16,

XDM_MEMTYPE_TILEDPAGE and XDM_MEMTYPE_RAW.

4.2.1.5 XDM_DataSyncDesc

║ Description

This structure describes the chunk of data being transferred in one call to
putData or getData.

║ Fields

Field Data Type Input/
Output

Description

scatteredBloc

ksFlag

XDAS_Int32 Input Flag indicating whether the individual data blocks may
be scattered in memory.

baseAddr XDAS_Int32

*

Input Base address of single data block or pointer to an
array of data block addresses of size numBlocks.

numBlocks XDAS_Int32 Input Number of blocks available.

varBlockSizes

Flag

XDAS_Int32 Input Flag indicating whether any of the data blocks vary in
size.

blockSizes XDAS_Int32

*

Input Variable block sizes array.

API Reference

4-24

Note:

 The following parameters are not supported/updated (don’t care) in data sync at
output side

 scatteredBlocksFlag

 baseAddr

 varBlockSizesFlag

 blockSizes

 There are three modes of operations in Data Sync at Input side

 Slice Mode (IVIDEO_SLICEMODE)

 Fixed Length Mode (IVIDEO_FIXEDLENGTH)

 Entire Frame Mode (IVIDEO_ENTIREFRAME) (without Data Sync)

 In Slice Mode, the following conditions should be met.

 The input stream should contain RST marker

 scatteredBlockFlag should be TRUE

 varBlockSizesFlag may be TRUE/FALSE

 numBlocks can be any positive number between 1 to 32.

 Total size per Data Sync call should be >= page size (8192 bytes). If it is less than
page size (8192 bytes), then it is assumed as the last data sync.

 In Fixed Length Mode, the following conditions should be met.

 scatteredBlockFlag should be FALSE

 varBlockSizesFlag should be FALSE

 numBlocks should be 1.

 During the first data sync call, the data provided need not to be multiple of page size
(8192 bytes).

 Total size per data sync call (except the first call) should be multiple of page size
(8192 bytes). If it is less than page size (8192 bytes), then it is assumed as the last
data sync.

 There are two modes of operations in Data Sync at Output side

 NUMROWS Mode (IVIDEO_NUMROWS)

 Entire Frame Mode (IVIDEO_ENTIREFRAME) (without Data Sync)

 numBlocks is set by the codec. User need not set this parameter.

4.2.1.6 IVIDEO2_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

API Reference

4-25

Field Data Type Input/
Output

Description

numPlanes XDAS_Int32 Input/O
utput

Number of buffers for video planes

numMetaPlanes XDAS_Int32

Input/O
utput Number of buffers for Metadata

dataLayout XDAS_Int32 Input/
Output

Video buffer layout. See
IVIDEO_VideoLayout

enumeration for more details

planeDesc

[IVIDEO_MAX_NUM_PLANES]

XDM2_Singl

eBufDesc

Input/
Output

Description for video planes

metadataPlaneDesc

[IVIDEO_MAX_NUM_METADATA_PLA

NES]

XDM2_Singl

eBufDesc

Input/
Output

Description for metadata planes

secondFieldOffsetWidth[IVIDE

O_MAX_NUM_PLANES] XDAS_Int32

Input/
Output

Offset value for second field in

planeDesc buffer (width in pixels)

secondFieldOffsetHeight[IVID

EO_MAX_NUM_PLANES]

XDAS_Int32 Input/
Output

Offset value for second field in

planeDesc buffer (height in lines)

imagePitch

XDAS_Int32

[]

Input/
Output Image pitch for each plane

imageRegion XDM_Rect Input/
Output

Decoded image region including
padding /encoder input image

activeFrameRegion XDM_Rect

Input/
Output Actual display region/capture region

extendedError XDAS_Int32 Input/
Output

Provision for informing the error type
if any

frameType XDAS_Int32 Input/
Output

Video frame types. See enumeration

IVIDEO_FrameType.

topFieldFirstFlag XDAS_Int32 Input/
Output

Indicates when the application
(should display)/(had captured) the
top field first.
Not applicable for MJPEG decoder.

repeatFirstFieldFlag XDAS_Int32 Input/
Output

Indicates when the first field should
be repeated.
Not applicable for MJPEG decoder

frameStatus XDAS_Int32 Input/
Output

Video in/out buffer status.

repeatFrame XDAS_Int32 Input/
Output

Number of times to repeat the
displayed frame.
Not applicable for MJPEG decoder.

API Reference

4-26

Field Data Type Input/
Output

Description

contentType XDAS_Int32 Input/
Output

Video content type. See
IVIDEO_ContentType

chromaFormat XDAS_Int32 Input/
Output

Chroma format for encoder input
data/decoded output buffer. See

XDM_ChromaFormat enumeration

for details.
Not applicable for MJPEG decoder.

scalingWidth XDAS_Int32 Input/
Output

Scaled image width for post
processing for decoder.

scalingHeight XDAS_Int32 Input/
Output

Scaled image height for post
processing for decoder.

rangeMappingLuma XDAS_Int32 Input/
Output

ON/OFF, default is OFF. This value
depends on the value of

IJPEGVDEC_DynamicParams::
rangeReduction

rangeMappingChroma XDAS_Int32 Input/
Output

ON/OFF, default is OFF. This value
depends on the value of

IJPEGVDEC_DynamicParams::
rangeReduction

enableRangeReductionFlag XDAS_Int32 Input/
Output

ON/OFF, default is OFF. This value
depends on the value of

IJPEGVDEC_DynamicParams::
rangeReduction

Note:

 IVIDEO_MAX_NUM_PLANES: Max YUV buffers - one each for Y, U,

and V.

 The following parameters are not supported/updated in this version
of the decoder

 repeatFirstFieldFlag

 repeatFrame

 scalingWidth

 scalingHeight

API Reference

4-27

4.2.1.7 IVIDDEC3_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

║

Field Data Type Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.8 IVIDDEC3_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

║

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

maxHeight XDAS_Int32 Input Maximum video height to be supported in pixels.
The supported range is [32, 4096]. Default is
1088.

maxWidth XDAS_Int32 Input Maximum video width to be supported in pixels.
The supported range is [32, 4096]. Default is
1920.

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.
Not applicable for MJPEG decoder.

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second. For example, if bit-rate is 10 Mbps, set
this field to 10485760.
Not applicable for MJPEG decoder.

API Reference

4-28

Field Data Type Input/
Output

Description

dataEndianness XDAS_Int32 Input Endianness of input data. See

XDM_DataFormat enumeration for details.

Default is XDM_BYTE.

forceChromaFormat XDAS_Int32 Input Sets the output to the specified format. See
Table 1-1 for details.

See XDM_ChromaFormat and

eChromaFormat_t enumerations for details.

Default value is XDM_YUV_420SP.

operatingMode XDAS_Int32 Input Video coding mode of operation
(encode/decode/transcode/transrate).
Only decode mode is supported in this version.

displayDelay XDAS_Int32 Input Display delay to start display.
Not applicable for MJPEG decoder.

inputDataMode XDAS_Int32 Input Input mode of operation.
For decoder, the supported values are

IVIDEO_FIXEDLENGTH,

IVIDEO_SLICEMODE and

IVIDEO_ENTIREFRAME. Default value is

IVIDEO_ENTIREFRAME.

outputDataMode XDAS_Int32 Input Output mode of operation.
For decoder, the supported values are

IVIDEO_NUMROWS and

IVIDEO_ENTIREFRAME. Default value is

IVIDEO_ENTIREFRAME.

numInputDataUnits XDAS_Int32 Input Number of input slices/buffers. This parameter
is ignored by the decoder. Refer Chapter 8 for
more details.

numOutputDataUnit

s

XDAS_Int32 Input Number of output rows.

For IVIDEO_ENTIREFRAME mode, it should

set to 1.

errorInfoMode XDAS_Int32 Input Enable/disable packet error information for
input/output. Not supported in this version of
MJPEG decoder.

displayBufsMode XDAS_Int32 Input Indicates the displayBufs mode. This field

can be set either as
IVIDDEC3_DISPLAYBUFS_EMBEDDED

or IVIDDEC3_DISPLAYBUFS_PTRS. Default

value is

IVIDDEC3_DISPLAYBUFS_EMBEDDED.

metadataType XDAS_Int32[] Input Type of each metadata plane. Not supported.

API Reference

4-29

Note:

 Maximum video height and width supported are 4096 pixels and 4096 pixels
respectively.

 The minimum height and width supported is 32 pixels.

 dataEndianness field should be set to XDM_BYTE.

4.2.1.9 IVIDDEC3_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance

object. Set this data structure to NULL, if you are not sure of the values to be

specified for these parameters.
║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

decodeHeader XDAS_Int32 Input Number of access units to decode:

0 (XDM_DECODE_AU) - Decode entire frame including

all the headers

1 (XDM_PARSE_HEADER) - Decode only one NAL unit

Default value is XDM_DECODE_AU.

displayWidth XDAS_Int32 Input If the field is set to:
0 - Uses decoded image width as pitch
If any other value greater than the decoded image width
is given, then this value in pixels is used as pitch.
Default value is 0.

frameSkipMode XDAS_Int32 Input Frame skip mode. See IVIDEO_FrameSkip

enumeration for details. Not applicable to MJPEG
decoder.

newFrameFlag XDAS_Int32 Input Flag to indicate that the algorithm should start a new
frame.

Valid values are XDAS_TRUE and XDAS_FALSE.

This is useful for error recovery, for example, when the
end of frame cannot be detected by the codec but is
known to the application.
Not supported in this MJPEG decoder.

*putDataFxn XDM_DataSy

ncPutFxn

Input DataSync call back function pointer for putData.

Default value is NULL.

putDataHandle XDM_DataSy

ncHandle

Input DataSync handle for putData. Default value is

NULL.

API Reference

4-30

Field Data Type Input/
Output

Description

*getDataFxn XDM_DataSy

ncGetFxn

Input DataSync call back function pointer for getData.

Default value is NULL.

getDataHandle XDM_DataSy

ncHandle

Input DataSync handle for getData. Default value is

NULL.

putBufferFxn XDM_DataSy

ncPutBuffe

rFxn

Input Not supported in this decoder.

putBufferHand

le

XDM_DataSy

ncHandle

Input Not supported in this decoder.

lateAcquireAr

g

XDAS_Int32 Input Argument used during late acquire. Default value is

IRES_HDVICP2_UNKNOWNLATEACQUIREARG.

Note:

 The displayWidth should be >= image width

 displayWidth should be 128 byte aligned for non-TILED output

buffers.

 If the displayWidth is set to 0, the decoder uses the image width

as displayWidth.

 The default value of displayWidth is 0.

4.2.1.10 IVIDDEC3_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm instance
object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

numBytes XDAS_Int32 Input Size of input data (in bytes) provided to the algorithm for
decoding

inputID XDAS_Int32 Input Application passes this ID to algorithm and decoder will
attach this ID to the corresponding output frames. This is
useful in case of re-ordering (for example, B frames). If

API Reference

4-31

there is no re-ordering, outputID field in the

IVIDDEC3_OutArgs data structure will be same as

inputID field. MJPEG Decoder simply copies the

inputID value to the outputID value of IVIDDEC3_OutArgs
structure.

4.2.1.11 IVIDDEC3_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if
being used) data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See

XDM_ErrorBit enumeration for

details.

data XDM1_SingleBufDesc Output Buffer information structure for
information passing buffer. Not
Supported in this version of MJPEG
decoder.

maxNumDisplayBufs XDAS_Int32 Output Maximum number of buffers
required by the codec.

maxOutArgsDisplayBu

fs

XDAS_Int32 Output The maximum number of display
buffers that can be returned through
IVIDDEC3_OutArgs.displayB

ufs.

outputHeight XDAS_Int32 Output Output height in pixels

outputWidth XDAS_Int32 Output Output width in pixels

frameRate XDAS_Int32 Output This value will be derived from VUI
parameters as,

frameRate = time_scale / (2 *

num_units_in_ticks).
In case the VUI parameters are

absent, the frameRate will be

reported as 0, which should be
inferred as ‘not available’.
Not applicable to MJPEG decoder.

bitRate XDAS_Int32 Output Average bit-rate in bits per second.
Not applicable to MJPEG decoder.

API Reference

4-32

Field Data Type Input/
Output

Description

contentType XDAS_Int32 Output Video content. See
IVIDEO_ContentType

enumeration for details.

sampleAspectRatioHe

ight

XDAS_Int32 Output Sample aspect ratio for height. Not
supported.

sampleAspectRatioWi

dth

XDAS_Int32 Output Sample aspect ratio for width. Not
supported.

bitRange XDAS_Int32 Output Bit range. It is set to

IVIDEO_YUVRANGE_FULL.

forceChromaFormat XDAS_Int32 Output Output chroma format. See

XDM_ChromaFormat enumeration

for details.

operatingMode XDAS_Int32 Output Mode of operation:
Encoder/Decoder/Transcode/Transr
ate. This decoder supports

IVIDEO_DECODE_ONLY only.

frameOrder XDAS_Int32 Output Indicates the output frame order.

See IVIDDEC3_displayDelay

enumeration for more details. Not
applicable to MJPEG decoder.

inputDataMode XDAS_Int32 Output Input mode of operation.
For decoder, it is fixed length/slice
mode/entire frame.

outputDataMode XDAS_Int32 Output Output mode of operation.
For decoder, it is the row
mode/entire frame.

bufInfo XDM_AlgBufInfo Output Input and output buffer information.

See XDM_AlgBufInfo data

structure for details.

numInputDataUnits XDAS_Int32 Output Decoder will set to appropriate value

from the IVIDDEC3_Params

structure mentioned above.

numOutputDataUnits XDAS_Int32 Output Decoder will set to appropriate value

from the IVIDDEC3_Params

structure mentioned above.

configurationID XDAS_Int32 Output Decoder will set it to 1.

metadataType XDAS_Int32[] Input Type of each metadata plane. Not
supported in this decoder.

API Reference

4-33

Field Data Type Input/
Output

Description

decDynamicParams IVIDDEC3_DynamicPa

rams

Output Current values of the decoder's
dynamic parameters.

4.2.1.12 IVIDDEC3_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

extendedError XDAS_Int32 Output extendedError Field

bytesConsumed XDAS_Int32 Output Bytes consumed per decode call

outputID[IVIDEO2

_MAX_IO_BUFFERS]

XDAS_Int32 Output Output ID corresponding to displayBufs

A value of zero (0) indicates an invalid ID. The first
zero entry in array will indicate end of valid

outputIDs within the array. Hence, the application

can stop reading the array when it encounters the
first zero entry.

decodedBufs IVIDEO2_Bu

fDesc

Output The decoder fills this structure with buffer pointers to
the decoded frame. Related information fields for the
decoded frame are also populated.
When frame decoding is not complete, as indicated

by outBufsInUseFlag, the frame data in this

structure will be incomplete. However, the algorithm
will provide incomplete decoded frame data in case
application may choose to use it for error recovery
purposes.

freeBufID[IVIDEO

2_MAX_IO_BUFFERS

]

XDAS_Int32 Output This is an array of inputIDs corresponding to the

frames that have been unlocked in the current
process call.

outBufsInUseFlag XDAS_Int32 Output Flag to indicate that the outBufs provided with the

process() call are in use. No outBufs are

required to be supplied with the next process()

call.

displayBufsMode XDAS_Int32 Output Indicates which mode the displayBufs are

presented in. See the note below for details.

bufDesc [1] IVIDEO2_Bu

fDesc

Output Array containing display frames corresponding to

valid ID entries in the outputID array.

API Reference

4-34

Field Data Type Input/
Output

Description

See IVIDEO2_BufDesc data structure for more

details.

*pBufDesc[IVIDEO

2_MAX_IO_BUFFERS

]

IVIDEO2_Bu

fDesc *

Output Array containing pointers to display frames
corresponding to valid ID entries in the
outputID[].

Note:

The display buffer mode can be set as either

IVIDDEC3_DISPLAYBUFS_EMBEDDED or

IVIDDEC3_DISPLAYBUFS_PTRS.

The current implementation of the decoder will always return a
maximum of one display buffer per process call. If the mode is

IVIDDEC3_DISPLAYBUFS_EMBEDDED, then the instance of the display

buffer structure will be present in OutArgs. If the mode is

IVIDDEC3_DISPLAYBUFS_PTRS, then a pointer to the instance will be

present in OutArgs.

API Reference

4-35

4.2.2 MJPEG Decoder Data Structures

This section includes the following MJPEG Decoder specific data structures:

 IJPEGVDEC_Params

 IJPEGVDEC_DynamicParams

 IJPEGVDEC_InArgs

 IJPEGVDEC_Status

 IJPEGVDEC_OutArgs

4.2.2.1 IJPEGVDEC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for an MJPEG Decoder instance object.
The creation parameters are defined in the XDM data structure,

IVIDDEC3_Params.

║ Fields

Field Data Type Input/
Output

Description

viddec3Params IVIDDEC3_Params Input See IVIDDEC3_Params data structure

for details.

ErrorConcealme

ntON

XDAS_Int32 Input Set it to

1 (IJPEGVDEC_EC_ENABLE) to enable

error concealment

And

0 (IJPEGVDEC_EC_DISABLE) to

disable error concealment.

Default value is
IJPEGVDEC_EC_DISABLE.

Error concealment is supported for
YUV420 interleaved inputs only.

Please note that decoding takes more
cycles with error concealment enabled
than normal decoding.

debugTraceLeve

l

XDAS_UInt32 Input Specifies the debug trace level. MJPEG
Decoder supports till level 4. Each higher
level logs more debug trace data.

Default value is 0.

API Reference

4-36

Field Data Type Input/
Output

Description

lastNFramesToL

og

XDAS_UInt32 Input Specifies the number of most recent
frames to log in debug trace.

Minimum value supported is 0 and
maximum value supported is 10.

Valid only if debugTraceLevel is

greater than 0. Default value is 0.

sliceSwitchON XDAS_UInt32 Input Set it to 1 to enable slice level decoding
feature and 0 to enable entire frame
decoding feature.

Default value is 0.

numSwitchPerFr

ame

XDAS_UInt32 Input Specifies the number of times process
call will be called to decode a frame.
Valid only if “sliceSwitchON” is 1.

Default value is 0.

numRestartMark

erPerSwitch

XDAS_UInt32 Input Specifies the number of slices to be
decoded per switch. Valid only if
“sliceSwitchON” is 1.

Default value is 0.

Note:

For handling slice level decoding , three extended create time parameters
“sliceSwitchON”, “numSwitchPerFrame” and “numRestartMarkerPerSwitch”
are added in the Params struct. If the sliceSwitchON parameter is set to 1,
the decoder decodes in slice mode depending on the mode which is being
selected. If set to 0, the decoder decodes the full image.

When the sliceSwitchON parameter is set to 1, the numSwitchPerFrame
parameter specifies the number of times process call will be called to
decode a frame.

When the sliceSwitchON parameter is set to 1, the
numRestartMarkerPerSwitch parameter specifies the number of slices to be
decoded per switch.

When both “numRestartMarkerPerSwitch” and “numSwitchPerFrame” are
having non-zero value, “numSwitchPerFrame” will be considered as high
priority and “numRestartMarkerPerSwitch” will be discarded.

For a more detailed description of the slice level decoding feature, refer to
chapter-10 of this user guide.

API Reference

4-37

4.2.2.2 IJPEGVDEC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for an MJPEG Decoder instance object.
The run-time parameters are defined in the XDM data structure,

IVIDDEC3_DynamicParams.

║ Fields

Field Data Type Input/
Output

Description

viddec3DynamicParam

s

IVIDDEC3_DynamicPara

ms
Input See

IVIDDEC3_DynamicParams

data structure for details.

decodeThumbnail XDAS_Int32 Input If set to 1, decodes thumbnail
image and dumps the output in
display buffer.
If set to ‘0’, decodes the original
image (not thumbnail image) and
dumps the output in display buffer.
Thumbnail decoding is not
supported when data sync or slice
level decoding is enabled.

Default value is 0.

thumbnailMode XDAS_Int32 Input Supported thumbnail modes are

THUMBNAIL_JFIF (decode and

output thumbnail present in JFIF

marker), THUMBNAIL_EXIF

(decode and output thumbnail
present in Exif marker) and
IJPEGVDEC_THUMBNAIL_DOWN

SAMPLE.

Default value is
IJPEGVDEC_THUMBNAIL_DOWN

SAMPLE.

API Reference

4-38

Field Data Type Input/
Output

Description

downsamplingFactor XDAS_Int32 Input Scaling factor.

Supported values are
IJPEGVDEC_NODOWNSAMPLE,

IJPEGVDEC_DOWNSAMPLEBY2

and

IJPEGVDEC_DOWNSAMPLEBY4.

Downsampling is supported only
for YUV444 and GRAY input
chroma formats and only in TILER
Mode.
In addition, the output chroma
format must be set to YUV444
Planar for YUV444 input and
YUV420 semi-planar for Grayscale
input.

In addition, downsampling is not
supported when data sync or slice
level decoding is enabled.

Default value is

IJPEGVDEC_NODOWNSAMPLE.

streamingCompliant XDAS_Int32 Input If an Input Image is Non-
Interleaved, the application has to
set this params to "0"
 (DISABLE), if it is Interleaved,
value will be "1" (ENABLE). This
Parameter along with
forceChromaFormat determines
whether we have to give Planar
Buffers from GETBUFINFO control
call.

Default value is ENABLE.

rangeReduction XDAS_Int32 Input Set it to 1 to enable Limited Pixel
range
Feature.
Default value is 0.

Note:

For handling thumbnails, three extended parameters “decodeThumbnail”,
“thumbnailMode” and “downsamplingFactor” are added in the
DynamicParams struct. If the decodeThumbnail parameter is set to 1, the
decoder decodes only the thumbnail. If set to 0, the decoder decodes the full
image (if thumbnail is present in the encoded stream, the decoder skips it).

When the decodeThumbnail parameter is set to 1, the thumbnailMode

parameter specifies the type of thumbnail: IJPEGVDEC_THUMBNAIL_JFIF,

API Reference

4-39

IJPEGVDEC_THUMBNAIL_EXIF or IJPEGVDEC_THUMBNAIL_DOWNSAMPLE. In

JFIF, the thumbnail could be RGB or JPEG. The decoder does not support
RGB palette (1 byte per pixel) thumbnails. Thumbnail decoding is not
supported when data sync or slice level decoding is enabled.

Downsampling is supported only for YUV444 and GRAY chroma formats
and only in TILER Mode. In addition, the output chroma format must be set
to YUV444 Planar for YUV444 input and YUV420 semi-planar for Grayscale
input. In addition, downsampling is not supported when data sync or slice
level decoding is enabled.

4.2.2.3 IJPEGVDEC_InArgs

║ Description

This structure defines the run-time input arguments for an MJPEG instance
object.

║ Fields

Field Data Type Input/
Output

Description

viddec3InArgs IVIDDEC3_InArgs Input See IVIDDEC3_InArgs data structure for

details.

4.2.2.4 IJPEGVDEC_Status

║ Description

This structure defines parameters that describe the status of the MJPEG
Decoder and any other implementation specific parameters. The status

parameters are defined in the XDM data structure, IVIDDEC3_Status.

║ Fields

Field Data Type Input/
Output

Description

viddec3Status IVIDDEC3_Status Output See IVIDDEC3_Status data structure for details.

extendedError

Code0

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure. Refer to
IjpegVDEC_ErrorStatus

extendedError

Code1

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

extendedError

Code2

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

extendedError

Code3

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

API Reference

4-40

Field Data Type Input/
Output

Description

debugTraceLev

el

XDAS_UInt32 Output Specifies the debug trace level. MJPEG Decoder
supports till level 4. Each higher level logs more
debug trace data.

lastNFramesTo

Log

XDAS_UInt32 Output Specifies the number of most recent frames logged
in debug trace.

extMemoryDebu

gTraceAddr

XDAS_UInt32 * Output Specifies the address of the debug trace dump in
external memory.

extMemoryDebu

gTraceSize

XDAS_UInt32 Output Specifies the size of the debug trace dump in
external memory.

4.2.2.5 IJPEGVDEC_OutArgs

║ Description

This structure defines the run-time output arguments for the MJPEG
Decoder instance object.

║ Fields

Field Data Type Input/
Output

Description

viddec3OutArgs IVIDDEC3_OutArgs Output See IVIDDEC3_OutArgs data structure for

details.

IsGrayFlag XDAS_UInt32 Output This is set if the input to the decoder is a
grayscale image. For 420 and Gray scale
images, the output chroma format is 420SP. This
flag will differentiate the MCU size required in
output data sync usage. If IsGrayFlag is set to 1,
the row size is 8xWidth otherwise rowsize is
16xWidth.

bytesConsumed

ForPartialBuf

fer

XDAS_UInt32 Output In case of SliceSwitch & input data sync -
IVIDEO_SLICEMODE - are enabled, whenever
the switch happens, this parameter represents
the number of bytes consumed by codec in last
consumed buffer as it
may be partially consumed. See chapter 10 for
more details.

4.3 Interface Functions

This section describes the application programming interfaces used in the
MJPEG Decoder. The MJPEG Decoder APIs are logically grouped into the
following categories:

API Reference

4-41

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

API Reference

4-42

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc() method

requires. This operation allows you to allocate sufficient space to call the

algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The

algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algAlloc()

API Reference

4-43

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm functions

*/

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm. If
successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines the

creation parameters. This pointer may be NULL; however, in this case,

algAlloc(), must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter. algAlloc()

may return a pointer to its parent’s IALG functions. Since the client does not

require a parent object to be created, this pointer must be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory

requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference.

Note:

If you are using extended data structures, the first argument must be a

pointer to the extended Params data structure. Also, ensure that the size

field is set to the size of the extended data structure. Depending on the

value set for the size field, the algorithm uses either base or extended

parameters.

║ See Also

algNumAlloc(), algFree()

API Reference

4-44

4.3.2 Initialization API

Initialization API is used to initialize an instance of the MJPEG Decoder. The

initialization parameters are defined in the IVIDDEC3_Params structure (see

Data Structures section for details).
║ Name

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization parameters

*/

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run-time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated for
an algorithm instance. The number of initialized records is identical to the

number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no

parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm

initialization parameters. All fields in the params structure must be set as

described in IALG_Params structure (see Data Structures section for

details).

For more details, see TMS320 DSP Algorithm Standard API Reference.

Note:

If you are using extended data structures, the fourth argument must be a

pointer to the extended Params data structure. Also, ensure that the size

field is set to the size of the extended data structure. Depending on the

value set for the size field, the algorithm uses either base or extended

API Reference

4-45

parameters.

║ See Also

algAlloc(), algMoved()

4.3.3 Control API

Control API is used for controlling the functioning of MJPEG Decoder during
run-time. This is done by changing the status of the controllable parameters
of the decoder during run-time. These controllable parameters are defined in

the IVIDDEC3_DynamicParams data structure (see Data Structures section

for details).
║ Name

control() – change run-time parameters of the MJPEG Decoder and

query the decoder status
║ Synopsis

XDAS_Int32 (*control)(IVIDDEC3_Handle handle, IVIDDEC3_Cmd

id,IVIDDEC3_DynamicParams *params, IVIDDEC3_Status

*status);

║ Arguments

IVIDDEC3_Handle handle; /* handle to the MJPEG decoder

instance */

IVIDDEC3_Cmd id; /* MJPEG decoder specific control

commands*/

IVIDDEC3_DynamicParams *params /* MJPEG decoder run-time

parameters */

IVIDDEC3_Status *status /* MJPEG decoder instance status

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run-time parameters of MJPEG Decoder and

queries the status of decoder. control() must only be called after a

successful call to algInit() and must never be called after a call to

algFree().

The first argument to control() is a handle to the MJPEG Decoder

instance object.

The second argument is a command ID. See IVIDDEC3_Cmd in

enumeration table for details.

The third and fourth arguments are pointers to the

IVIDDEC3_DynamicParams and IVIDDEC3_Status data structures

respectively.

API Reference

4-46

Note:

If you are using extended data structures, the third argument must be a

pointer to the extended DynamicParams data structure. Also, ensure that

the size field is set to the size of the extended data structure. Depending

on the value set for the size field, the algorithm uses either base or

extended parameters.

║ See Also

algInit()

4.3.4 Data Processing API

Data processing API is used for processing the input data using the MJPEG
Decoder.

║ Name

algActivate()– initialize scratch memory buffers prior to processing.

║ Synopsis

Void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance’s scratch buffers using the

persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-47

║ Name

process() – basic video decoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDDEC3_Handle handle, XDM2_BufDesc

*inBufs, XDM2_BufDesc *outBufs, IVIDDEC3_InArgs *inargs,

IVIDDEC3_OutArgs *outargs);

║ Arguments

IVIDDEC3_Handle handle; /* handle to the MJPEG decoder

instance */

XDM2_BufDesc *inBufs; /* pointer to input buffer descriptor
data structure */

XDM2_BufDesc *outBufs; /* pointer to output buffer
descriptor data structure */

IVIDDEC3_InArgs *inargs /* pointer to the MJPEG decoder
runtime input arguments data structure */

IVIDDEC3_OutArgs *outargs /* pointer to the MJPEG decoder

runtime output arguments data structure */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function does the basic MJPEG video decoding. The first argument to
process() is a handle to the MJPEG Decoder instance object.

The second and third arguments are pointers to the input and output buffer

descriptor data structures respectively (see XDM1_BufDesc and

XDM_BufDesc data structure for details).

The fourth argument is a pointer to the IVIDDEC3_InArgs data structure

that defines the run-time input arguments for the MJPEG Decoder instance
object.

Note:

Prior to each decode call, ensure that all fields are set as described in
XDM2_BufDesc and IVIDDEC3_InArgs structures.

The last argument is a pointer to the IVIDDEC3_OutArgs data structure that

defines the run-time output arguments for the MJPEG Decoder instance
object.

The algorithm may also modify the output buffer pointers. The return value

is IALG_EOK for success or IALG_EFAIL in case of failure. The

extendedError field of the IVIDDEC3_Status structure contains error

conditions flagged by the algorithm. This structure can be populated by

calling Control API using XDM_GETSTATUS command.

API Reference

4-48

Note:

If you are using extended data structures, the fourth argument must be a

pointer to the extended InArgs data structure respectively. Also, ensure

that the size field is set to the size of the extended data structure.

Depending on the value set for the size field, the algorithm uses either

base or extended parameters.

║ See Also

control()

║ Name

algDeactivate()– save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that

must be saved prior to next cycle of algActivate() and processing.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algActivate()

API Reference

4-49

4.3.5 Termination API

Termination API is used to terminate the MJPEG Decoder and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree() determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

API Reference

4-50

This page is intentionally left blank

5-1

Chapter 5

Frequenty Asked Questions

This section answers frequently asked questions related to using MJPEG
Decoder on HDVICP2 and Media Controller Based Platform.

5.1 Code Build and Execution

Question Answer

Build error saying that code
memory section is not sufficient

Make sure that project settings are not changed from the released
package settings such as making project settings as File -O0 and full
symbolic debug which throws an error that code memory section is not
sufficient.

Application returns an error
saying “Couldn't open
parameter file …..” while
running the host test app

Make sure that input file path is given correctly. If the application is
accessing input from network, ensure that the network connectivity is
stable.

Make file build fails Make sure you have set environment variable <CG_TOOL_DIR> as

defined in section2.3.
Make sure gmake utility path is added to PATH environment
variable as mentioned in section 2.3

5.2 Issues with Tools Version

Question Answer

Which tools are required to run
the stand-alone codec?

To run the codec on stand-alone setup, you need Framework
Components, Code Composer Studio, ARM compiler tools (CG tools).
If you are running on the simulator, then the correct version of the
HDVICP2 Simulation CSP is needed (See Section 2.1 for more details).

What CG tools version should I
use for code compilation?

You may use CG tools version 4.5.1 to compile the code.

5.3 Algorithm Related

Question Answer

Which XDM interface does
codec support?

Codec supports XDM IVIDDEC3 interface.

Does MJPEG Decoder support
non-multiple of 16 frame
dimensions?

Yes, this decoder supports non-multiple of 16 image dimensions. Even
odd resolutions are supported in this version.

Frequenty Asked Questions

5-2

Question Answer

Does this MJPEG Decoder
support custom quantization
tables?

Yes.

Does this MJPEG Decoder
support custom Huffman
tables?

Yes.

Does Algorithm support
DataSync mechanism for low-
delay applications?

Yes. It has the mechanism for both input and output buffers.

Does this decoder support
“decode header only” feature?

Yes.

Does this decoder support
decoding of thumbnails?

Yes. The decoder supports decoding of thumbnails present in JFIF and
Exif markers.

How does the decoder handle
APPx markers other than JFIF
and Exif?

The decoder just skips APPx markers other than JFIF and Exif.

What are the maximum and
minimum resolutions supported
by the decoder?

This decoder supports resolutions ranging from 32x32 to 4096x4096.

What are the chroma formats
supported for input and output?

Please see Table 1-1.

Does the decoder support
decoding of multiple scan
JPEGs?

Yes.

Does the decoder support slice
level decoding?

Yes.

Does the decoder support
thumbnail decoding at slice
level?

No.

Does the decoder support
decoding of multiple scan
JPEGs in slice level decoding?

No.

Does the decoder support Data
Sync mechanism in slice level
decoding?

No. Support for data sync and slice level decoding are mutually
exclusive.

Does the decoder support error
concealment?

Yes.

What are the input chroma
formats for which error
concealment is supported?

Error concealment is supported for YUV420 interleaved (i.e., single scan)
inputs only.

Frequenty Asked Questions

5-3

Question Answer

Will the decoding time depends
on error concealment
enabled/disabled?

Yes. Decoding takes more time with error concealment enabled.
Significant performance impact will be observed with EC enabled.

Does the Decoder supports
Limited Pixel Range feature for
all chroma formats?

Yes, the Limited Pixel Range feature is supported for all the chroma
formats prescribed in Table 1-1

Frequenty Asked Questions

5-4

This page is intentionally left blank

6-1

Chapter 6

Picture Format

This Appendix explains picture format details for decoder. Decoder outputs
YUV frames in formats specified in Table 1-1.

6.1 NV12 Chroma Format

NV12 is YUV 420 semi-planar with two separate planes, one for Y, one for
U and V interleaved.

Luma Plane

Y0,0 Y0,1

Y1,0 Y1,1

Chroma Plane

U0,0 V0,0

U1,0 V1,0

WIDTH

H
EIG

H
T

H
EIG

H
T/2

Picture Format

6-2

6.2 Progressive Picture Format

ActiveRegion and ImageRegion offsets for

chroma are derived from luma offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset>>1) & 0xfffffffe;

ACTIVE REGION (LUMA)

imagePitch

activeRegion.topLeft

activeRegion.bottomRight

fr
a

m
e

H
e
ig

h
t

m
a
x
H

e
ig

h
t

maxWidth

ACTIVE REGION (CHROMA)

picChromaBufferAddr

imagePitch

fr
a

m
e
H

e
ig

h
t/

2

m
a
x
H

e
ig

h
t/
2

maxWidth

imageRegion.topLeft
picLumaBufferAddr

imageRegion.bottomRight

U

0,0

V

0,0

U

0,1

V

0,1

U

1,0

V

1,0

U

1,1

V

1,1

frameWidth

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

1,0

Y

1,1

Y

1,2

Y

1,3

frameWidth

Picture Format

6-3

Note that for decoder in case of progressive sequence:

 Luma and chroma buffer addresses can be allocated independently

 Application shall provide this through separate buffer addresses

 The outermost yellow coloured region is the minimum buffer that application should allocate for
a given maxWidth and maxHeight. The dimensions of the chroma buffer region would as
follows for different chroma formats:

o YUV420 Semi Planar (NV12): maxWidth x (maxHeight/2)

o YUV444 Planar: maxWidth x maxHeight (two such chroma buffers are needed: one
each for Cb and Cr)

o YUV422 YUYV: Single buffer for both luma and chroma data of size: (2 x maxWidth) x
maxHeight

o YUV420 Planar: (maxWidth/2) x (maxHeight/2) (two such chroma buffers are needed:
one each for Cb and Cr)

o YUV422 Planar: maxWidth x (maxHeight/2) (two such chroma buffers are needed: one
each for Cb and Cr)

 activeRegion

o The displayable region after cropping done by application.

 imageRegion

o Image data decoded by the decoder whose dimensions are always multiple of 16.

o Contains the activeRegion as a proper subset.

 Picture Buffer (pic(Luma/Chroma)BufferAddr)

o Contains padded regions and extra region due to alignment constraints.

o Contains the imageRegion as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer

 Padding Amounts

o No padding is done

6.3 Constraints on Buffer Allocation for Decoder

 maxWidth and maxHeight are inputs given by the decoder to the applications

o Application may not know the output format of the decoder

o Therefore, application should allocate Image Buffer based on maxWidth and
maxHeight

 The extra region beyond the (maxWidth x maxHeight) requirements may
be allocated by application due to alignment, pitch or some other
constraints

 Application needs to ensure following conditions regarding imagePitch

o imagePitch shall be greater or equal to the maxWidth.

o imagePitch shall be multiple of 128 bytes (if the buffer is not in TILED region).

o imagePitch shall actually be the tiler space width (i.e. depends on how many bit
per pixel, for 8bpp 16bpp and 32bpp respectively 16Kbyte, 32Kbyte and 32Kbyte).
(if the buffer is in TILED region).

Picture Format

6-4

o Application may set imagePitch greater than maxWidth as per display
constraints. However, this value must be a multiple of 128 bytes (if the buffer is
not in TILED region).

 picLumaBufferAddr and picChromaBufferAddr shall be 16-byte aligned address (if the
buffer is not in TILED region).

 ActiveRegion.topLeft and ActiveRegion.bottomRight are decoder outputs

o Application should calculate actual display width and display height based on
these parameters

o ActiveRegion.topLeft and ActiveRegion.bottomRight shall be identical for both
fields in case of interlaced format

 Maximum and Minimum Resolution supported are as below

 Minimum frameWidth = 32

 Minimum frameHeight = 32

 Maximum frameWidth = 4096

 Maximum frameHeight = 4096

7-1

Chapter 7

Debug Trace Usage

This section describes the debug trace feature supported by codec and its
usage.

7.1 Introduction

This section explains This section explains the approach and overall design
that will be adopted for enabling a trace from a video codec.

The primary use of Debug Trace Usage are:

1) Make the codec implementation capable of producing a trace containing
details about the history of executing a particular instance of the codec

2) Enable the application to dump certain debug parameters from the
codec in case of a failure. A failure might even be a hang or crash but in
general can be defined as any unacceptable or erroneous behavior

Such a feature is targeted at providing more visibility into the operation of
the codec and thus easing and potentially accelerating the process of
debug.

7.2 Enabling and using debug information

To enable debug information, following two parameters are added to the
create time parameters

1) debugTraceLevel

2) lastNFramesToLog

Hence, the JPEG decoder create time parameters are modified as

typedef struct IJPEGVDEC_Params{

 IVIDDEC3_Params viddecParams;

 XDAS_Int32 ErrorConcealmentON;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 sliceSwitchON;

 XDAS_UInt32 numSwitchPerFrame;

Debug Trace Usage

7-2

 XDAS_UInt32 numRestartMarkerPerSwitch;

 } IJPEGVDEC_Params;

7.2.1 debugTracelevel

This parameter configures the codec to dump a debug trace log

 0: Disables dumping of debug trace parameters

 >0: Enables the dumping of debug trace parameters. Value
specifies the level of debug trace information

7.2.2 lastNFramesToLog

This parameter configures the codec to maintain history of debug trace
parameters for last N frames.

 0: No history will be maintained by the codec

 >0 : History of past specified number of frames will be maintained

In order to avoid book-keeping by the application to know whether the codec
has been configured to dump debug trace and where the debug information
is available, the following changes are done in the Status structure.

typedef struct IJPEGVDEC_Status{

 IVIDDEC3_Status viddecStatus;

 XDAS_UInt32 extendedErrorCode0;

 XDAS_UInt32 extendedErrorCode1;

 XDAS_UInt32 extendedErrorCode2;

 XDAS_UInt32 extendedErrorCode3;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 * extMemoryDebugTraceAddr;

 XDAS_UInt32 extMemoryDebugTraceSize;

} IJPEGVDEC_Status

debugTraceLevel: Debug trace level configured for the codec - 0, 1, 2,3,4

lastNFramesToLog: Number of frames for which history information is
maintained by the codec

Debug Trace Usage

7-3

extMemoryDebugTraceAddr: External memory address (as seen by Media
Controller) where debug trace information is being dumped – last memory
buffer requested by the codec

extMemoryDebugTraceSize: External memory buffer size (in bytes) where
debug trace information is being dumped - the size of last memory buffer

Now the application can retrieve this information from the codec at any time
by the existing GETSTATUS query through the codec’s Control API.

7.3 Debug Trace Levels

Debug Debug trace has been (in this implementation) organized into 4
different levels arranged in a hierarchical fashion.

 Level 1 – Frame level information and profile data

 Level 2 – Slice and MB level information

 Level 3 – Logs function call stack for with entry hook

 Level 4 – Logs function call stack for with exit hook

At each higher level, the previous lower levels are also enabled

7.4 Requirements On The Application

The following are the requirements on the application side:

1. The application should be capable of configuring debugTraceLevel
and lastNFrameToLog which are part of the Initialization Parameters
of the codec

2. The application should be capable of querying the codec for its
debug parameter memory regions and size

3. The application should be capable of retrieving these memory
regions (In external memory or SL2) for the specified size and
preserving these memory dumps in case of any erroneous behavior
including a hang/crash.

4. The application, at any time (in case of hang, crash or any
unexpected behavior) is expected to be also capable of retrieving
the SL2 memory region as returned by the codec in Control-
GETSTATUS specified by the SL2 memory debug trace address
and size and provide it to the codec developer. The codec
developer will have a PC based tool to parse and interpret this
dump and produce a readable log of the debug trace parameters.

Debug Trace Usage

7-4

This page is intentionally left blank

8-1

Chapter 8

Data Sync API Usage

This section explains the sub-frame level data synchronization API usage for
MJPEG decoder from application point of view.

8.1 Description

Most of the TI Video Codec interfaces prior to IVIDENC2 and IVIDDEC3 allow
frame level data communication capabilities. A user can configure the codec to
encode/decode a complete frame but not any sub-frame level data
communications. If at all any, then it is via codec’s extended interface.

This document explains the sub-frame level data communication capabilities of
video codec using data synchronization call backs defined with IVIDDEC3
interface.

8.2 MJPEG Decoder Input with Sub-frame Level Synchronization

This section explains the IVIDDEC3 interface details, which help to achieve the
sub-frame level communications.

Table 8-1 and Table 8-2 explain the creation, control and handshake
parameters related to sub frame level data communication for input data of
MJPEG Decoder respectively.

“Details” column is a generic column and “valid values” column is specific to
MJPEG Decoder input.

Table 8-1 Creation time parameter related to sub frame level data communication for
input-data of MJPEG decoder

Parameter Name Details Valid values
IVIDDEC3_Para

ms::inputData

Mode

Defines the mode of
accepting the input data.

IVIDEO_ENTIREF

RAME

Entire frame bit-stream
is provided to the
decoder

IVIDEO_FIXEDLE

NGTH

Bitstream is provided to
decoder after a fixed
length of bytes. The
length has to be
multiple of 8K.

IVIDEO_SLICEMO

DE

Bitstream is provided to
decoder after having a
single(or more) number
of slice NAL Units.

Data Sync API Usage

8-2

IVIDDEC3_Para

ms::numInputD

ataUnits

Unit of input data Don’t care

Table 8-2 Dynamic Parameters Related to sub–frame Level Data Communication for Input
Data of MJPEG Decoder

Parameter
Name

Details Valid values

IVIDDEC3_Dyn

amicParams::

getDataFxn

This function is provided by the
app/framework to the MJPEG Decoder. The
decoder calls this function to get partial
compressed bit-stream data from the
app/framework.

Apps/frameworks that don't support datasync
should set this to NULL.

Any non-NULL value if
outputDataMode !=
IVIDEO_ENTIREFRAME

IVIDDEC3_Dyn

amicParams::

getDataHandl

e

It defines the handle to be used while
requesting data to application. This is a
handle which the codec must provide when
calling getDataFxn.

For an algorithm, this handle is read-only; it
must not be modified when calling the app-
registered
IVIDDEC3_DynamicParams.getDataFxn

(). The app/framework can use this handle

to differentiate callbacks from different
algorithms.

Any Value

8.2.1 For Input mode equal to IVIDEO_SLICEMODE

In case of inputDataMode = IVIDEO_SLICEMODE, following points should

be noted.
 No data is assumed to be available during process call, hence

IVIDDEC3_InArgs::numBytes is not considered (it can be any non-

zero positive value). All the data has to be provided via data
synchronization calls.

 Application can provide maximum 32 non-contiguous buffers of varying
size, but total size of data in one transaction has to be >= 8K bytes

 If the data provided during any data synch transaction is less than

8192 then decoder assumes it as end of frame.

 At the end of process call IVIDDEC3_OutArgs::bytesConsumed

indicates the sum of total bytes consumed by decoder.

Refer Table 8-3 for the details of parameters being consumed by decoder

during data synchronization transaction for inputDataMode =

IVIDEO_SLICEMODE.

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___dynamic_params.html%23a8d426348d76fcc2652b5697522e52465
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___dynamic_params.html%23a8d426348d76fcc2652b5697522e52465
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___in_args.html%23a4dcd64725ed6e86c448d7c12590ffffd
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___out_args.html%23a0f1cafd500a230c55e28ae9f1971d4b4

Data Sync API Usage

8-3

For details on using IVIDEO_SLICEMODE along with slice switching, please
refer Section 10.4

Table 8-3 Handshake parameters related to sub frame level data communication for input
data of MJPEG decoder (inputDataMode = IVIDEO_SLICEMODE)

Parameter
Name

Details Valid values

XDM_DataS

yncDesc::

size

Size of the XDM_DataSyncDesc structure sizeof(XDM_DataSyncDesc)

XDM_DataS

yncDesc::

scattered

BlocksFla

g

Flag indicating whether the individual data
blocks may be scattered in memory.
Note that each individual block must be
physically contiguous.
Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr field points

directly to the start of the first block, and is not
treated as a pointer to an array.
If set to XDAS_TRUE, the baseAddr array must

contain the base address of each individual
block.

Flag indicating whether the
individual data slices may be
scattered in memory
(XDAS_TRUE or XDAS_FALSE).

XDM_DataS

yncDesc::

baseAddr

Base address of single data block or pointer to
an array of data block addresses of size
numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly to the

start of the first block, and is not treated as a
pointer to an array.

If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an array of

pointers to the data blocks.

If scatteredBlocksFlag is set to
XDAS_FALSE, this field points

directly to the start of the first
block, and is not treated as a
pointer to an array.

If scatteredBlocksFlag is set to
XDAS_TRUE, this field points to an

array of pointers to the data
blocks.

XDM_DataS

yncDesc::

numBlocks

Number of data blocks Constraint: App can provide
maximum 32 blocks in one
transaction.
1 <= numBlocks <= 32

XDM_DataS

yncDesc::

varBlockS

izeFlag

Flag indicating whether any of the data blocks
vary in size.

XDAS_TRUE or

XDAS_FALSE (slice sizes are not

constant most of the time)

XDM_DataS

yncDesc::

blockSize

s

Variable block sizes array. If varBlockSizesFlag is
XDAS_TRUE, this array contains

the sizes of each slice. So
Total_size = sum of

(blockSizes[0] to
blockSizes[numBlocks -1].

If varBlockSizesFlag is
XDAS_FALSE, this contains the

size of same-size slices. So
Total_size = (numBlocks *
blocSizes[0]).

Constraint: Total_size >= 8KB

Data Sync API Usage

8-4

otherwise decoder assumes end
of frame.

8.2.2 For Input mode equal to IVIDEO_FIXEDLENGTH

In case of inputDataMode = IVIDEO_FIXEDLENGTH, following points

should be noticed.

 No data is assumed to be available during process call, hence

IVIDDEC3_InArgs::numBytes is is not considered (it can be any

non-zero positive value). All the data has to be provided via data synch
calls.

 Application can provide maximum one buffers of size as multiple of 8K
during any data synch transaction.

o During first data synch transaction, the data provided need not

be multiple of 8KB.

o If the data provided during any data synch transaction is less
than 8KB then decoder assumes it as end of frame.

 At the end of process call IVIDDEC3_OutArgs::bytesConsumed

indicates the sum of total bytes consumed by decoder.

Refer Table 8-4 for the details of parameters being consumed by decoder

during data synch transaction for inputDataMode =

IVIDEO_FIXEDLENGTH.

Table 8-4 Handshake parameters related to sub frame level data communication for input
data of MJPEG decoder (inputDataMode = IVIDEO_FIXEDLENGTH)

Parameter
Name

Details Valid values

XDM_DataS

yncDesc::

size

Size of the XDM_DataSyncDesc structure sizeof(XDM_DataSyncDes

c)

XDM_DataS

yncDesc::

scattered

BlocksFla

g

Flag indicating whether the individual data
blocks may be scattered in memory.
Note that each individual block must be
physically contiguous.

Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr field points

directly to the start of the first block, and is not
treated as a pointer to an array.

If set to XDAS_TRUE, the baseAddr array must

contain the base address of each individual
block.

Should be set to
XDAS_FALSE.

XDM_DataS

yncDesc::

baseAddr

Base address of single data block or pointer to
an array of data block addresses of size
numBlocks.

This field points directly to the
start of the data.

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___in_args.html%23a4dcd64725ed6e86c448d7c12590ffffd
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___out_args.html%23a0f1cafd500a230c55e28ae9f1971d4b4

Data Sync API Usage

8-5

If scatteredBlocksFlag is set to XDAS_FALSE,

this field points directly to the start of the first
block, and is not treated as a pointer to an array.

If scatteredBlocksFlag is set to XDAS_TRUE, this

field points to an array of pointers to the data
blocks.

XDM_DataS

yncDesc::

numBlocks

Number of data blocks Constraint : App can provide

maximum 1 block in one
transaction.

XDM_DataS

yncDesc::

varBlockS

izeFlag

Flag indicating whether any of the data blocks
vary in size.

Don’t care assumed to be
XDAS_FALSE

XDM_DataS

yncDesc::

blockSize

s

Variable block sizes array. Total_size = blockSizes[0];

Constraint: Except for first

transaction, in rest all the
transactions Total_size should
be multiple of 8K bytes. If not
decoder assumes it end of
frame.

If application wants to use MJPEG Decoder to operate with sub-frame on
input side:

 It should create the MJPEG Decoder with

IVIDDEC3_Params::inputDataMode = IVIDEO_SLICEMODE or

IVIDEO_FIXEDLENGTH.

 It should also make a control call with

IVIDDEC3_DynamicParams::getDataFxn = non-NULL; to use sub

frame level data communication, control call is mandatory.

 It should not provide the base address and available data of the input
buffer during process call.

 IVIDDEC3_DynamicParams::putDataFxn == NULL &&

IVIDDEC3_Params::inputDataMode != IVIDEO_ENTIREFRAME is

an erroneous situation and codec returns error during process call.

8.3 MJPEG Decoder Output with Sub-frame Level Synchronization

This section explains the IVIDDEC3 interface details, which helps to achieve
the sub-frame level data synchronization for output.

Table 8-5, Table 8-6 and Table 8-7 explain the creation, control and handshake
parameters related to sub-frame level data communication for output data of
MJPEG Decoder respectively.

“Details” column is a generic column and “valid values” column is specific to
MJPEG Decoder output.

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d

Data Sync API Usage

8-6

Table 8-5 Creation time parameter related to sub frame level data communication for
output data of MJPEG decoder

Parameter
Name

Details Valid values

IVIDDEC3_

Params::o

utputData

Mode

Defines the mode of producing
the output frame.

IVIDEO_ENTIREF

RAME

Entire frame data is
produced by decoder for
display.

IVIDEO_NUMROWS Frame data is given in unit of
Number of mb rows, each
mb row is 16 lines of video.

IVIDDEC3_

Params::n

umOutputD

ataUnits

Unit of output data Don’t care if IVIDDEC3_Params::

outputDataMode == IVIDEO_ENTIREFRAME

If IVIDDEC3_Params::outputDataMode ==

IVIDEO_NUMROWS then it defines the frequency at

which decoder should inform to application about
data availability. For example
numOutputDataUnits = 2 means that after every

2 MB row (2*16 lines) availability in display buffer,
decoder should inform to application.

Table 8-6 Dynamic parameters related to sub frame level data communication for output
data of MJPEG decoder

Parameter
Name

Details Valid values

IVIDDEC3_

DynamicPa

rams::put

DataFxn

This function pointer is provided
by the app/framework to the
MJPEG Decoder. The decoder
calls this function when sub-frame
data has been put into an output
buffer and is available.

Any non-NULL value if outputDataMode
!= IVIDEO_ENTIREFRAME

IVIDDEC3_

DynamicPa

rams::put

DataHandl

e

It defines the handle to be used
while informing data availability to
application. This is a handle
which the codec must provide
when calling the app-registered.

For an algorithm, this handle is
read-only; it must not be modified
when calling the app-registered
IVIDDEC3_DynamicParams.pu

tDataFxn().

The app/framework can use this
handle to differentiate callbacks
from different algorithms.

Any Value

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___dynamic_params.html%23af7fb7b5d55a4387cf782bcc9a8e95c35
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_d_e_c3___dynamic_params.html%23af7fb7b5d55a4387cf782bcc9a8e95c35

Data Sync API Usage

8-7

Table 8-7 Handshake parameters related to sub frame level data communication for
output data of MJPEG decoder

Parameter
Name

Details Valid values

XDM_DataS

yncDesc::

size

Size of the XDM_DataSyncDesc structure Sizeof(XDM_DataSyncDe

sc)

XDM_DataS

yncDesc::

scattered

BlocksFla

g

Flag indicating whether the individual data
blocks may be scattered in memory.
Note that each individual block must be
physically contiguous.

Valid values are XDAS_TRUE and XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr field

points directly to the start of the first block, and
is not treated as a pointer to an array.

If set to XDAS_TRUE, the baseAddr array must

contain the base address of each individual
block.

Don’t care, always assumed
to be XDAS_FALSE.

XDM_DataS

yncDesc::

baseAddr

Base address of single data block or pointer to
an array of data block addresses of size
numBlocks.

If scatteredBlocksFlag is set to XDAS_FALSE,

this field points directly to the start of the first
block, and is not treated as a pointer to an array.

If scatteredBlocksFlag is set to XDAS_TRUE, this

field points to an array of pointers to the data
blocks.

Don’t care. Set to
XDAS_FALSE.

XDM_DataS

yncDesc::

numBlocks

Number of data blocks Number of rows given out by
decoder in this call of
putDataFxn. Value can be
k*numOutputDataUnits. k = 1,
2 etc. Also, towards the end of
frame, it will take value = [(no
of rows in picture) mod
(numOutputDataUnits)].

XDM_DataS

yncDesc::

varBlockS

izeFlag

Flag indicating whether any of the data blocks
vary in size.

Don’t care, as unit of size is

one row.

XDM_DataS

yncDesc::

blockSize

s

Variable block sizes array. Don’t care since unit is

assumed to be multiple of
number of rows which is
indicated by numBlocks.

If application wants to use MJPEG Decoder to operate with sub frame on
output side:

 It should create the MJPEG decoder with

IVIDDEC3_Params::outputDataMode = IVIDEO_NUMROWS.

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d

Data Sync API Usage

8-8

 It should also make a control call with

IVIDDEC3_DynamicParams::putDataFxn = non-NULL; to use

sub frame level data communication, control call is mandatory.

 Address of the Luma and chroma output buffer will be present in
decoded/display buffs. It will not be communicated via DataSyncDesc
structure.

 If Video decode Media Controller thread doesn’t get scheduled before

the next data availability, then in that situation codec give numBlocks as
k*numOutputDataUnits.

Constraint: Display order not being same as decode order with

IVIDDEC3_Params::outputDataMode = IVIDEO_NUMROWS, is

an erroneous situation.

 IVIDDEC3_DynamicParams::putDataFxn == NULL &&

IVIDDEC3_Params::outputDataMode == IVIDEO_NUMROWS is

an erroneous situation and codec returns error during process call.

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d
file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d

9-1

Chapter 9

Error Handling

This section explains the error handling by MJPEG decoder.

9.1 Description

 This version of the decoder supports handling of erroneous situations while
 decoding. If decoder encounters any erroneous situations, it shall
 exit gracefully without any hang or crash. Also, decoder process call shall

 return IVIDDEC3_EFAIL and relevant error code will be populated in

 extendedError field of outArgs. Different error codes and their meanings

 are described below.

 Some of the erroneous situations will get reported as XDM_FATALERROR by

 the decoder. In certain fatal erroneous situations, the application might flush
 out the locked buffers, if need be. See below table for more details on error
 situations when flush can be performed.

 Meanings of various error codes and the recommended application behavior
 are provided in the following tables:

Table 9-1 Error Codes used to set the extendedError field in IVIDDEC3_OutArgs and
IVIDDEC3_Status

Bit Error Code Explanation Recommended App
Behaviour

0 IJPEGDEC_ERR_UNSUPPORTED_VID

DEC3PARAMS

This error code has
been deprecated.

NA

1 IJPEGDEC_ERR_UNSUPPORTED_VID

DEC3DYNAMICPARAMS

Unsupported
VIDDEC3DynamicP
arams are passed to
the codec

Call GETSTATUS by passing
extended Status structure to get
more details about the error
through
extendedErrorCode0(/1/2/3)
parameters.

2 IJPEGDEC_ERR_UNSUPPORTED_JPE

GDECDYNAMICPARAMS

Unsupported
extended class
dynamic parameters
are passed to the
codec

Call GETSTATUS by passing
extended Status structure to get
more details about the error
through
extendedErrorCode0(/1/2/3)
parameters.

3 IJPEGDEC_ERR_NOSLICE Image does not
have any slices and
application is using
slice level decoding

Disable slice level switching or
provide an image with RST
markers as input

Error Handling

9-2

4 IJPEGDEC_ERR_MBDATA Invalid Input in MB
data

If bytes available, advance
BS pointer and pass fresh
pointer

5 IJPEGDEC_ERR_STANDBY HDVICP was not in
standby when given
to codec

Do
HDVICP_Reset, XDM
Reset and pass stream

6 IJPEGDEC_ERR_INVALID_MBOX_ME

SSAGE

Invalid MailBox
Message
has been received

Do HDVICP_Reset, XDM Reset
and pass stream

7 IJPEGDEC_ERR_HDVICP_RESET Hdvicp Reset Done
is not proper

Do XDM Reset and pass stream.

16 IJPEGDEC_ERR_HDVICP_WAIT_NOT

_CLEAN_EXIT

Hdvicp Wait exits
early

Pass the next frame in the
stream

17 IJPEGDEC_ERR_FRAME_HDR Error in Frame
header decoding

Pass the next frame in the
stream

18 IJPEGDEC_ERR_SCAN_HDR Error in Scan
header decoding

Pass the next frame in the
stream

19 IJPEGDEC_ERR_HUFF_TBL_HDR Error in Huffman
table decoding

Pass the next frame in the
stream

20 IJPEGDEC_ERR_QUANT_TBL_HDR Error in quant table
decoding

Pass the next frame in the
stream

21 IJPEGDEC_ERR_OUTCHROMAFORMAT Not supported
output chroma
format set by the
application to the
codec

Refer to Table 1-1 for supported
chroma formats

22 IJPEGDEC_ERR_UNSUPPORTED_MAR

KER

Unsupported Marker
in the Input stream
found

Pass the next frame in the
stream

23 IJPEGDEC_ERR_THUMBNAIL Error while decoding
thumbnail marker

Pass the next frame in the
stream

24 IJPEGDEC_ERR_IRES_HANDLE Handle provided the
Resource Manager
is NULL.

Call delete and create again with
proper handle

25 IJPEGDEC_ERR_DYNAMIC_PARAMS_

HANDLE

Dynamic Params
pointer passed to
codec is NULL

Call delete and create again with
proper handle

26 IJPEGDEC_ERR_DATASYNC Data Sync Error Pass the next frame in the
stream

27 IJPEGDEC_ERR_DOWNSAMPLE_INPU

T_FORMAT

Scaling/Downsampli
ng has been
enabled for
unsupported
chroma format
combination

Decoder does not support
scaling for this input or output
chroma format

28 IJPEGDEC_ERR_NOT_SUPPORTED_F

EATURE

Scaling/Downsampli
ng/Thumbnail
decoding has been
enabled in Slice
Level Decoding
Mode

Decoder does not support
scaling/downsampling or
Thumbnail decoding of any
chroma format in Slice Level
decoding mode

29 IJPEGDEC_ERR_NOT_SUPPORTED_R

ESOLUTION

Unsupported
resolution detected

Decoder does not support Width
/Height less than 32 & Greater
than 4096.

Error Handling

9-3

Table 9-2 Error Codes used to set the extendedErrorCode0 ,extendedErrorCode1,
extendedErrorCode2 and extendedErrorCode3 fields in IJPEGVDEC_Status

Bit Error Code Explanation Recommended App
Behaviour

0 JPEG_DECODE_THUMBNAIL_ERROR Unsupported value
passed to codec for
‘decodeThumbnail’
parameter

Call SETPARAMS with proper
values set

1 JPEG_DYNAMIC_PARAMS_HANDLE_E

RROR

Dynamic Params
pointer passed to
codec is NULL

Call SETPARAMS with a valid
pointer

2 JPEG_THUMBNAIL_MODE_ERROR Unsupported value
passed to codec for
‘thumbnailMode’
parameter

Call SETPARAMS with proper
values set

3 JPEG_DOWNSAMPLING_FACTOR_ERR

OR

Unsupported value
passed to codec for
‘downsamplingFacto
r ‘ parameter

Call SETPARAMS with proper
values set

4 JPEG_STREAMING_COMPLIANT_ERR

OR

Unsupported value
passed to codec for
‘streamingCompliant
‘ parameter

Call SETPARAMS with proper
values set

5 JPEG_NON_INTERLEAVED_STREAMI

NG_COMPLIANT_ERROR

‘streamingCompliant
‘ enabled for a non-
interleaved image

Call SETPARAMS with proper
values set – disable
streamingCompliant for non
interleaved images decoding

6 JPEG_DECODE_HEADER_ERROR Unsupported value
passed to codec for
‘decodeHeader ‘
dynamic parameter

Call SETPARAMS with proper
values set

7 JPEG_DISPLAY_WIDTH_ERROR Unsupported value
passed to codec for
‘displayWidth ‘
dynamic parameter

Call SETPARAMS with proper
values set

8 JPEG_DYNAMIC_PARAMS_SIZE_ERR

OR

Unsupported value
passed to codec for
‘size ‘ parameter of
dynamic parmeters

Call SETPARAMS with proper
values set

9 JPEG_NULL_INSTANCE_HANDLE_ER

ROR

Instance handle
passed as NULL

Pass a valid handle

10 JPEG_NULL_INARGS_POINTER_ERR

OR

InArgs pointer
passed as NULL in
process call

Call process call with valid inArgs
pointer to process call

11 JPEG_NULL_OUTARGS_POINTER_ER

ROR

OutArgs pointer
passed as NULL in
process call

Call process call with valid
outArgs pointer to process call

12 JPEG_NULL_INPUT_BUF_DESC_ERR

OR

inbufdesc pointer
passed as NULL in
process call

Call process call with valid
inbufdesc pointer to process call

13 JPEG_NULL_OUTPUT_BUF_DESC_ER

ROR

outbufdesc pointer
passed as NULL in
process call

Call process call with valid
outbufdesc pointer to process
call

14 JPEG_INVALID_INARGS_SIZE Invalide ‘size’
parmeter for inArgs

Call process call with valid size
for inArgs during process call

Error Handling

9-4

passed in process
call

16 JPEG_INVALID_OUTARGS_SIZE Invalide ‘size’
parameter for
outArgs passed in
process call

Call process call with valid size
for inArgs during process call

17 JPEG_NULL_INPUT_BUFFER_POINT

ER_ERROR

Input buffer passed
is NULL

Call process call with a valid
Input buffer

18 JPEG_NULL_OUTPUT_BUF_DESC_PO

INTER_ERROR

pointer to outArgs-
>displaybufs passed
is NULL

Call process call with a valid
pointer for displaybufs

19 JPEG_INVALID_NUM_OF_INPUT_BU

FFERS_ERROR

Invalid number of
input buffers passed

Call process call with a valid
value for number of input buffers

20 JPEG_INVALID_INPUT_BYTES_ERR

OR

Invalid input buffer
size

Call process call with a valid
input buffer size

21 JPEG_INVALID_INPUT_BUFFER_ME

MORY_TYPE_ERROR

Unsupported
memory region type
for input buffer

Call process call with a valid
memory region for input buffer

22 JPEG_INVALID_NUM_OF_OUTPUT_B

UFFERS_ERROR

Invalid number of
output buffers

Call process call with valid
number of output buffers

23 JPEG_NULL_OUTPUT_BUFFER_POIN

TER0_ERROR

Output buffer -0 is
passed as NULL to
the codec

Call process call with a valid
buffer pointer for output buffer-0

24 JPEG_INVALID_OUTPUT_BUFFER0_

SIZE_ERROR

Output buffer -0 size
is invalid

Call process call with a valid
output buffer size

25 JPEG_INVALID_OUTPUT_BUFFER0_

MEMTYPE_ERROR

Unsupported
memory region
passed for Output
buffer -0

Call process call with a valid
memory region for output buffer

26 JPEG_NULL_OUTPUT_BUFFER_POIN

TER1_ERROR

Output buffer -1 is
passed as NULL to
the codec

Call process call with a valid
buffer pointer for output buffer-1

27 JPEG_INVALID_OUTPUT_BUFFER1_

SIZE_ERROR

Output buffer -1 size
is invalid

Call process call with a valid
output buffer size

28 JPEG_INVALID_OUTPUT_BUFFER1_

MEMTYPE_ERROR

Unsupported
memory region
passed for Output
buffer -1

Call process call with a valid
memory region for output buffer

29 JPEG_NULL_OUTPUT_BUFFER_POIN

TER2_ERROR

Output buffer -2 is
passed as NULL to
the codec

Call process call with a valid
buffer pointer for output buffer-2

30 JPEG_INVALID_OUTPUT_BUFFER2_

SIZE_ERROR

Output buffer -2 size
is invalid

Call process call with a valid
output buffer size

31 JPEG_INVALID_OUTPUT_BUFFER2_

MEMTYPE_ERROR

Unsupported
memory region
passed for Output
buffer -2

Call process call with a valid
memory region for output buffer

32 JPEG_INVALID_INPUT_ID_ERROR Invalid inputID
passed to process
call

Call process call with a valid
inputID

33 JPEG_NUM_VDMA_DESC_EXCEEDS_E

RROR

Error in VDMA open Call HDVICP_Reset and pass
the stream to process call

34 JPEG_INVALID_SOI_MARKER_ERRO

R

No start of image
(SOI) maker found
in the input stream

Pass the next frame in the
stream

35 JPEG_INVALID_MARKER_SEG_LENG

TH_ERROR

Invalid marker
segment length

Pass the next frame in the
stream

36 JPEG_NON_STANDARD_MARKER_COD

E_ERROR

Marker Code is
invalid

Pass the next frame in the
stream

Error Handling

9-5

37 JPEG_INVALID_QUANT_TABLE_TYP

E_ERROR

Number of Q tables
in DQT is more than
supported

Pass the next frame in the
stream

38 JPEG_QUANT_TABLE_BYTES_READ_

ERROR

Error in Q table
reading

Pass the next frame in the
stream

39 JPEG_INVALID_HUFFMAN_TABLE_T

YPE_ERROR

Error in Huffman
table reading

Pass the next frame in the
stream

40 JPEG_HUFFMAN_CODE_LENGTH_SIZ

E_EXCEED_ERROR

Error in Huffman
table code length

Pass the next frame in the
stream

41 JPEG_HUFFMAN_TABLE_MARKER_SE

G_SIZE_ERROR

Error in Huffman
table marker syntax

Pass the next frame in the
stream

42 JPEG_HUFFMAN_TABLE_BYTES_REA

D_ERROR

Error in Huffman
table number of
bytes to be read

Pass the next frame in the
stream

43 JPEG_INVALID_SAMPLE_PRECISIO

N_ERROR

Error in sample
precision (only 8-bit
samples are
supported)

Pass the next frame in the
stream

44 JPEG_INVALID_NUM_COMPONENTS_

ERROR

Unsupported
number of
components in the
header

Pass the next frame in the
stream

45 JPEG_FRAME_HDR_BYTES_READ_ER

ROR

Error in frame
header bytes

Pass the next frame in the
stream

46 JPEG_NOT_SUPPORTED_FORMAT_ER

ROR

Unsupported
chroma format

Pass the next frame in the
stream

47 JPEG_ARITHMETIC_DECODING_NOT

_SUPPORTED_MARKER_ERROR

Arithmetic decoding
found, which is not
supported

Pass the next frame in the
stream

48 JPEG_PROG_DECODING_NOT_SUPPO

RTED_MARKER_ERROR

Arithmetic ext
decoding found,
which is not
supported

Pass the next frame in the
stream

49 JPEG_LOSSLESS_DECODING_NOT_S

UPPORTED_MARKER_ERROR

Lossless decoding
found, which is not
supported

Pass the next frame in the
stream

50 JPEG_DIFFERENTIAL_DECODING_N

OT_SUPPORTED_MARKER_ERROR

Differential decoding
found, which is not
supported

Pass the next frame in the
stream

51 JPEG_JFIF_THUMBNAIL_IDENTIFI

ER_ERROR

Error in JFIF
identifier

Pass the next frame in the
stream

52 JPEG_JFIF_THUMBNAIL_BYTES_RE

AD_ERROR

Error in JFIF bytes Pass the next frame in the
stream

53 JPEG_JFIF_EXTN_NO_SOI_ERROR SOI not found in
JFIF extension

Pass the next frame in the
stream

54 JPEG_JFIF_NOT_SUPPORTED_FEAT

URE_ERROR

Unsupported JFIF
extension found

Pass the next frame in the
stream

55 JPEG_FORCECHROMA_OUTPUTCHROM

A_FORMAT_MISMATCH_ERROR

Unsupported force
chroma format
selected for the
given input image

Call SETPARAMS with proper
chroma format

56 JPEG_INVALID_VERT_SCAN_FREQ_

ERROR

Error in vertical scan
frequency for one of
the components

Pass the next frame in the
stream

57 JPEG_INVALID_HORI_SCAN_FREQ_

ERROR

Error in horizontal
scan frequency for
one of the
components

Pass the next frame in the
stream

58 JPEG_INVALID_QUANT_DEST_SELE

CTOR_ERROR

Error in Q table ID
for one of the
components

Pass the next frame in the
stream

Error Handling

9-6

59 JPEG_DC_ENTROPY_CODING_DEST_

ERROR

Error in scan header
parsing- DC
component

Pass the next frame in the
stream

60 JPEG_AC_ENTROPY_CODING_DEST_

ERROR

Error in scan header
parsing- AC
component

Pass the next frame in the
stream

61 JPEG_ECD_VLD_OUT_OF_TABLE_ER

ROR

ECD error: vld out
of table

Pass the next frame in the
stream

62 JPEG_ECD_RESTART_INTERVAL_ER

ROR

ECD error: invalid
RST interval

Pass the next frame in the
stream

63 JPEG_ECD_BLOCK_COEFF_NUM_ERR

OR

ECD error: invalid
number of
coefficients

Pass the next frame in the
stream

64 JPEG_GET_DATA_SYNC_NULL_FUNC

_POINTER_ERROR

Parameter
‘getDataFxn’ in
dynamic params is
NULL

Call SETPARAMS with a valid
function pointer for getDataFxn

65 JPEG_PUT_DATA_SYNC_NULL_FUNC

_POINTER_ERROR

Parameter
‘putDataFxn ‘ in
dynamic params is
NULL

Call SETPARAMS with a valid
function pointer for putDataFxn

66 JPEG_HDVICP_ACQUIRE_AND_CONF

IGURE_ERROR

Error in HDVICP
acquire

Call HDVICP_Reset and pass
the stream to process call

67 JPEG_NULL_ALGORITHM_HANDLE_E

RROR

Algorithm handle
provided is NULL

Call process call with a valid
handle

68 JPEG_GETVERSION_NULL_BUF_POI

NTER_ERROR

Error in the buffer
provided in
GETVERSION
through status-
>data

Call GETVERSION with proper
buffer to hold version data

69 JPEG_IRES_RESOURCE_DESC_ERRO

R

resource descriptor
pointer passed
through IRES
interface is NULL

Call algDelete and create the
instance again

70 JPEG_IRES_RESOURCE_DESC_HAND

LE_ERROR

handle to a resource
passed through
IRES interface is
NULL

Call algDelete and create the
instance again

71 JPEG_NULL_STATUS_DATA_BUF NULL buffer passed
through status-
>data.buf field for
GETVERSION call

Call GETVERSION with proper
buffer to hold version data

72 JPEG_EXCEED_BYTES_CONSUMED_E

RROR

number of bytes
consumed is more
than total input
bytes provided

Pass the next frame in stream

73 JPEG_INPUT_DATASYNC_NUMBLOCK

S_ERROR

Unsupported
number of blocks in
input data sync

Pass a valid value for numBlocks
in inputDataSyncParams (should
be less than 32 and greater than
1)

74 JPEG_INPUT_DATASYNC_BUFF_POI

NTER_ERROR

Base address for
input data sync
provided is NULL

Pass a valid base address
through input data sync

75 JPEG_INPUT_DATASYNC_BLOCKSIZ

E_ERROR

Block size provided
through input data
sync is zero

Pass a valid block size

76 JPEG_INPUT_DATASYNC_NOT_VALI

D

Unsupported
combination of input
data sync mode

Refer to datasync section in user
guide for supported
combinations

77 JPEG_OUTPUT_DATASYNC_NUMBLOC

KS_ERROR

Unsupported
number of blocks for

Pass a valid number of blocks

Error Handling

9-7

output data sync call

78 JPEG_SLICE_LEVEL_INPUT_NO_RS

T_MARKER_ERROR

No RST marker
found for slice level
input data sync

Pass the next frame in stream

79 JPEG_DOWNSAMPLING_IN_NON_TIL

ED_ERROR

Scaling/Downsampli
ng has been
enabled when the
output buffer
provided to codec is
not in TILED region

Provide output buffers to codec
from TILED8 or TILED16 region

80 JPEG_DOWNSAMPLING_NOT_SUPPOR

TED_FORMAT_ERROR

Scaling/Downsampli
ng has been
enabled for
unsupported
chroma format
combination

Decoder does not support
scaling for this input or output
chroma format

81 JPEG_DOWNSAMPLING_NOT_SUPPOR

TED_FEATURE_ERROR

Scaling/Downsampli
ng has been
enabled when data
sync or slice level
decoding is enabled

Decoder does not support
scaling/downsampling feature
when data sync or slice level
decoding is enabled.

82 JPEG_THUMBNAIL_NOT_SUPPORTED

_FEATURE_ERROR

Thumbnail mode
has been enabled
when data sync or
slice level decoding
is enabled

Decoder does not support
Thumbnail decoding feature
when data sync or slice level
decoding is enabled.

83 JPEG_NOT_SUPPORTED_WIDTH_ERR

OR

Less than 32 of
Minimum Width and
Greater than 4096
of Maximum Width
is enabled.

Decoder does not support the
Width less than 32 and greater
than 4096 for decoding .

84 JPEG_NOT_SUPPORTED_HEIGHT_ER

ROR

Less than 32 of
Minimum Height
and Greater than
4096 of Maximum
Height is enabled.

Decoder does not support the
Height less than 32 and greater
than 4096 for decoding.

85 JPEG_DECODE_LIMITED_PIXEL_RA

NGE_ERROR

Unsupported value
passed to codec for
‘rangeReduction”
parameter

Call SETPARAMS with proper
values set

Error Handling

9-8

This page is intentionally left blank

10-1

Chapter 10

Slice Level Decoding

This section explains the support of Slice Level Decoding in MJPEG decoder.

10.1 Introduction

This section explains the overall design that has been adopted for slice level
decoding.

The primary uses of Slice Level Decoding are:

1) In multi-instance scenario, context switching can happen at slice level
leading to better performance in real-time.

2) For the error inputs, output will be visually very good compared to
entire frame decoding.

Each switch can be considered as one process call, so once all the switches
have been decoded, Output buffer will be freed.

In slice level decoding, input for different switches may not be contiguous in
memory but output should be contiguous for a frame.

10.2 Enabling and using slice level decoding

The following three parameters in create time parameters will be used to
configure slice level decoding.

1) sliceSwitchON

2) numSwitchPerFrame

3) numRestartMarkerPerSwitch

Hence, the JPEG decoder create time parameters are as follows:

typedef struct IJPEGVDEC_Params{

 IVIDDEC3_Params viddecParams;

 XDAS_Int32 ErrorConcealmentON;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_Int32 sliceSwitchON;

Slice Level Decoding

10-2

 XDAS_UInt32 numSwitchPerFrame;

 XDAS_UInt32 numRestartMarkerPerSwitch;

 } IJPEGVDEC_Params;

10.2.1 sliceSwitchON

This parameter configures the codec to decode the input in slice mode.

 0: Disables slice level decoding feature.

 1: Enables the slice level decoding feature.

If “sliceSwitchON” parameter is “ENABLED” , slice level decoding of the
input will be done depending on the following two modes :

1. numSwitchPerFrame

2. numRestartMarkerPerSwitch

10.2.2 numSwitchPerFrame

This parameter’s value (if non-zero) is valid only when “sliceSwitchON”
parameter is ENABLED, when “sliceSwitchON” is disabled this parameter is
not used.

There are two modes for decoding Input Image in slice mode:

In this mode, “numSwitchPerFrame” parameter tells us how many switches
has to happen to decode one Frame.

This parameter has higher priority than “numRestartMarkerPerSwitch”, when
both the modes “numRestartMarkerPerSwitch” and “numSwitchPerFrame”
are non-zero , only “numSwitchPerFrame” parameter will be considered and
“numRestartMarkerPerSwitch” mode will be discarded.

10.2.3 numRestartMarkerPerSwitch

This parameter’s value (if non-zero) is valid only when “sliceSwitchON”
parameter is ENABLED , when “sliceSwitchON” is disabled this parameter
is not used.

In this mode, “numRestartMarkerPerSwitch” parameter tells us how many
slices to decode every switch. Codec has to calculate how may switches will
be there and codec has to free the output buffer when all the slices in the
Input has been decoded.

10.3 Requirements On The Application

The following are the requirements on the application side:

1. The application should be capable of configuring sliceSwitchON ,
numSwitchPerFrame and numRestartMarkerPerSwitch which are
part of the Initialization Parameters of the codec

Slice Level Decoding

10-3

2. The application should be capable of handling the input according to
every switch.

3. Each switch Input maybe independent of each other but it has to be
in the same order. (If there are 3 switches in a Frame , application
has to pass switch 1 first, switch 2, and then switch 3).

4. The application should not enable downsampling and thumbnail
decoding along with slice level decoding.

10.4 Slice level Decoding with Input Data Sync - IVIDEO_SLICEMODE

10.4.1 Introduction

This feature combines the advantages of sub-frame level synchronization
and slice switch. Unlike in case of only slice switch, if input datasync is set to
“IVIDEO_SLICEMODE” and slice switching is enabled, input buffers can be
freed after every slice switch(process call). So with this feature, application
can provide either multiple or single or no slice in each input buffer while
servicing each data sync request depending on availability of input to
decoder.

All the conditions which are applicable to SliceSwitch Feature and Input
Data Sync - IVIDEO_SLICEMODE - feature , are still applicable here.

10.4.2 How to enable this feature

1. Enable “sliceSwitchON” parameter in “IJPEGVDEC_Params”
create-time structure. Along with this, set “numSwitchPerFrame” or
“numRestartMarkerPerSwitch” in “IJPEGVDEC_Params”. Please
refer section 10.2 for more details.

2. Along with slice switch, enable only input datasync mode -
“IVIDEO_SLICEMODE”. For this, refer sections 8.2.1 in chapter 8

10.4.3 Requirements on The Application

If slice switch is enabled, output datasync should be disabled and input data
sync cannot be “IVIDEO_FIXEDLENGTH”. Only Input datasync mode
“IVIDEO_SLICEMODE” is supported along with slice switching.

Here is an example which helps in understanding the things to do from
application perspective –

Assume that application gives 5 buffers, A, B, C, D & E, in input datasync
callback.Once the switch is completed (All the MBs of a switch have been
decoded) , then the codec provides a parameter in “IJPEGVDEC_OutArgs”
structure , i.e., “bytesConsumedForPartialBuffer” which signifies the amount
of data consumed in the last buffer, used by codec (it may not be last buffer
given by application).

Slice Level Decoding

10-4

Suppose here in the example, If the codec consumes buffer A and B then
while consuming "C" if Slice Switch happens, then after the the process call
application has to calculate which is the partially consumed buffer.

For this, application has to keep a backup of all the blockSizes which are
given to codec during the callback time and keep adding blocksizes until the
sum exceeds the "bytesConsumed" in “IJPEGVDEC_OutArgs”, the
blocksize which made the sum to exceed the bytesconsumed, is the partial
page. So, for this buffer, application has to offset by
“bytesConsumedForPartialBuffer” and give the rest of the bytes in the buffer
in next process call.

The backing up (or book keeping) procedure applies per slice switch.
Application need not remember blockSizes in previous switch.

Only restriction in this case to the application is , Number of data sync
buffers per switch should not exceed 512.

11-1

Chapter 11

Limited Pixel Range

This section explains the support of Limited Pixel Range Feature. This feature
is also called as Pixel Range Mapping or Pixel Range Reduction.

11.1 Description

This feature is introduced to reduce the range of Luma and Chroma pixel
values.

The original range of 8-bit pixel value is from 0 to 255.This range is reduced or
modified to 16 to 235 for Luma pixels and 16 to 240 for Chroma pixels. Cb and
Cr pixels (Chroma pixels) have the same reduced pixel range.

Note that enabling Pixel Range Reduction results in significant performance
degradation.

11.2 Enabling and using Limited Pixel Range feature

The following parameter has been added as a part of extended dynamic
parameters to configure the decoder to enable this feature.

IJPEGVDEC_DynamicParams::rangeReduction

Setting this value to 1 will enable this feature. As this parameter is dynamic, the
value set here is passed to decoder by calling control () function with the
XDM_SETPARAMS command. The allowed values for this parameter are only
‘0’ and ‘1’.

0: Limited Pixel Range feature is disabled, by default this value is treated
during codec creation.

1: Limited Pixel Range feature is enabled.

Few parameters (mentioned below) as a part of buffer descriptor for video
buffers, depends on the IJPEGVDEC_DynamicParams::rangeReduction

parameter.

The range mapping/reduction parameters of output/display buffer descriptors
are updated as follows,
IVIDEO2_BufDesc::rangeMappingLuma =
IVIDEO2_BufDesc::rangeMappingChroma =
IVIDEO2_BufDesc::enableRangeReductionFlag =

 IJPEGVDEC_DynamicParams::rangeReduction;

Please note that there is no option to enable range reduction feature only for
Luma pixels or only for Chroma Pixels. If the parameter

Limited Pixel Range

11-2

IJPEGVDEC_DynamicParams::rangeReduction is 1, then Limited Pixel

Range is enabled for Luma pixels as well as for Chroma pixels.

