

MJPEG Encoder on HDVICP2 and Media
Controller Based Platform

User’s Guide

Literature Number: SPRUH27
February 2017

http://yoda.sc.ti.com:7777/wro/owa/literature_summary?literature_id_in=122567

 IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain
the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also
referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and
conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using
TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI
regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of
such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the
patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information
of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all
express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible
or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its
products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI.
Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of
failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will
fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable
customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such
components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have
executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not
been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-
designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energy
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://www.ti.com/omap
http://e2e.ti.com/
http://www.ti.com/wirelessconnectivity

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) MMJPEG Encoder implementation on the IVAHD and Media
Controller based platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample
application that accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate TI’s
codecs with other software to build a multimedia system based on the
IVAHD based platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital signal
processors, and DSP applications. Good knowledge of eXpressDSP
Algorithm Interface Standard (XDAIS) and eXpressDSP Digital Media
(XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the
XDAIS and XDM standards. It also provides an overview of the
codec and lists its supported features.

 Chapter 2 - Installation Overview, describes how to install,
build, and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

 Chapter 5 – Frequently Asked Questions, answers few
frequently asked questions related to using MJPEG Encoder on
HDVICP2 and Media Controller Based Platform.

Read This First

iv

 Chapter 6 – Picture Format, provides information on format of
YUV buffers provided to encoder.

 Chapter 7 – Debug Trace Usage, describes the debug trace
feature supported by codec and its usage.

 Chapter 8 – Data Sync API Usage, explains the sub-frame
level data synchronization API usage for MJPEG encoder from
application point of view.

 Chapter 9 – Error Handling, explains the error handling and
error robustness features of this MJPEG Encoder.

 Chapter 10 – Privacy Masking, explains the privacy masking
feature of this MJPEG Encoder.

 Chapter 11 – Rate Control, explains the rate control – CBR &
VBR – features of this MJPEG Encoder.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such as,
XDAIS and XDM. To obtain a copy of any of these TI documents, visit the
Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines
(literature number SPRU352) defines a set of requirements for
DSP algorithms that, if followed, allow system integrators to
quickly assemble production-quality systems from one or more
such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature
number SPRU360) describes all the APIs that are defined by
the TMS320 DSP Algorithm Interface Standard (also known as
XDAIS) specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for
DSP Software Producers (literature number SPRA579)
describes how to make algorithms compliant with the TMS320
DSP Algorithm Standard which is part of TI’s eXpressDSP
technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP
System (literature number SPRA577) describes how an
eXpressDSP-compliant algorithm may be used effectively in a
static system with limited memory.

 eXpressDSP Digital Media (XDM) Standard API Reference
(literature number SPRUEC8)

 Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5), describes the IRES interface
definition and function calling sequence

Related Documentation

You can use the following documents to supplement this user guide:

http://www.ti.com/

Read This First

v

 ISO/IEC IS 10918-1 Information Technology - Digital
Compression and Coding of Continuous-Tone Still Images --
Part 1: Requirements and Guidelines | CCITT Recommendation
T.81

Abbreviations

The following abbreviations are used in this document.

Table 1-1 List of Abbreviations

Abbreviation Description

BIOS TI’s simple RTOS for DSPs

CSL Chip Support Library

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN DMA Manager

EVM Evaluation Module

HDTV High Definition Television

IRES Interface standard to request and receive
handles to resources

ISO International Standards Organization

HDVICP2 Image Video Accelerator

MB Macro Block

MCU Minimum Coded Unit

JPEG Joint Photographic Experts Group

NTSC National Television Standards Committee

RMAN Resource Manager

RTOS Real Time Operating System

VGA Video Graphics Array (640 x 480
resolution)

XDAIS eXpressDSP Algorithm Interface Standard

Read This First

vi

Abbreviation Description

XDM eXpressDSP Digital Media

YUV Color space in luminance and
chrominance form

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters,

and command line commands are shown in a mono-spaced

font.

Product Support

When contacting TI for support on this codec, quote the product name
(MMJPEG Encoder on IVAHD) and version number. The version number
of the codec is included in the title of the Release Notes that accompanies
this codec.

Trademarks

Code Composer Studio, DSP/BIOS, eXpressDSP, TMS320, HDVICP2 are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Contents

READ THIS FIRST ... III

CONTENTS ... VII

FIGURES ... X

THIS PAGE IS INTENTIONALLY LEFT BLANK ... XII

CHAPTER 1 .. 1-1

INTRODUCTION ... 1-1

1.1 OVERVIEW OF XDAIS AND XDM .. 1-2
1.1.1 XDAIS Overview ... 1-2
1.1.2 XDM Overview ... 1-3
1.1.3 IRES Overview .. 1-4

1.2 OVERVIEW OF MJPEG ENCODER .. 1-5
1.3 SUPPORTED SERVICES AND FEATURES ... 1-6

CHAPTER 2 .. 2-9

INSTALLATION OVERVIEW .. 2-9

2.1 SYSTEM REQUIREMENTS .. 2-10
2.1.1 Hardware ... 2-10
2.1.2 Software .. 2-10

2.2 INSTALLING THE COMPONENT ... 2-11
2.3 BEFORE BUILDING THE SAMPLE TEST APPLICATION ... 2-12
2.4 BUILDING AND RUNNING THE SAMPLE TEST APPLICATION .. 2-14

2.4.1 Building the Sample Test Application .. 2-14
2.4.2 Running the Sample Test Application on Netra HDVICP2 Simulator 2-14
2.4.3 Running the Sample Test Application on DM816x EVM .. 2-15

2.5 CONFIGURATION FILES .. 2-15
2.5.1 Generic Configuration File ... 2-16
2.5.2 Encoder Configuration File ... 2-17
2.5.3 Privacy Mask Configuration File .. 2-18

2.6 STANDARDS CONFORMANCE AND USER-DEFINED INPUTS .. 2-19
2.7 UNINSTALLING THE COMPONENT .. 2-19

CHAPTER 3 .. 3-21

SAMPLE USAGE ... 3-21

3.1 OVERVIEW OF THE TEST APPLICATION .. 3-22
3.1.1 Parameter Setup .. 3-23
3.1.2 Algorithm Instance Creation and Initialization .. 3-23
3.1.3 Process Call .. 3-24
3.1.4 Algorithm Instance Deletion .. 3-25

3.2 HANDSHAKING BETWEEN APPLICATION AND ALGORITHM .. 3-26
3.3 ADDRESS TRANSLATIONS ... 3-27

viii

3.4 SAMPLE TEST APPLICATION .. 3-28

CHAPTER 4 .. 4-1

API REFERENCE ... 4-1

4.1 SYMBOLIC CONSTANTS AND ENUMERATED DATA TYPES .. 4-2
4.2 DATA STRUCTURES ... 4-15

4.2.1 Common XDM Data Structures .. 4-15
4.2.2 MJPEG Encoder Data Structures .. 4-30

4.3 INTERFACE FUNCTIONS .. 4-39
4.3.1 Creation APIs.. 4-41
4.3.2 Initialization API ... 4-43
4.3.3 Control API ... 4-44
4.3.4 Data Processing API ... 4-46
4.3.5 Termination API ... 4-49

CHAPTER 5 .. 5-1

FREQUENTY ASKED QUESTIONS .. 5-1

5.1 CODE BUILD AND EXECUTION ... 5-1
5.2 ISSUES WITH TOOLS VERSION ... 5-1
5.3 ALGORITHM RELATED ... 5-1

CHAPTER 6 .. 6-1

PICTURE FORMAT ... 6-1

6.1 NV12 CHROMA FORMAT ... 6-1
6.2 PROGRESSIVE PICTURE FORMAT .. 6-2
6.3 CONSTRAINTS ON PARAMETERS .. 6-2

CHAPTER 7 .. 7-1

DEBUG TRACE USAGE ... 7-1

7.1 INTRODUCTION .. 7-1
7.2 ENABLING AND USING DEBUG INFORMATION ... 7-1

7.2.1 debugTracelevel ... 7-2
7.2.2 lastNFramesToLog ... 7-2

7.3 DEBUG TRACE LEVELS ... 7-3
7.4 REQUIREMENTS ON THE APPLICATION ... 7-3

CHAPTER 8 .. 8-1

DATA SYNC API USAGE .. 8-1

8.1 DESCRIPTION ... 8-1
8.2 MJPEG ENCODER INPUT WITH SUB-FRAME LEVEL SYNCHRONIZATION ... 8-1
8.3 MJPEG ENCODER OUTPUT WITH SUB-FRAME LEVEL SYNCHRONIZATION .. 8-3

8.3.1 For outputDataMode Equal to IVIDEO_SLICEMODE .. 8-5
8.3.2 For outputDataMode Equal to IVIDEO_FIXEDLENGTH .. 8-6

8.4 MJPEG ENCODER WITH PARTIAL BUFFER ON OUTPUT SIDE ... 8-8

CHAPTER 9 .. 9-1

ERROR HANDLING ... 9-1

9.1 DESCRIPTION ... 9-1

CHAPTER 10 .. 10-1

ix

PRIVACY MASKING.. 10-1

10.1 DESCRIPTION .. 10-1

CHAPTER 11 .. 11-1

RATE CONTROL ... 11-1

11.1 DESCRIPTION .. 11-1
11.2 PARAMETERS AND CONFIGURATION .. 11-2
11.3 HOW TO SPECIFY RC MODE ... 11-3
11.4 HOW TO CHANGE BITRATE DYNAMICALLY ... 11-4
11.5 LIMITATIONS .. 11-4

x

Figures

FIGURE 1-1 IRES INTERFACE DEFINITION AND FUNCTION CALLING SEQUENCE 1-5
FIGURE 1-2 BLOCK DIAGRAM OF SIMPLE JPEG ENCODER-DECODER .. 1-6
FIGURE 2-1 COMPONENT DIRECTORY STRUCTURE .. 2-11
FIGURE 3-1. TEST APPLICATION SAMPLE IMPLEMENTATION ... 3-22
FIGURE 3-2. PROCESS CALL WITH HOST RELEASE .. 3-25
FIGURE 3-3. INTERACTION BETWEEN APPLICATION AND CODEC .. 3-26
FIGURE 4 - GRAPH REPRESENTING VBR REACTION TO THE VIDEO COMPLEXITY. ... 11-2

xi

Tables

TABLE 1-1 LIST OF ABBREVIATIONS .. V
TABLE 2-1 COMPONENT DIRECTORIES .. 2-11
TABLE 3-1 PROCESS() IMPLEMENTATION .. 3-28
TABLE 4-1 LIST OF ENUMERATED DATA TYPES ... 4-2
TABLE 8-1 CREATION TIME PARAMETER RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR INPUT-DATA OF MJPEG

ENCODER ... 8-1
TABLE 8-2 DYNAMIC PARAMETERS RELATED TO SUB–FRAME LEVEL DATA COMMUNICATION FOR INPUT DATA OF MJPEG

ENCODER .. 8-2
TABLE 8-3 HANDSHAKE PARAMETERS RELATED TO SUB-FRAME LEVEL DATA COMMUNICATION FOR INPUT DATA OF MJPEG

ENCODER .. 8-2
TABLE 8-4 CREATION TIME PARAMETER RELATED TO SUB-FRAME LEVEL DATA COMMUNICATION FOR OUTPUT DATA OF

MJPEG ENCODER .. 8-3
TABLE 8-5 DYNAMIC PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR OUTPUT DATA OF MJPEG

ENCODER ... 8-4
TABLE 8-6 HANDSHAKE PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR OUTPUT DATA OF MJPEG

ENCODER (OUTPUTDATAMODE = IVIDEO_SLICEMODE) .. 8-6
TABLE 8-7 HANDSHAKE PARAMETERS RELATED TO SUB FRAME LEVEL DATA COMMUNICATION FOR OUTPUT DATA OF MJPEG

ENCODER (OUTPUTDATAMODE = IVIDEO_FIXEDLENGTH) ... 8-7
TABLE 8-8 DYNAMIC PARAMETERS RELATED TO ACCEPT PARTIAL BUFFER FOR OUTPUT BIT-STREAM................................... 8-8
TABLE 8-9 HANDSHAKE PARAMETERS RELATED TO ACCEPT PARTIAL BUFFER FOR OUTPUT BIT-STREAM 8-9
TABLE 9-1 ERROR CODES USED TO SET THE EXTENDEDERROR FIELD IN IVIDENC2_OUTARGS AND IVIDENC2_STATUS 9-1
TABLE 9-2 ERROR CODES USED TO SET THE EXTENDEDERRORCODE0 AND EXTENDEDERRORCODE1 FIELDS IN

IJPEGVENC_STATUS ... 9-2

xii

 This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter provides brief introduction to XDAIS and XDM. It also provides
an overview of TI’s implementation of the MJPEG Encoder on the IVAHD
and Media Controller based platform and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of MJPEG Encoder 1-5

1.3 Supported Services and Features 1-6

1-2

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to be
moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the

algorithm to initialize the memory allocated by the client application. The

algFree() API allows the algorithm to communicate the memory to be

freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process data

in real-time. The algActivate() API provides a notification to the

algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods

have been run, the client application calls the algDeactivate() API prior

to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),

algNumAlloc(), and algMoved(). For more details on these APIs, see

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1-3

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a video
encoder system, you can use any of the available video encoders (such as
MPEG4, H.263, or H.264) in your system. To enable easy integration with
the client application, it is important that all codecs with similar functionality
use similar APIs. XDM was primarily defined as an extension to XDAIS to
ensure uniformity across different classes of codecs (for example audio,
video, image, and speech). The XDM standard defines the following two
APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm

instance and receive status information from the algorithm in real-time. The

control() API replaces the algControl() API defined as part of the

IALG interface. The process() API does the basic processing

(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass to
these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-compliant
MPEG4 video encoder, then you can easily replace MPEG4 with another
XDM-compliant video encoder, say H.263, with minimal changes to the
client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

1-4

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements, and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an
algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that are
requested. The framework calls the IRES interface functions, in addition to
the IALG functions, to perform IRES resource initialization, activation, and
deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query
and provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages
and grants concrete IRES resources to algorithms and
applications. RMAN uses a new standard interface, the IRESMAN,
to support run-time registration of concrete IRES resource
managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

1-5

Figure 1-1 IRES Interface Definition and Function Calling Sequence

For more details, see Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5).

1.2 Overview of MJPEG Encoder

JPEG is an international standard for color image compression. This
standard is defined in the ISO 10918-1 JPEG Draft International Standard |
CCITT Recommendation T.81. It is a widely used image compression
algorithm that uses discrete cosine transform (DCT) and quantization of the
residual data and Huffman entropy coding.

Some important JPEG modes are:

 Sequential DCT based
 Progressive DCT based
 Hierarchical
 Lossless

Following are the supported processes and features in JPEG:

Baseline:

 8bit samples per component

 Sequential only

 Huffman coding uses 2 AC and 2 DC tables

 Extended:

 8 or 12 bit samples per component

 Both Sequential and Progressive

 Huffman or Arithmetic coding has 4 AC and 4DC Tables

1-6

 Figure 1-2 Block diagram of Simple JPEG encoder-decoder

From this point onwards, all references to MJPEG (Motion JPEG) Encoder
means JPEG Baseline Sequential Encoder used in video mode (i.e.
continuous frame encoding in JPEG format).

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of MJPEG Encoder on
the IVA-HD platform.

This version of the codec has the following supported features:

 eXpressDSP Digital Media (XDM IVIDENC2) compliant

 Supports baseline sequential mode for interleaved data formats
(single scan)

 Supports 8 bpp per component

 Supports YUV 444 Planar, YUV 422 YUYV IBE, YUV 422 UYVY
ILE, YUV 420 Semi-Planar and Gray scale Chroma formats for
input

 Supports YUV 444, YUV 422, YUV 420 and Gray scale Chroma
formats for output (only interleaved formats are supported)

 Supports all resolutions up to 16384x8192 for YUV420SP,
YUV422 YUYV IBE, YUV 422 UYVY ILE and resolutions up to
8192x8192 for YUV444 and YUV400

1-7

 Supports a maximum of three components

 Supports user-configurable encoding parameters

 Supports 16-bit quantization tables

 Supports selection of quality level by user

 Supports user-defined quantization tables

 Supports insertion of restart marker

 Supports insertion of JPEG File Interchange Format (JFIF) marker
segment

 Supports insertion of comment marker segment

 Supports insertion of Exif marker segment

 Supports insertion of thumbnail in JFIF or Exif marker segment

 Supports sub-frame data synchronization for input and output

 Supports graceful exit under error conditions

 Supports multi-channel functionality

 Supports debug trace dump

 Supports privacy masking. Maximum number of regions supported
is 36

 Supports TI proprietary rate control – Constant Bitrate (for low
delay applications) and Variable Bitrate (for storage applications)

Limitations:

 Does not support extended sequential mode

 Does not support 12 bits per sample

 Does not support non-interleaved YCbCr output (multiple scans)

 Does not support encoding of thumbnails. This encoder supports
only insertion of encoded thumbnail data provided by the
application.

1-8

This page is intentionally left blank

2-9

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-10

2.2 Installing the Component 2-11

2.3 Before Building the Sample Test Application 2-12

2.4 Building and Running the Sample Test Application 2-14

2.5 Configuration Files 2-15

2.6 Standards Conformance and User-Defined Inputs 2-19

2.7 Uninstalling the Component 2-19

2-10

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been tested on the HDVICP2 and Media Controller based
OMAP4 ES1.0 and DM816x DDR2 EVM REV-B hardware platforms.

2.1.2 Software

The following are the software requirements for the normal functioning of the
codec:

 Development Environment: This encoder has been developed
using Code Composer Studio version 4.2.0.09000.

http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleas
es/setup_CCS_4.2.0.09000.zip

 Code Generation Tools: This encoder has been compiled,
assembled, archived, and linked using the code generation tools
version 4.5.1.

Although CG Tools v4.5.1 is a part of Code Composer Studio v4
installation, it is recommended that you re-install CG tools after
downloading from the following link.

https://www-
a.ti.com/downloads/sds_support/CodeGenerationTools.htm

And also install CG Tools version 5.0.3, this comes as a part of
CCS installation. CG tools v5.0.3 are used in code compilation for
Media Controller processor

 HDVICP2 Simulator: This encoder has been tested using
HDVICP2 Simulator version 5.0.16 (HDVICP2 Simulation CSP
1.1.5). This version of Simulator can be downloaded through
software updates on Code Composer Studio v4. Ensure that the
following site is listed as part of “Update sites to visit”.

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVA
HD/site.xml

This encoder has also been tested using Netra CSP (Simulation)
version 0.7.1. This version of Simulator can be downloaded
through software updates on Code Composer Studio v4. Ensure
that the following site is listed as part of “Update sites to visit”.

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NET
RA/site.xml

http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml

2-11

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a top-level directory called
500.V.MJPEG.E.IVAHD.01.00 under which under which the directory
named IVAHD_001 is created.

 The sub directory structures for IVAHD_001 are depicted in Figure 2-1.

 Figure 2-1 Component Directory Structure

Table 2-1 provides a description of the sub-directories created in the
500.V.MJPEG.E.IVAHD.01.00 directory.

Table 2-1 Component Directories

Sub-Directory Description

\client\build\TestAppDeviceName Contains the Media Controller cmd file. The name of this
directory will not be same as exactly mentioned here. Instead of
DeviceName string, actual name of Device will be present.

\client\build\TestAppDeviceName\mak
e

Contains the make file for the test application project. The name
of this directory will not be same as exactly mentioned here.
Instead of DeviceName string, actual name of Device will be
present.

\client\build\TestAppDeviceName\map Contains the memory map generated on compilation of the code

2-12

Sub-Directory Description

\client\build\TestAppDeviceName\obj Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\client\build\TestAppDeviceName\Out Contains the final application executable (.out) file generated by
the sample test application

\client\test\inc Contains header files needed for the application code

\client\test\src Contains application C files

\client\test\testvecs\config Contains sample configuration file for MJPEG Encoder

\client\test\testvecs\input Contains input test vectors

\client\test\testvecs\output Contains output generated by the codec. It is empty directory as
part of release.

\client\test\testvecs\reference Contains read-only reference output to be used for cross-
checking against codec output

\docs Contains user guide, data sheet, IVA-HD picture format docs

\inc Contains interface header files of MJPEG encoder

\lib Contains jpegenc_ti_host.lib – IVA-HD MJPEG Encoder built as a
library on Media Controller

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need TI Framework Components (FC).

This version of the codec has been validated with Framework Components
(FC) version 3.20.00.22 GA.

To run the Simulator version of the codec, the HDVICP2 simulator has to be
installed. The version of the simulator is 5.0.16. This can be done using the
“Help->Software Updates->Find and Install” option in CCSv4. Detailed
instructions to set up the configuration can be found in
ivahd_sim_user_guide.pdf present in <CCSv4 Installation
Dir>\simulation_csp_omap4\docs\pdf\ directory.

This codec has also been validated on Netra Video Processing Simulator
that simulates all the three HDVICP2s in DM816x. The simulator required for
this is Netra CSP (Simulation) version 0.7.1. This simulator can also be
installed using the “Help->Software Updates->Find and Install” option in
CCSv4. Detailed instructions to set up the configuration can be found in
netra_sim_user_guide.pdf present in <CCSv4 Installation Dir>\
simulation_netra\docs\user_guide directory.

Install CG Tools version 4.5.1 for ARM (TMS470) at the following location in
your system: <CCSv4.2_InstallFolder>\ccsv4\tools\compiler\tms470.
CGTools 4.5.1 can be downloaded from

2-13

 https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Please note that CG Tools 4.5.1 is installed at the location mentioned above
along with the CCS v4.2 installation by default. But, as some problems have
been reported about this, we recommend that you install CG Tools 4.5.1
again with the installer obtained from the above link.

And also install CG Tools version 5.0.3, this comes as a part of CCS
installation. CG tools v5.0.3 are used in code compilation for Media
Controller processor.

Set environment variable CG_TOOL_DIR to <cgtools v4.5.1>.

<CG_TOOL_DIR>/bin should contain all required code generation tools
executables.

Set environment variable CG_TOOL_DIR_M3 pointing to <cg_tools v5.0.3>

<CG_TOOL_DIR_M3>/bin should contain all required code generation tools
executables

Set environment variables HDVICP2_INSTALL_DIR and
CSP_INSTALL_DIR to the locations where the HDVICP20 API library and
HDVICP2 CSL are present. The HDVICP20 API library and the HDVICP2
CSL can be downloaded from the same place as the codec package. The
HDVICP20 API .lib files should be present at HDVICP2_INSTALL_DIR/lib
and HDVICP20 API interface header files at HDVICP2_INSTALL_DIR/inc.
The folders csl_ivahd and csl_soc of HDVICP2 CSL should be present at
CSP_INSTALL_DIR/.

This version of the codec has been validated with HDVICP2.0 API library
version 01.00.00.23 and HDVICP2.0 CSL Version 00.05.02.

Set the system environment variable TI_DIR to the CCSv4 installation path.
Example: TI_DIR = <CCSv4 Installation Dir>\ccsv4.

Add gmake (GNU Make version 3.78.1) utility folder path (for example,
“C:\CCStudioV4.0\ccsv4\utils\gmake”) at the beginning of the PATH
environment variable.

The version of the XDC tools required is 3.20.04.68 GA.

2.3.1 Installing Framework Component (FC)

You can download FC from the TI website:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_F
DS.html

Extract the FC zip file to the some location and set the system environment
variable FC_INSTALL_DIR to this path. For example: if the zip file was
extracted to C:\CCSv4\, set FC_INSTALL_DIR as C:\CCSv4\
framework_components_3_20_00_22.

The test application uses the following IRES and XDM files:

 HDVICP related IRES header files, these are available in the
FC_INSTALL_DIR\packages\ti\sdo\fc\ires\hdvicp directory.

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html

2-14

 Tiled memory related Header file, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\sdo\fc\ires\tiledmemory
directory.

 XDM related header files, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\xdais directory

2.3.2 Installing XDC Tools

XDC Tools is required to build the test application. The test application uses
the standard files like <std.h> from XDC tools. This encoder has been
validated with XDC version 3.20.04.68 GA. The XDC tools can be
downloaded and installed from the following URL:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index
_FDS.html

Also, ensure that the environment variable XDCROOT is set to the XDC
installation directory.

2.4 Building and Running the Sample Test Application

2.4.1 Building the Sample Test Application

This library release of MJPEG Encoder on HDVICP2 and Media Controller
based platform contains the following projects.

Project Make file Path Output Files

Test

Application

\client\build\<TestAppDeviceNam

e>\make\

\client\build\TestApp<DeviceName>\out

\jpegenc_ti_testapp.out

The make file for the project can be built using the following commands.

gmake –k –s deps

gmake –k –s all

Use the following command to clean previous builds.

gmake –k –s clean

2.4.2 Running the Sample Test Application on Netra HDVICP2 Simulator

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on HDVICP2 Simulator, follow these steps:

1) Ensure that you have installed IVAHD CSP (Simulation) version 1.1.5.

2) Start Code Composer Studio v4 and set up the target configuration for Netra
IVA-HD Simulator.

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html

2-15

3) Select the Debug perspective in the workbench. Launch Netra IVA-HD
simulator in CCSv4 (View > Target Configurations > %Netra
Simulator%).

4) Select M3_Video device and Target > Load Program, browse to the
\client\build\TestApp<DeviceName>\out\ sub-directory, select the codec
executable “jpegenc_ti_testapp.out” and load it into Code Composer Studio
in preparation for execution.

5) Select IVAHD_0_ICONT1 device and Target > Run to give iCont1 device a
free run.

6) Select IVAHD_0_ICONT2 device and Target > Run to give iCont2 device a
free run.

7) Select M3_Video device and select Target > Run to execute the application.

8) Test application will take input streams from \client\test\testvecs\input\
directory and generates outputs in \client\test\testvecs\output\ directory.

2.4.3 Running the Sample Test Application on DM816x EVM

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on DM816x EVM, follow these steps:

1) Start Code Composer Studio v4 and set up the target configuration for
DM816x EVM Emulator.

2) Ensure that the clock is enabled for Media Controller and HDVICP2.

3) Select the Debug perspective in the workbench. Launch DM816x EVM
Emulator in CCSv4 (View > Target Configurations > %DM816x EVM%).

4) Select Cortex_M3_RTOS_0 device, right click and choose “Connect Target”
and wait for emulator to connect to CortexM3.

5) Select Cortex_M3_RTOS_0 device and Target > Load Program, browse to
\500.V.MJPEG.E.IVAHD.01.00\IVAHD_001\client\build\TestAppDM816x\out\
sub-directory, select the codec executable “jpegenc_ti_testapp.out” and load
it in preparation for execution.

6) Select Target > Run to execute the application for Cortex_M3_RTOS_0
device.

7) Test application will take input streams from \client\test\testvecs\input\
directory and generates outputs in \client\test\testvecs\output\ directory.

Note:

Order of connecting to the devices is important and it should be as
mentioned in above steps.

2.5 Configuration Files

This codec is shipped along with:

2-16

 Generic configuration file (encoder_testvecs.cfg) - specifies input
and output files for the sample test application.

 A sample Encoder configuration file named
encoder_testparams.cfg – specifies the configuration parameters
used by the test application to configure the Encoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, encoder_testvecs.cfg for determining the input and output
files for running the codec. The encoder_testvecs.cfg file is available in the
\client\test\testvecs\config sub-directory.

The format of the encoder_testvecs.cfg file is:

 Mode

Config
Input

Output or Reference

Privacy Mask param file

where:

 Mode may be set as:

o 1 - for compliance checking.
o 0 - for writing the output to the output file

 Config is the Encoder configuration file. For details, see Section

2.5.2.

 Input is the input file name (use complete path).

 Output is the output (.jpg) file name (output dump mode).

Reference is the reference (.jpg) file name (in compliance checking
mode).

 P r i v a c y M a s k p a r a m f i l e is the file which contains privacy mask

input params.

 A sample Testvecs.cfg file is as shown:

0

..\..\Test\TestVecs\Config\encoder_testparams.cfg

..\..\Test\TestVecs\Input\davincieffect_qcif_yuv420_sp.yuv

..\..\Test\TestVecs\Output\davincieffect_qcif_yuv420_sp.jpg

..\..\Test\TestVecs\Config\privacy_masking_params.cfg

In compliance mode of operation, the encoder compares the reference and
the generated output and declares Pass/Fail message. If output dump mode
is selected(X set to 0), then the encoder dumps the output to the specified
file.

2-17

2.5.2 Encoder Configuration File

The encoder configuration file, encoder_testparams.cfg contains the
configuration parameters required for the encoder. The
encoder_testparams.cfg file is available in the \Client\Test\TestVecs\Config
sub-directory.

A sample encoder_testparams.cfg file is as shown:

New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

Files

NumInputUnits = 1 # Number of units of input-data

 # (ex. 3 rows to be encoded).

MaxWidth = 1920 # Max Frame width should be multiple of 16

MaxHeight = 1088 # Max Frame height should be multiple of 16

DataEndianess = 1 # 1=> 8-bit Big Endian stream.

InputChromaFormat = 9 # XDM_YUV_420SP format

InputContentType = 0 # IVIDEO_PROGRESSIVE

OperatingMode = 1 # Encode Mode

InputDataMode = 3 # Process entire frame.

OutputDataMode = 3 # Encode entire frame into a bitstream in

 # single call.

NumOutputUnits = 1 # Number of units of output-data

 # (ex. 1 Slice/Frame encoded stream).

Encoder Control

FrameWidth = 176 # Frame width should be multiple of 16

FrameHeight = 144 # Frame height should be multiple of 16

QualityFactor = 20 # Quality Setting to be used.

 # Ranges between 2 and 97.

 # 2 => Lowest Quality. 97 => Best Quality.

CaptureWidth = 176 # Image width to compute image pitch.

 # If Capture Width is > Image Width then

 # use the former for image pitch.

generateHeader = 0 # Set 1 => Generate Header Only

debugTraceLevel = 0 # Specifies the debug trace level

lastNFramesToLog = 0 # Specifies the number of past frames

 # to log debug trace. If debugTraceLevel is

 # greater than 0, lastNFramesToLog must range

 # between 0 and 10.

tilerEnable = 1 # 1 => Luma in TILER8, 0=> Luma in Raw.

chromaTilerMode = 0 # Valid only if tilerEnable = 1

 # 1 => Chroma in TILER8, 0 => Chroma in

 # TILER16

Marker_position = 0 # Set 1 => Change the order of marker

 # position JPEG header

Privacy Masking Parameters

2-18

enablePrivacyMasking = 0 # 0->disable Privacy masking, 1->enable

Rate Control Params

RateControlPreset = 4 # 1 => Low Delay, 2 => Storage, 3 =>

Rsvd, 4 => None, 5 => User defined

targetFrameRate = 30000

targetBitRate = 5000000

rateControlParamPreset = 1 # Preset value for selecting rate

control params, 0: default (other parameters in this category will be

decided by Codec internally), 1: user defined

maxBitRate = 7500000 # Max bitrate, applicable in case of

VBR

minBitRate = 4500000 # Min bitrate, applicable in case of

VBR

rcAlgo = 0 # 0 => VBR, 1 => CBR, 2 => Disable

Rate Control

qpI = -1 # Initial QP value, Range -1 to 51

qpMaxI = 51 # Maximum QP

qpMinI = 1 # Minimum QP

initialBufferLevel = 10000000 # Initial Buffer level for HRD

compliance, keep same as HRDBufferSize for best quality

HRDBufferSize = 10000000 # Hypothetical Reference Decoder

Buffer Size in bits - 2*bitrate for VBR, bitrate/2 for CBR

Any field in the IVIDENC2_Params or IVIDENC2_DynamicParams structure can be set in

the encoder_testparams.cfg file using the syntax shown above. If you specify additional
fields in the encoder_testparams.cfg file, ensure to modify the test application appropriately
to handle these fields.

2.5.3 Privacy Mask Configuration File

noOfPrivacyMaskRegions = 4 # Number of Privacy mask (PM) regions

lumaValueForPM = 255 # Y pixel value for privacy mask region

cbValueForPM = 70 # Cb pixel value for privacy mask region

crValueForPM = 60 # Cr pixel value for privacy mask region

PM_1_Xmin = 160 # Top left X co-ordinate of PM 2

PM_1_Xmax = 175 # Bottom right X co-ordinate of PM 2

PM_1_Ymin = 0 # TOP left Y co-ordinate of PM 2

PM_1_Ymax = 15 # Bottom right Y co-ordinate of PM 2

PM_2_Xmin = 0 # Top left X co-ordinate of PM 2

PM_2_Xmax = 15 # Bottom right X co-ordinate of PM 2

PM_2_Ymin = 0 # TOP left Y co-ordinate of PM 2

PM_2_Ymax = 15 # Bottom right Y co-ordinate of PM 2

PM_3_Xmin = 160 # Top left X co-ordinate of PM 2

PM_3_Xmax = 175 # Bottom right X co-ordinate of PM 2

PM_3_Ymin = 128 # TOP left Y co-ordinate of PM 2

PM_3_Ymax = 143 # Bottom right Y co-ordinate of PM 2

PM_4_Xmin = 0 # Top left X co-ordinate of PM 2

PM_4_Xmax = 15 # Bottom right X co-ordinate of PM 2

PM_4_Ymin = 128 # TOP left Y co-ordinate of PM 2

PM_4_Ymax = 143 # Bottom right Y co-ordinate of PM 2

Note:

Chroma formats supported in this release are YUV420 semi-planar,
YUV444 planar, YUV422 YUYV IBE, YUV422 UYVY ILE and YUV400.

2-19

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4. To
check the conformance of the codec for other input files of your choice,
follow these steps:

 Copy the input files to the \Client\Test\TestVecs\Inputs sub-
directory

 Copy the reference files to the \Client\Test\TestVecs\Reference
subdirectory.

 Edit the configuration file, TestVecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the
format of the TestVecs.cfg file, see Section 2.5.1.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2-20

This page is intentionally left blank

3-21

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-22

3.2 Handshaking Between Application and Algorithm 3-26

3.3 Address Translations 3-27

3.4 Sample Test Application 3-28

3-22

3.1 Overview of the Test Application

The test application exercises the IVIDENC2 base class of the MMJPEG

Encoder library. The main test application files are jpegenc_ti_Test.c and
jpegenc_ti_rman_config.c. These files are available in the
\enc\jpeg\client\test\src directory.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application. Currently, the test application does not use RMAN resource
manager. However, all the resource allocations happens through IRES
interfaces.

Figure 3-1. Test Application Sample Implementation

3-23

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters such
as video height, video width, and so on. The test application obtains the
required parameters from the Encoder configuration files.

In this logical block, the test application does the following:

1) Opens the encoder configuration file, (encoder_testparams.cfg) and reads
the various configuration parameters required for the algorithm. For more
details on the configuration files, see Section 2.4.2.

2) Sets the IVIDENC2_Params structure based on the values it reads from the

encoder_testparams.cfg file.

3) Reads the input bit-stream into the application input buffer.

After successful completion of these steps, the test application does the
algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory

records it requires.

2) algAlloc() - To query the algorithm about the memory requirement to be

filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures provided

by the application.

A sample implementation of the create function that calls algNumAlloc(),

algAlloc(), and algInit() in sequence is provided in the

ALG_create() function implemented in the alg_create.c file.

Note:

 Encoder requests only one memory buffer through algNumAlloc.

This buffer is for the algorithm handle.

 Other memory buffer requirements are done through IRES

3-24

interfaces.

After successful creation of the algorithm instance, the test application does
HDVICP Resource and memory buffer allocation for the algorithm.
Currently, RMAN resource manager is not used. However, all the resource
allocations happen through IRES interfaces:

4) numResourceDescriptors() - To understand the number of resources

(HDVICP and buffers) needed by algorithm.

5) getResourceDescriptors() – To get the attributes of the resources.

6) initResources() - After resources are created, application gives the

resources to algorithm through this API.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run-time) by calling the

control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the

process()function call. The input and output buffer descriptors are

obtained by calling the control() function with the XDM_GETBUFINFO

command.

3) Implements the process call based on the non-blocking mode of operation
explained in step 4. The behavior of the algorithm can be controlled using
various dynamic parameters (see Section 4.2.1.9). The inputs to the

process()functions are input and output buffer descriptors, pointer to the

IVIDENC2_InArgs and IVIDENC2_OutArgs structures.

4) On the call to the process() function for encoding/decoding a single frame

of data, the software triggers the start of encode/decode. After triggering the
start of the encode/decode frame, the video task can be put to SEM-pend

state using semaphores. On receipt of interrupt signal at the end of frame
encode/decode, the application releases the semaphore and resume the
video task, which does any book-keeping operations by the codec and

updates the output parameter of IVIDENC2_OutArgs structure.

3-25

Figure 3-2. Process call with Host release

The control() and process() functions should be called only within the

scope of the algActivate() and algDeactivate() XDAIS functions

which activate and deactivate the algorithm instance respectively. Once an

algorithm is activated, there could be any ordering of control() and

process() functions. The following APIs are called in a sequence:

5) algActivate() - To activate the algorithm instance.

6) control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control commands.

7) process() - To call the Encoder with appropriate input/output buffer and

arguments information.

8) control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control commands.

9) algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates picture level process() call and updates

the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process() call from file operations by placing

appropriate calls for cache operations. The test application does a cache

invalidate for the valid input buffers before process() and a cache write

back invalidate for output buffers after a control() call with GET_STATUS

command.

In the sample test application, after calling algDeactivate(), the output

data is either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application frees the memory
resources and deletes the current algorithm instance. The following APIs
are called in sequence:

Host
System

application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

Transfer of
tasks at Host

MB level tasks for

frame n+1

Process call frame n+1

Host system
tasks

HDVICP Busy

Interrupt between
HDVICP and Host

3-26

1) numResourceDescriptors() - To get the number of resources and free

them. If the application needs handles to the resources, it can call

getResourceDescriptors().

2) algNumAlloc() - To query the algorithm about the number of memory

records it used.

3) algFree() - To query the algorithm for memory, to free when removing an

instance.

A sample implementation of the delete function that calls algNumAlloc()

and algFree() in sequence is provided in the ALG_delete() function

implemented in the alg_create.c file.

3.2 Handshaking Between Application and Algorithm

Application provides the algorithm with its implementation of functions for

the video task to move to SEM-pend state, when the execution happens in

the co-processor. The algorithm calls these application functions to move

the video task to SEM-pend state.

Figure 3-3. Interaction Between Application and Codec

Note:

 Process call architecture to share Host resource among multiple
threads.

 ISR ownership is with the Host layer resource manager – outside the
codec.

 The actual codec routine to be executed during ISR is provided by the

Framework Provided
HDVICP Callback APIs

process()

Application Side

Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDENC2::process() {

 :

//Call to Acquire API */

HDVICP_Acquire(handle,

iresHandle, yieldCtxt,

reloadHDVICP);

 …. set up for frame decode

 HDVICP_Configure(jpge, jpge-

>hdvicpHandle,

 jpgEISRFunction);

 HDVICP_Wait(jpegd, jpege-

>hdvicpHandle);

 // Release of HOST

 …. End of frame processing

}

void jpgDISRFunction(IALG_Handle

handle)

{ jpgD_TI_Obj *jpge = (void

*)handle;

 HDVICP_done(jpegd ,

 jpegd-

>hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

HDVICP_Wait(handle,

hdVicpHandle){

SEM_pend(_doneSemaphore);

}

HDVICP_Done(handle,

hdVicpHandle) {

 SEM_post(_doneSemaphore)

}

3-27

codec.

 OS/System related calls (SEM_pend, SEM_post) also outside the

codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

 void HDVICP_Acquire(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle, IRES_YieldContext *

yieldCtxt, Bool *reloadHDVICP)

This function is called by the algorithm to acquire the HDVICP2 resource.

 HDVICP_Configure(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle,

void(*IRES_HDVICP2_CallbackFxn)(IALG_Handle handle,

void *cbArgs), void *cbArgs)

This function is called by the algorithm to register its ISR function, which
the application needs to call when it receives interrupts pertaining to the
video task.

 HDVICP_Wait (void *hdvicpHandle)

This function is called by the algorithm to move the video task to SEM-

pend state.

 HDVICP_Done (void *hdvicpHandle)

This function is called by the algorithm to release the video task from SEM-

pend state. In the sample test application, these functions are

implemented in hdvicp_framework.c file. The application can implement it
in a way considering the underlying system.

3.3 Address Translations

The buffer addresses (DDR addresses) as seen by Media Controller and
IVA-HD (VDMA) will be different. Hence, address translations are needed to
convert from one address view to another. The application needs to
implement a MEMUTILS function for this address translation (which will be
later implemented by the framework components). An example of the
address translation function is as shown. The codec will make a call to this
function from the host (Media Controller) library. Therefore, the function
name and arguments should follow the example provided below. For a given
input address, this function returns the VDMA view of the buffer (that is,
address as seen by HDVICP2).

void *MEMUTILS_getPhysicalAddr(Ptr Addr)

{

return ((void *)((unsigned int)Addr & VDMAVIEW_EXTMEM));

}

Sample settings for the macro VDMAVIEW_EXTMEM is as shown.

#if defined(HOSTARM968_FPGA)

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#elif defined(HOSTCORTEXM3_OMAP4)

3-28

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#elif defined(HOSTCORTEXM3_NETRA)

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#else

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#endif

3.4 Sample Test Application

The test application exercises the IVIDENC2 base class of the MMJPEG

Encoder.

Table 3-1 Process() Implementation

/*Main Function acting as a client for Video Encode Call*/

 TestApp_SetInitParams(¶ms.videncParams);

 /*---------------- Encoder creation -----------------*/

 handle = (IALG_Handle) JPEGVENC_create();

 /* Optional: Set Run-time parameters in the Algorithm

via control() */

 JPEGVENC_control(handle, XDM_SETPARAMS);

 /* Get Buffer information */

 JPEGVENC_control(handle, XDM_GETBUFINFO);

 /* Do-While Loop for Encode Call for a given stream */

 do

 {

 /* Read the bitstream in the Application Input Buffer */

 validBytes = ReadByteStream(inFile);

 /*--*/

 /* Start the process : To start encoding a frame */

 /*--*/

 retVal = JPEGVENC_encodeFrame

 (

 handle,

 (XDM1_BufDesc *)&inputBufDesc,

 (XDM_BufDesc *)&outputBufDesc,

 (IVIDENC2_InArgs *)&inArgs,

 (IVIDENC2_OutArgs *)&outArgs

);

 /* Get the status of the encoder using control */

 JPEGVENC_control(handle, XDM_GETSTATUS);

 /* Get Buffer information : */

 JPEGVENC_control(handle, XDM_GETBUFINFO);

} while(1);

/* end of Do-While loop - which encodes frames */

ALG_delete (handle);

3-29

Note:

This sample test application does not depict the actual function
parameter or control code. It shows the basic flow of the code.

3-30

This page is intentionally left blank

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-15

4.3 Interface Functions 4-39

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

Table 4-1 List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FrameType IVIDEO_NA_FRAME Frame type not available.

IVIDEO_I_FRAME Intra coded frame. Not applicable for
MJPEG encoder.

IVIDEO_P_FRAME Forward inter coded frame. Not
applicable for MJPEG encoder.

IVIDEO_B_FRAME Bi-directional inter coded frame. Not
applicable for MJPEG encoder.

IVIDEO_IDR_FRAME Intra coded frame that can be used
for refreshing video content. Not
applicable for MJPEG encoder.

IVIDEO_II_FRAME Interlaced Frame, both fields are I
frames. Not applicable for MJPEG
encoder.

IVIDEO_IP_FRAME Interlaced Frame, first field is an I
frame, second field is a P frame. Not
applicable for MJPEG encoder.

IVIDEO_IB_FRAME Interlaced Frame, first field is an I
frame, second field is a B frame. Not
applicable for MJPEG encoder.

IVIDEO_PI_FRAME Interlaced Frame, first field is a P
frame, second field is an I frame.
Not applicable for MJPEG encoder.

IVIDEO_PP_FRAME Interlaced Frame, both fields are P
frames. Not applicable for MJPEG
encoder.

IVIDEO_PB_FRAME Interlaced Frame, first field is a P
frame; second field is a B frame. Not
applicable for MJPEG encoder.

IVIDEO_BI_FRAME Interlaced Frame, first field is a B
frame, second field is an I frame.
Not applicable for MJPEG encoder.

IVIDEO_BP_FRAME Interlaced Frame, first field is a B
frame, second field is a P frame. Not
applicable for MJPEG encoder.

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_BB_FRAME Interlaced Frame, both fields are B
frames. Not applicable for MJPEG
encoder.

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame. Not
applicable for MJPEG encoder.

IVIDEO_MBAFF_P_FRAME

Forward inter coded MBAFF frame.
Not applicable for MJPEG encoder.

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame. Not applicable for MJPEG
encoder.

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that can
be used for refreshing video content.
Not applicable for MJPEG encoder.

IVIDEO_FRAMETYPE_DEFAUL

T

Not supported in MJPEG encoder.

IVIDEO_ContentType IVIDEO_CONTENTTYPE_NA Content type is not applicable

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE_FRAM

E

Progressive video content. Not
applicable for MJPEG encoder.

IVIDEO_INTERLACED

IVIDEO_INTERLACED_FRAME

Interlaced video content. Not
applicable for MJPEG encoder.

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Top field.
Not applicable for MJPEG encoder.

IVIDEO_INTERLACED_BOTTO

MFIELD

Interlaced video content, Bottom
field. Not applicable for MJPEG
encoder.

IVIDEO_CONTENTTYPE_DEFA

ULT

Not supported in MJPEG encoder.

IVIDEO_RateControlPreset IVIDEO_LOW_DELAY Constant Bit Rate (CBR) control for
video conferencing.

IVIDEO_STORAGE

IVIDEO_RATE_CONTROL_PR

ESET_DEFAULT

Variable Bit Rate (VBR) control for
local storage (DVD) recording,
Default rate control preset value.

IVIDEO_TWOPASS Two pass rate control for non-real
time applications.

IVIDEO_NONE No configurable video rate control
mechanism.

IVIDEO_USER_DEFINED User defined configuration using
extended parameters.

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FrameSkip IVIDEO_NO_SKIP Do not skip the current frame.
Default Value. Not applicable for
MJPEG encoder.

IVIDEO_SKIP_P Skip forward inter coded frame.
Not applicable for MJPEG encoder.

IVIDEO_SKIP_B Skip bi-directional inter coded frame.
Not applicable for MJPEG encoder.

IVIDEO_SKIP_I Skip intra coded frame.
Not applicable for MJPEG encoder.

IVIDEO_SKIP_IP Skip I and P frame/field(s)
Not applicable for MJPEG encoder.

IVIDEO_SKIP_IB Skip I and B frame/field(s).
Not applicable for MJPEG encoder.

IVIDEO_SKIP_PB Skip P and B frame/field(s).
Not applicable for MJPEG encoder.

IVIDEO_SKIP_IPB Skip I/P/B/BI frames
Not applicable for MJPEG encoder.

IVIDEO_SKIP_IDR Skip IDR Frame
Not applicable for MJPEG encoder.

IVIDEO_SKIP_NONREFERENC

E

Skip non reference frame
Not applicable for MJPEG encoder.

IVIDEO_SKIP_DEFAULT Not applicable for MJPEG encoder.

IVIDEO_VideoLayout IVIDEO_FIELD_INTERLEAVE

D

Buffer layout is interleaved. Not
applicable for MJPEG encoder.

IVIDEO_FIELD_SEPARATED Buffer layout is field separated. Not
applicable for MJPEG encoder.

IVIDEO_TOP_ONLY Buffer contains only top field. Not
applicable for MJPEG encoder.

IVIDEO_BOTTOM_ONLY Buffer contains only bottom field.
Not applicable for MJPEG encoder.

IVIDEO_OperatingMode IVIDEO_DECODE_ONLY Decoding Mode. Not supported.

IVIDEO_ENCODE_ONLY Encoding Mode.

IVIDEO_TRANSCODE_FRAMEL

EVEL

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the frame level. Not supported.

4-5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_TRANSCODE_MBLEVE

L

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the MB level. Not supported.

IVIDEO_TRANSRATE_FRAMEL

EVEL

Transrate Mode of operation for
encoder, which consumes transrate
information at the frame level. Not
supported.

IVIDEO_TRANSRATE_MBLEVE

L

Transrate Mode of operation for
encoder, which consumes transrate
information at the MB level. Not
supported.

IVIDEO_OutputFrameStatus IVIDEO_FRAME_NOERROR Output buffer is available. Not
applicable for encoder.

IVIDEO_FRAME_NOTAVAILAB

LE

Codec does not have any output
buffers. Not applicable for encoder.

IVIDEO_FRAME_ERROR Output buffer is available and
corrupted. Not applicable for
encoder.

IVIDEO_FRAME_OUTPUTSKIP The video frame was skipped (that
is not decoded). Not applicable for
encoder.

IVIDEO_OUTPUTFRAMESTATU

S_DEFAULT

Default set to
IVIDEO_FRAME_NOERROR. Not

applicable for encoder.

IVIDEO_PictureType IVIDEO_NA_PICTURE Frame type not available. Not
applicable for MJPEG encoder.

IVIDEO_I_PICTURE Intra coded picture. Not applicable
for MJPEG encoder.

IVIDEO_P_PICTURE Forward inter coded picture. Not
applicable for MJPEG encoder.

IVIDEO_B_PICTURE Bi-directional inter coded picture.
Not applicable for MJPEG encoder.

IVIDEO_DataMode IVIDEO_FIXEDLENGTH Output of the encoder is in multiples
of a fixed length (example, 4K)
(output side for encoder).

IVIDEO_SLICEMODE Slice mode of operation (Output side
for encoder).

IVIDEO_NUMROWS Number of MCU rows (Input side for
encoder).

IVIDEO_ENTIREFRAME Processing of entire frame data

4-6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_DataFormat XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
MJPEG Encoder.

XDM_LE_32 32-bit little endian stream.
Not supported in this version of
MJPEG Encoder.

XDM_LE_64 64-bit little endian stream.
Not supported in this version of
MJPEG Encoder.

XDM_BE_16 16-bit big endian stream.
Not supported in this version of
MJPEG Encoder.

XDM_BE_32 32-bit big endian stream.
Not supported in this version of
MJPEG Encoder.

XDM_BE_64 64-bit big endian stream.
Not supported in this version of
MJPEG Encoder.

XDM_ChromaFormat XDM_YUV_420P YUV 4:2:0 planar. Not supported in
this version of MJPEG Encoder.

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of
MJPEG Encoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian).

XDM_YUV_444P YUV 4:4:4 planar.

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of
MJPEG Encoder.

XDM_GRAY Gray format.

XDM_RGB RGB color format.
Not supported in this version of
MJPEG Encoder.

XDM_YUV_420SP YUV 4:2:0 chroma semi-planar

XDM_ARGB8888 ARGB8888 color format.
Not supported in this version of
MJPEG Encoder.

4-7

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_RGB555 RGB555 color format.
Not supported in this version of
MJPEG Encoder.

XDM_RGB565 RGB565 color format.
Not supported in this version of
MJPEG Encoder.

XDM_YUV_444ILE YUV 4:4:4 interleaved (little endian)
color format.
Not supported in this version of
MJPEG Encoder.

XDM_MemoryType XDM_MEMTYPE_ROW Raw Memory Type (deprecated)

XDM_MEMTYPE_RAW Raw Memory Type i.e., Linear
(standard) memory.

XDM_MEMTYPE_TILED8 2D memory in 8-bit container of tiled
memory space.

XDM_MEMTYPE_TILED16 2D memory in 16-bit container of
tiled memory space.

XDM_MEMTYPE_TILED32 2D memory in 32-bit container of
tiled memory space. Not supported
in this version of MJPEG Encoder.

XDM_MEMTYPE_TILEDPAGE 2D memory in page container of
tiled memory space.

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill

Status structure

XDM_SETPARAMS Set run-time dynamic parameters

via the DynamicParams structure.

XDM_RESET Reset the algorithm.

XDM_SETDEFAULT Initialize all fields in Params

structure to default values specified
in the library.

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input. Not supported in
this version of MJPEG Encoder.

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

4-8

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_GETVERSION Query the algorithm’s version. The
result will be returned in the data

field of the Status structure.

Application has to allocate memory
for a buffer passed through data
field. The minimum buffer size
required is 96 bytes.

XDM_GETCONTEXTINFO Query a split codec part for its
context needs. Not supported in this
version of MJPEG Encoder.

XDM_GETDYNPARAMSDEFAULT Query algorithm instance regarding
the dynamic parameters default
values.

XDM_SETLATEACQUIREARG Set an algorithm's 'late acquire'
argument.

XDM_AccessMode XDM_ACCESSMODE_READ The algorithm read from the buffer
using the CPU

XDM_ACCESSMODE_WRITE The algorithm wrote from the buffer
using the CPU

XDM_ErrorBit XDM_APPLIEDCONCEALMENT Bit 9
1 - applied concealment
0 - Error not found

XDM_INSUFFICIENTDATA Bit 10
1 - Insufficient data
0 - Error not found

XDM_CORRUPTEDDATA Bit 11
1 - Data problem/corruption
0 - Error not found

XDM_CORRUPTEDHEADER Bit 12
1 - Header problem/corruption
0 - Error not found

XDM_UNSUPPORTEDINPUT Bit 13
1 - Unsupported feature/parameter
in input
0 - Error not found

XDM_UNSUPPORTEDPARAM Bit 14
1 - Unsupported input parameter or
configuration
0 - Error not found

4-9

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_FATALERROR Bit 15
1 - Fatal error
0 - Recoverable error

IJPEGVENC_ExtendedErrorCo

des

IJPEGVENC_ERR_UNSUPPORT

ED_VIDENC2PARAMS

Bit 0
This error code has been
deprecated.

IJPEGVENC_ERR_UNSUPPORT

ED_VIDENC2DYNAMICPARAMS

Bit 1
1 - Unsupported
VIDENC2DynamicParams have
been passed to the codec
0 - Error not found

IJPEGVENC_ERR_UNSUPPORT

ED_JPEGENCDYNAMICPARAMS

Bit 2
1 - Unsupported
JPEGVENC_DynamicParams (i.e.,
extended) have been passed to the
codec
0 - Error not found

IJPEGVENC_ERR_IMPROPER_

DATASYNC_SETTING

Bit 3
This error code has been
deprecated.

IJPEGVENC_ERR_NOSLICE Bit 4
This error code has been
deprecated.

IJPEGVENC_ERR_SLICEHDR Bit 5
This error code has been
deprecated.

IJPEGVENC_ERR_MBDATA Bit 6
This error code has been
deprecated.

IJPEGVENC_ERR_UNSUPPFEA

TURE

Bit 7
This error code has been
deprecated.

IJPEGVENC_ERR_STREAM_EN

D

Bit 16
This error code has been
deprecated.

IJPEGVENC_ERR_INVALID_M

BOX_MESSAGE

Bit 17
1 - Invalid MailBox Message has
been received
0 - Error not found

4-10

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGVENC_ERR_HDVICP_RE

SET

Bit 18
This error code has been
deprecated.

IJPEGVENC_ERR_HDVICP_WA

IT_NOT_CLEAN_EXIT

Bit 19
1 - Exit from HDVICP2 is not clean
0 - Error not found

IJPEGVENC_ERR_IRES_RESH

ANDLE

Bit 20
This error code has been
deprecated.

IJPEGVENC_ERR_STANDBY Bit 21
1 - HDVICP was not in standby
when given to codec
0 - Error not found

IJPEGVENC_ERR_INPUT_DAT

ASYNC

Bit 22
1 - Error in the Input Data Sync Call
Function
0 - Error not found

IJPEGVENC_ERR_OUTPUT_DA

TASYNC

Bit 23
1 - Error in the Output Data Sync
Call Function
0 - Error not found

IJPEGVENC_ERR_PRIVACY_M

ASKING_PARAMS

Bit 24
1 – Error in Privacy Mask Params
0 – Error not found

IJPEGVENC_ERR_RATECONTR

OLPARAMS

Bit 25
1 – Error in Rate Control Params
0 – Error not found

IJPEGVENC_ErrorStatus IJPEGVENC_DYNAMIC_PARAM

S_HANDLE_ERROR

Bit 0
1 - Dynamic Params pointer passed
to codec is NULL
0 - Error not found

IJPEGVENC_STATUS_HANDLE

_ERROR

Bit 1
1 - Status Pointer passed to codec
is NULL
0 - Error not found

IJPEGVENC_DYNAMIC_PARAM

S_SIZE_ERROR

Bit 2
1 - Invalid size of
dynamic parameters passed
to codec
0 - Error not found

4-11

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGVENC_ENCODE_HEADER

_ERROR

Bit 3
1 - Invalid GenerateHeader value
passed to the codec
0 - Error not found

IJPEGVENC_UNSUPPORTED_R

ESOLUTION

Bit 4
1 - Frame height and Frame width
passed to the codec is less than 32
or greater than Max Width and Max
Height provided during create time
0 - Error not found

IJPEGVENC_CAPTURE_WIDTH

_ERROR

Bit 5
1 - Invalid Capture Width value
passed to the codec
0 - Error not found

IJPEGVENC_GET_DATA_FXN_

NULL_POINTER

Bit 6
1 - No call back function pointer is
passed for getDataFxn
0 - Error not found

IJPEGVENC_GET_BUFFER_FX

N_NULL_POINTER

Bit 7
1 - No call back function pointer is
passed for getBufferFxn OR
putDataFxn
0 - Error not found

IJPEGVENC_INVALID_RESTA

RT_INTERVAL_ERROR

Bit 8
1 - Invalid Restart Interval value (<
0) passed to the codec
0 - Error not found

IJPEGVENC_INVALID_QUALI

TY_FACTOR_ERROR

Bit 9
1 - Invalid Quality factor value
passed to the codec. Valid range is
[1, 100].
0 - Error not found

IJPEGVENC_INVALID_INPUT

_CHROMA_FORMAT_ERROR

Bit 10
1 - Invalid chroma format passed to
the codec
0 - Error not found

IJPEGVENC_NULL_QUANT_TA

BLE_POINTER_ERROR

Bit 11
1 - Both quality factor and user
defined quantization table are valid
0 - Error not found

IJPEGVENC_NULL_INARGS_P

OINTER_ERROR

Bit 12
1 - InArgs Pointer passed to codec
in process call is NULL
0 - Error not found

4-12

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGVENC_NULL_INARGS_A

PP_POINTER_ERROR

Bit 13
1 - Both APP0 & APP1 Segments
are passed to the codec
0 - Error not found

IJPEGVENC_INARGS_SIZE_E

RROR

Bit 14
1 - Invalid size of InArgs passed to
the codec
0 - Error not found

IJPEGVENC_INVALID_INPUT

_BYTES_ERROR

Bit 15
This error code has been
deprecated.

IJPEGVENC_INVALID_INPUT

_ID_ERROR

Bit 16
1 - Value of 0 was passed as input
ID
0 - Error not found

IJPEGVENC_NULL_INPUT_BU

F_DESC_ERROR

Bit 17
1 - Input Buffer descriptor pointer
passed to codec is NULL when
generateHeader is
XDM_ENCODE_AU
0 - Error not found

IJPEGVENC_NULL_INPUT_BU

FFER_POINTER_ERROR

Bit 18
1 - Input Buffer pointer passed to
codec is NULL when
generateHeader is
XDM_ENCODE_AU
0 - Error not found

IJPEGVENC_INVALID_INPUT

_BUFFER_SIZE_ERROR

Bit 19
1 - Input buffer size is zero
0 - Error not found

IJPEGVENC_INVALID_NUM_O

F_INPUT_BUFFERS_ERROR

Bit 20
1 - Invalid number of input buffers
(less than 1 OR greater than 3)
passed to the codec when
generateHeader is
XDM_ENCODE_AU
0 - Error not found

IJPEGVENC_INVALID_INPUT

_BUFFER_MEMTYPE_ERROR

Bit 21
1 - Invalid input buffer memory type
is passed to the codec when
generateHeader is
XDM_ENCODE_AU
0 - Error not found

IJPEGVENC_INVALID_OUTPU

T_BUFFER_MEMTYPE_ERROR

Bit 22
1 - Invalid output buffer memory
type is passed to the codec
0 - Error not found

4-13

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGVENC_NULL_OUTARGS_

POINTER_ERROR

Bit 23
1 - OutArgs Pointer passed to codec
in process call is NULL
0 - Error not found

IJPEGVENC_INVALID_OUTAR

GS_SIZE

Bit 24
1 - Invalid size of OutArgs passed to
the codec
0 - Error not found

IJPEGVENC_NULL_OUTPUT_B

UF_DESC_ERROR

Bit 25
1 - Output Buffer descriptor pointer
passed to codec is NULL
0 - Error not found

IJPEGVENC_NULL_OUTPUT_B

UFFER_POINTER_ERROR

Bit 26
1 - Output Buffer pointer passed to
codec is NULL
0 - Error not found

IJPEGVENC_INVALID_OUTPU

T_BUFFER_SIZE_ERROR

Bit 27
1 - Output buffer size is zero
0 - Error not found

IJPEGVENC_INVALID_NUM_O

F_OUTPUT_BUFFERS_ERROR

Bit 28
1 - Number of output buffers passed
to the codec is not 1
0 - Error not found

IJPEGVENC_INSUFFICIENT_

OUTPUT_BUFFER_SIZE_ERRO

R

Bit 29
1 - Number of bytes encoded is
greater than the number of bytes
allocated to output buffer
0 - Error not found

IJPEGVENC_INVALID_JFIF_

THUMBNAIL_ENABLE_ERROR

Bit 30
1 - Invalid thumbnailIndexApp0
value (neither 0 nor 1) passed to
codec through InArgs in process call
0 - Error not found

IJPEGVENC_INVALID_EXIF_

THUMBNAIL_ENABLE_ERROR

Bit 31
1 - Invalid thumbnailIndexApp1
value (neither 0 nor 1) passed to
codec through InArgs in process call
0 - Error not found

IJPEGVENC_INPUT_BUFFER_

POINTER_ALIGN_ERROR

Bit 32
1 - The base address of the input
2D buffer in TILER region is not
aligned to 16 bytes
0 - Error not found

4-14

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGVENC_DATASYNC_GET_

ROW_DATA_ERROR

Bit 33
1 - numBlocks was set to a value
less than 1 by input data sync call
back function (getDataFxn)
0 - Error not found

IJPEGVENC_DATASYNC_INVA

LID_RESTART_INTERVAL_ER

ROR

Bit 34
1 - Invalid Restart Interval when
Data Sync (Slice Mode) is enabled
0 - Error not found

IJPEGVENC_DATASYNC_BLOC

K_POINTER_ERROR

Bit 35
1 - Invalid Buffer Pointer in the
output data sync (getBufferFxn) call
back function
0 - Error not found

IJPEGVENC_DATASYNC_BLOC

K_SIZE_ERROR

Bit 36
1 - Invalid Buffer Size in the output
data sync (getBufferFxn) call back
function
0 - Error not found

IJPEGVENC_DATASYNC_INVA

LID_BLOCKS_ERROR

Bit 37
1 - Invalid Buffer Count in the output
data sync (getBufferFxn) call back
function
0 - Error not found

IJPEGVENC_DATASYNC_NOT_

VALID_COMBINATION_ERROR

Bit 38
1 - Invalid Combination of

scatteredBlocksFlag and

varBlockSizesFlag in the output

data sync (getBufferFxn) call back
function
0 - Error not found

IJPEGVENC_INVALID_IMAGE

PITCH

Bit 39
1 – Non-multiple of 16 ImagePitch
0 - Error not found

XDM_MemoryUsageMode XDM_MEMUSAGE_DATASYNC Bit 0 - Data Sync mode. If this bit is
set, the memory will be used in data
sync mode. Not supported in this
version of MJPEG Encoder.

IJPEGVENC_PrivacyMaskingI

nputParams

IJPEGVENC_PRIVACYMASKIN

G_DISABLE

Disable Privacy Masking

IJPEGVENC_PRIVACYMASKIN

G_ENABLE

Enable Privacy Masking

4-15

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IJPEGVENC_RateControlPara

msPreset

IJPEGVENC_RATECONTROLPA

RAMS_DEFAULT

Rate control params are chosen
internally. See chapter 11 for more
details

IJPEGVENC_RATECONTROLPA

RAMS_USERDEFINED

Rate control params are taken from
user. See chapter 11 for more
details

IJPEGVENC_RATECONTROLPA

RAMS_EXISTING

Keep the Rate Control params as
existing. This is useful because
during control call if user don't want
to change the Rate Control Params.
See chapter 11 for more details

IJPEGVENC_RATECONTROLPA

RAMS_MAX

Unsupported value.

IJPEGVENC_RateControlAlgo IJPEGVENC_RATECONTROL_V

BR_STORAGE

VBR - Storage Rate Control. See
chapter 11 for more details

IJPEGVENC_RATECONTROL_C

BR_LOW_DELAY

CBR - Low Delay Rate Control. See
chapter 11 for more details

IJPEGVENC_RATECONTROL_D

ISABLE

Disable Rate Control. See chapter
11 for more details.

4.2 Data Structures

This section describes the XDM defined data structures, which are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM2_SingleBufDesc

 XDM2_BufDesc

 XDM1_AlgBufInfo

 XDM_DataSyncDesc

4-16

 IVIDEO2_BufDesc

 IVIDENC2_Fxns

 IVIDENC2_Params

 IVIDENC2_DynamicParams

 IVIDENC2_InArgs

 IVIDENC2_Status

 IVIDENC2_OutArgs

4.2.1.1 XDM2_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Data Type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

memType XDAS_Int16 Input Type of memory. See XDM_MemoryType

enumeration for more details.

usageMode XDAS_Int16 Input Memory usage descriptor.

bufSize XDM2_BufSize Input Size of the buffer(for tile memory/row memory)

accessMask XDAS_Int32 Output If the buffer was not accessed by the algorithm
processor (for example, it was filled by DMA or other
hardware accelerator that does not write through the
algorithm CPU), then bits in this mask should not be
set.

4.2.1.2 XDM2_BufSize

║ Description

This defines the union describing a buffer size.
║ Fields

Field Data Type Input/
Output

Description

width XDAS_Int32 Input Width of buffer in 8-bit bytes.
Required only for tiled memory.

height XDAS_Int32 Input Height of buffer in 8-bit bytes.

4-17

Field Data Type Input/
Output

Description

Required only for tiled memory.

bytes XDM2_BufSi

ze

Input Size of the buffer in bytes

4.2.1.3 XDM2_BufDesc

║ Description

This structure defines the buffer descriptor for output buffers.
║ Fields

Field Data Type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX

_IO_BUFFERS]

XDM2_Singl

eBufDesc

Input Array of buffer descriptors

4.2.1.4 XDM1_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output

buffers. This structure is filled when you invoke the control() function with

the XDM_GETBUFINFO command.

║ Fields

Field Data Type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_MAX_IO

_BUFFERS]

XDM2_BufSize Output Size required for each input buffer

minOutBufSize[XDM_MAX_I

O_BUFFERS]

XDM2_BufSize Output Size required for each output buffer

inBufMemoryType[XDM_MAX

_IO_BUFFERS]

XDAS_Int32 Output Memory type for each input buffer

outBufMemoryType[XDM_MA

X_IO_BUFFERS]

XDAS_Int32 Output Memory type for each output buffer

minNumBufSets XDAS_Int32 Output Minimum number of buffer sets for
buffer management

4-18

Note:

For MJPEG Encoder, the buffer details are:

 Number of input buffers required is based on input chroma format.

 Number of output buffers required is 1.

 For frame mode of operation, there is no restriction on input buffer
size except that it should contain atleast one frame data.

 The memory types supported for the output buffer are

XDM_MEMTYPE_RAW and XDM_MEMTYPE_TILEDPAGE.

 The memory types supported for luma input buffers are

XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILEDPAGE and
XDM_MEMTYPE_RAW.

 The memory types supported for chroma input buffers are
XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILED16,

XDM_MEMTYPE_TILEDPAGE and XDM_MEMTYPE_RAW.

4.2.1.5 XDM_DataSyncDesc

║ Description

This structure describes the chunk of data being transferred in one call to
putData or getData.

║ Fields

Field Data Type Input/
Output

Description

scatteredBloc

ksFlag

XDAS_Int32 Input Flag indicating whether the individual data blocks may
be scattered in memory.

baseAddr XDAS_Int32

*

Input Base address of single data block or pointer to an
array of data block addresses of size numBlocks.

numBlocks XDAS_Int32 Input Number of blocks available.

varBlockSizes

Flag

XDAS_Int32 Input Flag indicating whether any of the data blocks vary in
size.

blockSizes XDAS_Int32

*

Input Variable block sizes array.

Note:

 The following parameters are not supported/updated (don’t care) in data sync at input
side

 scatteredBlocksFlag

4-19

 baseAddr

 varBlockSizesFlag

 blockSizes

 There are two modes of operations in data sync on the input side

 NUMROWS Mode (IVIDEO_NUMROWS)

 Entire Frame Mode (IVIDEO_ENTIREFRAME) (without data sync)

 Only numBlocks (non-zero) is updated by the application. Remaining parameters are

not updated (don’t care).

 There are three modes of operation in data sync on the output side

 Slice Mode (IVIDEO_SLICEMODE)

 Fixed Length Mode (IVIDEO_FIXEDLENGTH)

 Entire Frame Mode (IVIDEO_ENTIREFRAME) (without data sync)

 In Slice Mode the following parameters are updated/supported as follows.

 scatteredBlockFlag should be FALSE (bitstream buffer is assumed to be

continuous).

 varBlockSizesFlag should be FALSE.

 numBlocks can be any positive number between 1 to 8.

 restartInterval (present in IJPEGVENC_DynamicParams) should not be set to

0 if IVIDEO_SLICEMODE is used.

 In Fixed Length Mode the following parameters are updated/supported as follows.

 scatteredBlockFlag may be TRUE/FALSE.

 varBlockSizesFlag may be TRUE/FALSE.

 numBlocks may be any value between 1 and 8.

 During the first Data Sync the data provided need not to be multiple of Page Size
(1024 bytes).

 Total size per Data Sync call (except the first call) should be multiple of Page Size
(1024 bytes).

 In Entire Frame Mode, XDM_DataSyncDesc structure is ignored by the codec.

4.2.1.6 IVIDEO2_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data Type Input/
Output

Description

numPlanes XDAS_Int32 Input/O
utput

Number of buffers for video planes

4-20

Field Data Type Input/
Output

Description

numMetaPlanes XDAS_Int32

Input/O
utput Number of buffers for Metadata

dataLayout XDAS_Int32 Input/
Output

Video buffer layout. See
IVIDEO_VideoLayout

enumeration for more details.

planeDesc

[IVIDEO_MAX_NUM_PLANES]

XDM1_Singl

eBufDesc

Input/
Output

Description for video planes

metadataPlaneDesc

[IVIDEO_MAX_NUM_METADATA_PLA

NES]

XDM1_Singl

eBufDesc

Input/
Output

Description for metadata planes

secondFieldOffsetWidth[IVIDE

O_MAX_NUM_PLANES] XDAS_Int32

Input/
Output

Off set value for second field in

planeDesc buffer (width in pixels)

secondFieldOffsetHeight[IVID

EO_MAX_NUM_PLANES]

XDAS_Int32 Input/
Output

Off set value for second field in

planeDesc buffer (height in lines)

imagePitch

XDAS_Int32

[]

Input/
Output

Image pitch should be multiples of
16.All components(Y,U,V)should
have the same image pitch.When
both image pitch and CaptureWidth
are non-zero, imagepitch will be
considered as pitch of the buffers.
CaptureWidth would be ignored.

imageRegion XDM_Rect Input/
Output

Decoded image region including
padding /encoder input image

activeFrameRegion XDM_Rect

Input/
Output Actual display region/capture region

extendedError XDAS_Int32 Input/
Output

Provision for informing the error type
if any

frameType XDAS_Int32 Input/
Output

Video frame types. See enumeration

IVIDEO_FrameType. Not

applicable for MJPEG encoder.

topFieldFirstFlag XDAS_Int32 Input/
Output

Indicates when the application
(should display)/(had captured) the
top field first.
Not applicable for MJPEG encoder.

repeatFirstFieldFlag XDAS_Int32 Input/
Output

Indicates when the first field should
be repeated.
Not applicable for MJPEG encoder.

frameStatus XDAS_Int32 Input/
Output

Video in/out buffer status.

repeatFrame XDAS_Int32 Input/
Output

Number of times to repeat the
displayed frame.

4-21

Field Data Type Input/
Output

Description

Not applicable for MJPEG encoder.

contentType XDAS_Int32 Input/
Output

Video content type. See
IVIDEO_ContentType.

chromaFormat XDAS_Int32 Input/
Output

Chroma format for encoder input
data/decoded output buffer. See

XDM_ChromaFormat enumeration

for details.

scalingWidth XDAS_Int32 Input/
Output

Scaled image width for post
processing. Not applicable for
MJPEG encoder.

scalingHeight XDAS_Int32 Input/
Output

Scaled image height for post
processing. Not applicable for
MJPEG encoder.

rangeMappingLuma XDAS_Int32 Input/
Output

Not applicable for MJPEG encoder

rangeMappingChroma XDAS_Int32 Input/
Output

Not applicable for MJPEG encoder

enableRangeReductionFlag XDAS_Int32 Input/
Output

ON/OFF, default is OFF.
Not applicable for MJPEG encoder.

Note:

 IVIDEO_MAX_NUM_PLANES: Max YUV buffers - one each for Y, U,

and V.

 The following parameters are not supported in this version of the
encoder

 frameType

 topFieldFirstFlag

 repeatFirstFieldFlag

 repeatFrame

 scalingWidth

 scalingHeight

 rangeMappingLuma

 rangeMappingChroma

 enableRangeReductionFlag

4-22

4.2.1.7 IVIDENC2_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

║

Field Data Type Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.8 IVIDENC2_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

encodingPreset XDAS_Int32 Input Not supported in MJPEG encoder.

rateControlPrese

t

XDAS_Int32 Input Preset to control rate control selection. See

IVIDEO_RateControlPreset enumeration

for more details. And also see chapter 11 for
more details on rate control.

maxHeight XDAS_Int32 Input Maximum video height in pixels. The supported
range is [32, 8192]. The default value is 1088.

maxWidth XDAS_Int32 Input Maximum video width in pixels. The supported
range is [32, 16384]. The default value is 1920.

dataEndianness XDAS_Int32 Input Endianness of output data. Not supported. The

output is always of type XDM_BYTE.

4-23

Field Data Type Input/
Output

Description

maxInterFrameInt

erval

XDAS_Int32 Input I to P frame distance. Not applicable for MJPEG
encoder.

maxBitRate XDAS_Int32 Input Maximum Bit-rate for encoding in bits per
second. Useful when VBR rate control is
enabled. Default value -1. See chapter 11 more
details.

minBitRate XDAS_Int32 Input Minimum Bit-rate for encoding in bits per
second. Useful when VBR rate control is
enabled. Default value – 0. See chapter 11 for
more details.

inputChromaForma

t

XDAS_Int32 Input Chroma format for the input buffer. Supported

values are XDM_YUV_422IBE,

XDM_YUV_422ILE,

XDM_YUV_444P, XDM_GRAY and

XDM_YUV_420SP. Default value is

XDM_YUV_420SP.

inputContentType XDAS_Int32 Input Video content type of the buffer being encoded.
Not applicable for MJPEG encoder.

operatingMode XDAS_Int32 Input Video coding mode of operation. Only

IVIDEO_ENCODE_ONLY is supported.

profile XDAS_Int32 Input Profile indicator of video codec. Not applicable
for MJPEG encoder.

level XDAS_Int32 Input Level indicator of video codec. Not applicable
for MJPEG encoder.

inputDataMode XDAS_Int32 Input Input data mode. For encoder, the supported

values are IVIDEO_NUMROWS and

IVIDEO_ENTIREFRAME. Default value is

IVIDEO_ENTIREFRAME.

outputDataMode XDAS_Int32 Input Output data mode. For encoder, the supported

values are IVIDEO_FIXEDLENGTH,

IVIDEO_SLICEMODE and

IVIDEO_ENTIREFRAME. Default value is

IVIDEO_ENTIREFRAME.

numInputDataUnit

s

XDAS_Int32 Input Number of input slices/rows. Not supported in
this version of MJPEG encoder.

numOutputDataUni

ts

XDAS_Int32 Input Number of output slices/rows. Units depend on
the outputDataMode, like number of
slices/rows/blocks etc. Ignored if
outputDataMode is set to full frame mode.
Default value is 1.

4-24

Field Data Type Input/
Output

Description

metadataType XDAS_Int32[] Input Type of each metadata plane. Not supported in
this version of MJPEG encoder.

Note:

 The maximum width supported is 16384 pixels and maximum height is 8192
pixels for YUV420SP,YUV422ILE and YUV422IBE and maximum width
supported is 8192 pixels and maximum height is 8192 pixels for YUV444P
and YUV400P(GRAY) formats.

 The minimum height and width supported is 32 pixels.

 dataEndianness field should be set to XDM_BYTE.

If maxBitRate is not equal to -1 then it implies that encoder has to have a tight

control on the bitRate. Encoder has to achieve defined max and min BitRate

in each second

There are some constraints on achieving the maxBitRate and minBitRate

(when maxBitRate = -1). If these constrains are not honored while setting

these values then encoder internally alters the max and min bitRate

 maxBitrate need to be at least 10% higher than target bitrate

 maxBitrate need to be at least 2 mbps higher than target bitrate.

For an example if 22 mbps is target average bitrate, maxBitrate should be 24.2 mbps
or higher (Due to percentage limit).
For an example if 10 mbps is target average bitrate, maxBitrate should be 12.0 mbps
or higher (Due to absolute limit)

 minBitrate need to be at least 10% lower than target bitrate

minBitrate need to be at least 2 mbps lower than target bitrate

For an example if 22 mbps is target average bitrate, minBitrate should be
19.8 mbps or lower.
For an example if 10 mbps is target average bitrate, minBitrate should be 8
mbps or lower.

4.2.1.9 IVIDENC2_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance

object. Set this data structure to NULL, if you are not sure of the values to be

specified for these parameters.
║ Fields

4-25

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

inputHeight XDAS_Int32 Input Input frame height. The supported range is [32, 8192].
The default value is 1080.

inputWidth XDAS_Int32 Input Input frame width. The supported range is [32, 16384].
The default value is 1920.

refFrameRate XDAS_Int32 Input Reference, or input, frame rate in fps * 1000.
For example, if ref frame rate is 30 frames per second,
this field will be 30000. Not applicable for MJPEG
encoder.

targetFrameRa

te

XDAS_Int32 Input Target frame rate in fps * 1000.
For example, if target frame rate is 30 frames per
second, this field will be 30000.

targetBitRate XDAS_Int32 Input Target bit rate in bits per second.

intraFrameInt

erval

XDAS_Int32 Input The number of frames between two I frames. Not
applicable for MJPEG encoder.

generateHeade

r

XDAS_Int32 Input Supported. Set it to XDM_GENERATE_HEADER to

generate only the header. Set it to XDM_ENCODE_AU

in other cases. The default value is
XDM_ENCODE_AU.

captureWidth XDAS_Int32 Input DEFAULT(0): use imageWidth as pitch else use given
capture width for pitch provided it is greater than
image width. captureWidth should be greater than or
equal to image width or should be set to 0.
If the input buffer is in non-TILED region, this
parameter should be multiple of 128 bytes.

forceFrame XDAS_Int32 Input Force the current (immediate) frame to be encoded as
a specific frame type. Not applicable for MJPEG
encoder.

interFrameInt

erval

XDAS_Int32 Input Number of B frames between two reference frames;
that is, the number of B frames between two P frames
or I/P frames. Not applicable for MJPEG encoder.

mvAccuracy XDAS_Int32 Input Pixel Accuracy of the motion vector. Not applicable for
MJPEG encoder.

sampleAspectR

atioHeight

XDAS_Int32 Input Not applicable for MJPEG encoder.

sampleAspectR

atioWidth

XDAS_Int32 Input Not applicable for MJPEG encoder.

4-26

Field Data Type Input/
Output

Description

ignoreOutbufS

izeFlag

XDAS_Int32 Input Not applicable for MJPEG encoder.

putDataFxn XDM_DataSy

ncPutFxn

Input DataSync call back function pointer for putData.

This should not be NULL if output data sync

(FIXEDLENGTH or SLICEMODE) is enabled. The

default value is NULL.

putDataHandle XDM_DataSy

ncHandle

Input DataSync handle for putData. This parameter is

not used by the encoder (“don’t care”).

getDataFxn XDM_DataSy

ncGetFxn

Input DataSync call back function pointer for getData.

This should not be NULL if input data sync (NUMROWS)

is enabled. The default value is NULL.

getDataHandle XDM_DataSy

ncHandle

Input DataSync handle for getData. This parameter is

not used by the encoder (“don’t care”).

getBufferFxn XDM_DataSy

ncGetBuffe

rFxn

Input DataSync call back function pointer for

getBuffer. This should not be NULL if output data

sync (FIXEDLENGTH or SLICEMODE) is enabled.

The default value is NULL.

getBufferHand

le

XDM_DataSy

ncHandle

Input DataSync handle for getBuffer. This parameter

is not used by the encoder (“don’t care”).

lateAcquireAr

g

XDAS_Int32 Input Argument used during late acquire. The default value

is IRES_HDVICP2_UNKNOWNLATEACQUIREARG.

4.2.1.10 IVIDENC2_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm instance
object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

inputID XDAS_Int32 Input Identifier to attach with the corresponding input frames to
be encoded. This is useful when frames require buffering
(e.g. B frames), and to support buffer management.
Zero (0) is not a supported inputID. This value is

4-27

reserved for cases when there is no input buffer is
provided.

control XDAS_Int32 Input Encoder control operations.

4.2.1.11 IVIDENC2_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if
being used) data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See

XDM_ErrorBit enumeration for

details.

data XDM1_SingleBufDesc Output Buffer information structure for
information passing buffer. Not
Supported in this version of MJPEG
encoder.

encodingPreset XDAS_Int32 Output Encoding preset. Not supported in
MJPEG encoder.

rateControlPreset XDAS_Int32 Output Rate control preset.
See
IVIDEO_RateControlPreset

enumeration for details.

maxInterFrameInte

rval

XDAS_Int32 Output I to P frame distance. Not applicable
for MJPEG encoder.

inputChromaFormat XDAS_Int32 Output Chroma format for the input buffer.

inputContentType XDAS_Int32 Output Video content type of the buffer
being encoded. Not applicable for
MJPEG encoder.

operatingMode XDAS_Int32 Output Video coding mode of operation.

profile XDAS_Int32 Output Profile indicator of video codec. Not
applicable for MJPEG encoder.

level XDAS_Int32 Output Level indicator of video codec. Not
applicable for MJPEG encoder.

4-28

Field Data Type Input/
Output

Description

inputDataMode XDAS_Int32 Output Input data mode. For encoder, it is
row mode/entire frame.

outputDataMode XDAS_Int32 Output Output data mode. For encoder, it is
fixed length/slice mode/entire frame.

numInputDataUnits XDAS_Int32 Output Number of input slices/rows. Not
supported in this version of MJPEG
encoder.

numOutputDataUnit

s

XDAS_Int32 Output Number of output slices/rows. Units
depend on the outputDataMode, like
number of slices/rows/blocks etc.
Ignored if outputDataMode is set to
full frame mode.

configurationID XDAS_Int32 Output Configuration ID of given codec.
This is based on the input stream &
can be used by the framework to
optimize the save/restore overhead
of any resources used.
This can be useful in multichannel
use case scenarios.

bufInfo XDM1_AlgBufInfo Output Input and output buffer information.
This field provides the application
with the algorithm's buffer
requirements. The requirements
may vary depending on the current
configuration of the algorithm
instance.

metadataType XDAS_Int32[] Input Type of each metadata plane. Not
supported in this version of MJPEG
encoder.

encDynamicParams IVIDENC2_DynamicPar

ams

Output Video encoder dynamic parameters.

4.2.1.12 IVIDENC2_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

4-29

Field Data Type Input/
Output

Description

extendedError XDAS_Int32 Output extendedError Field

bytesGenerated XDAS_Int32 Output Bytes generated per encode call

encodedFrameTyp

e

XDAS_Int32 Output See enumeration IVIDEO_FrameType. Always
IVIDEO_I_FRAME.

inputFrameSkip XDAS_Int32 Output See enumeration IVIDEO_SkipMode. Not applicable
for MJPEG encoder.

freeBufID[IVIDE

O2_MAX_IO_BUFFE

RS]

XDAS_Int32 Output This is an array of inputID's corresponding to the
buffers that have been unlocked in the current
process call.

reconBufs IVIDEO2_Bu

fDesc

Output Reconstruction frames. Not applicable for MJPEG
encoder.

4-30

4.2.2 MJPEG Encoder Data Structures

This section includes the following MJPEG Encoder specific data structures:

 IJPEGVENC_Params

 IJPEGVENC_DynamicParams

 IJPEGVENC_CustomQuantTables

 IJPEGVENC_InArgs

 IJPEGVENC_Status

 IJPEGVENC_OutArgs

 IJPEGVENC_PrivacyMaskingInput

 IJPEGVENC_RateControlParams

4.2.2.1 IJPEGVENC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for an MJPEG Encoder instance object.
The creation parameters are defined in the XDM data structure,

IVIDENC2_Params.

║ Fields

Field Data Type Input/
Output

Description

videnc2Params IVIDENC2_Params Input See IVIDENC2_Params data structure

for details.

maxThumbnailHSi

zeApp0
XDAS_UInt16 Input Max Horizontal resolution for APP0

(JFIF) thumbnail. Not supported in this
encoder. This does not support encoding
of thumbnails. This encoder supports
only insertion of encoded thumbnail data

provided by the application.

maxThumbnailVSi

zeApp0
XDAS_UInt16 Input Max Vertical resolution for APP0 (JFIF)

thumbnail. Not supported in this encoder.
This does not support encoding of
thumbnails. This encoder supports only
insertion of encoded thumbnail data
provided by the application.

maxThumbnailHSi

zeApp1
XDAS_UInt16 Input Max Horizontal resolution for APP1 (Exif)

thumbnail. Not supported in this encoder.
This does not support encoding of
thumbnails. This encoder supports only
insertion of encoded thumbnail data
provided by the application.

4-31

Field Data Type Input/
Output

Description

maxThumbnailVSi

zeApp1
XDAS_UInt16 Input Max Vertical resolution for APP1 (Exif)

thumbnail. Not supported in this encoder.
This does not support encoding of
thumbnails. This encoder supports only
insertion of encoded thumbnail data
provided by the application.

debugTraceLeve

l
XDAS_UInt32 Input Specifies the debug trace level. MJPEG

Encoder supports till level 4. Each higher
level logs more debug trace data.

lastNFramesToL

og
XDAS_UInt32 Input Specifies the number of most recent

frames to log in debug trace. Minimum
value supported is 0 and maximum value
supported is 10.

Markerposition XDAS_UInt32 Input Specifies to change the order of marker
position in JPEG header. By default
MJPEG encoder assumes
Markerposition is 0, which means it
encodes and bit exact with pc reference
encoder.

rateControlPar

ams
IJPEGVENC_RateC

ontrolParams

Input Specifies the rate control params. See
IJPEGVENC_RateControlParams for
more details. And also see chapter 11 for
more details.

4.2.2.2 IJPEGVENC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for an MMJPEG encoder object. The
run-time parameters are defined in the XDM data structure,
IVIDENC2_DynamicParams.

║ Fields

Field Data Type Input/
Output

Description

videnc2DynamicParam

s

IVIDENC2_DynamicPara

ms

Input See
IVIDENC2_DynamicParams

data structure for details.

restartInterval XDAS_Int32 Input If a positive non-zero value is
provided, the encoder inserts RST
marker after the specified number
of MCUs. If this parameter is not
specified or a value of 0 is
specified, no RST markers are
inserted. The default value is 0.

4-32

Field Data Type Input/
Output

Description

qualityFactor XDAS_Int32 Input The quantization table is modified
based on this parameter. Set this
parameter to 2 for lowest quality
and 97 for best quality. If this
parameter is not specified, the
encoder uses the example
quantization table specified in the
JPEG standard document. The
default value is 50.

quantTable Pointer to

IJPEGVENC_CustomQuan

tTables

Input Application should populate the
custom quant table in a structure
of type
IJPEGVENC_CustomQuantTables
and pass the pointer to it here. Set

it to NULL if custom quant tables

are not to be used. The default

value is NULL.

rateControlParams IJPEGVENC_RateContro

lParams

Input Specifies the rate

control params. See

IJPEGVENC_RateControlPar

ams and chapter 11 more

details.

enablePrivacyMaskin

g

XDAS_UInt32 Input Flag to enable/disable

privacy masking.

IJPEGVENC_PRIVACYMASKING

_DISABLE -> Disable

IJPEGVENC_PRIVACYMASKING

_ENABLE -> Enable

See chapter 10 for more

details.

4.2.2.3 IJPEGVENC_CustomQuantTables

║ Description

This structure defines the custom quantization tables, if any, for the MJPEG
Encoder.

║ Fields

Field Data Type Input/
Output

Description

Note:

The user should not use both the quality setting and custom quant tables features simultaneously.
In case the user wants to use custom quant tables, the qualityFactor param must be set to 0.

4-33

Field Data Type Input/
Output

Description

lumQuantTab XDAS_UInt16[64] Input The array "lum_quant_tab" defines
the quantization table for the luma
component.

chmQuantTab XDAS_UInt16[64] Input The array "chm_quant_tab"
defines the quantization table for
the chroma components.

4.2.2.4 IJPEGVENC_InArgs

║ Description

This structure defines the run-time input arguments for an MJPEG encoder
object.

║ Fields

Field Data Type Input/
Output

Description

videnc2InArgs IVIDENC2_InArgs Input See IVIDENC2_InArgs data structure for

details.

APPN0 XDM2_SingleBufD

esc

Input XDM2_SingleBufDesc Buffer containing JFIF
thumbnail data. The application should

provide only the encoded thumbnail data in
this buffer. The JFIF header is appended by
the encoder. The thumbnail data from this

buffer is inserted as part of the JFIF
Extension marker segment.

The data in the buffer is copied “as is” to the
bitstream after appending the APP0 Marker

(0xFFE0), Segment Length and JFIF identifier
code

thumbnailIndex

App0
XDAS_UInt16 Input Set to 1 if APP0 (JFIF) marker needs to be

inserted.

APPN1 XDM2_SingleBufD

esc

Input XDM2_SingleBufDesc Buffer containing Exif
thumbnail data. The data in the buffer is

copied “as is” to the bitstream after appending
the APP1 Marker (0xFFE1), size of APP1

marker, Exif identifier code and TIFF header.

thumbnailIndex

App1
XDAS_UInt16 Input Set to 1 if APP1 (Exif) marker needs to be

inserted.

Comment XDM2_SingleBufD

esc

Input XDM2_SingleBufDesc Buffer containing
comment marker segment data. Set it to

NULL if no comment needs to be inserted.

4-34

The data in the buffer is copied “as is” to the
bitstream after appending the Comment

Marker start code (0xFFFE) and the size of
the comment marker segment.

pmInputParams IJPEGVENC_Priva

cyMaskingInput

Input This structure has to be set whenever privacy
masking is enabled from dynamic params.

See IJPEGVENC_PrivacyMaskingInput
struture and chapter 10 for more details.

Note:

The maximum size supported for the JFIF, Exif and comment marker segments is 64 KB.

4.2.2.5 IJPEGVENC_Status

║ Description

This structure defines parameters that describe the status of the MJPEG

Encoder and any other implementation specific parameters. The status

parameters are defined in the XDM data structure, IVIDENC2_Status.

║ Fields

Field Data Type Input/
Output

Description

videnc2Status IVIDENC2_Status Output See IVIDENC2_Status data structure for details.

debugTraceLev

el

XDAS_UInt32 Output Specifies the debug trace level. MJPEG Encoder
supports till level 4. Each higher level logs more
debug trace data.

lastNFramesTo

Log

XDAS_UInt32 Output Specifies the number of most recent frames to log
in debug trace.

extMemoryDebu

gTraceAddr

XDAS_UInt32 * Output Specifies the address of the debug trace dump in
external memory.

extMemoryDebu

gTraceSize

XDAS_UInt32 Output Specifies the size of the debug trace dump in
external memory.

extendedError

Code0

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

extendedError

Code1

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

extendedError

Code2

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

4-35

Field Data Type Input/
Output

Description

extendedError

Code3

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

rateControlP

arams
IJPEGVENC_RateC

ontrolParams

Input Specifies the rate control params. See
IJPEGVENC_RateControlParams for more details.
See chapter 11 for more details.

enablePrivac

yMasking
XDAS_UInt32 Input Flag to enable/disable privacy masking.

IJPEGVENC_PRIVACYMASKING_DISABLE ->
Disable
IJPEGVENC_PRIVACYMASKING_ENABLE ->
Enable
See chapter 10 for more details.

4.2.2.6 IJPEGVENC_OutArgs

║ Description

This structure defines the run-time output arguments for the MJPEG
Encoder instance object.

║ Fields

Field Data Type Input/
Output

Description

videnc2OutArgs IVIDENC2_OutArgs Output See IVIDENC2_OutArgs data structure for

details.

vbvBufferLevel XDAS_Int32 Output This parameter gives buffer level at the end of
every picture from decoder perspective
whenever rate control is enabled.
See chapter 11 for more details.

4.2.2.7 IJPEGVENC_RateControlParams

║ Description

This structure defines the Rate Control parameters for the MJPEG Encoder

instance object.

║ Fields

Field Data Type Input/
Output

Description

rateControlPar

amsPreset

XDAS_Int8 Input This preset controls the USER_DEFINED versus

DEFAULT mode. If you are not aware about the

fields, it should be set as
IJPEGVENC_RATECONTROLPARAMS_DEFAUL

T

See chapter 11 for more details

4-36

Field Data Type Input/
Output

Description

scalingMatrixP

reset

XDAS_Int8 Input Not applicable for MJPEG Encoder

rcAlgo XDAS_Int8 Input This defines the rate control algorithm to be
used. Only useful if

IVIDENC2::rateControlPreset is set as

IVIDEO_USER_DEFINED

See chapter 11 for more details

qpI XDAS_Int8 Input Set this parameter to initial value of QP with
which rate control will start.
Range is -1 to 51
-1 -> Codec chosen QP

QP = 51 means highest compression i.e, low
bitrate

See chapter 11 for more details

qpMaxI XDAS_Int8 Input Maximum quantization parameter
Range is 0 to 51
See chapter 11 for more details

qpMinI XDAS_Int8 Input Minimum quantization parameter
Range is 0 to 51
See chapter 11 for more details

qpP XDAS_Int8 Input Not applicable for MJPEG Encoder

qpMaxP XDAS_Int8 Input Not applicable for MJPEG Encoder

qpMinP XDAS_Int8 Input Not applicable for MJPEG Encoder

qpOffsetB XDAS_Int8 Input Not applicable for MJPEG Encoder

qpMaxB XDAS_Int8 Input Not applicable for MJPEG Encoder

qpMinB XDAS_Int8 Input Not applicable for MJPEG Encoder

allowFrameSkip XDAS_Int8 Input Not applicable for MJPEG Encoder

removeExpensiv

eCoeff

XDAS_Int8 Input Not applicable for MJPEG Encoder

chromaQPIndexO

ffset

XDAS_Int8 Input Not applicable for MJPEG Encoder

IPQualityFacto

r

XDAS_Int8 Input Not applicable for MJPEG Encoder

4-37

Field Data Type Input/
Output

Description

initialBufferL

evel

XDAS_Int32 Input Initial buffer level for HRD compliance. It informs
that hypothetical decoder can start depending on
the fullness of the HRD buffer.
Initial buffer level should be provided as absolute
value of the buffer size
See chapter 11 for more details

HRDBufferSize XDAS_Int32 Input Hypothetical reference decoder buffer size. This
size controls the frame skip logic of the encoder.
For low delay applications this size should be
small. This size is in bit
See chapter 11 for more details

minPicSizeRati

oI

XDAS_Int16 Input Not applicable for MJPEG Encoder

maxPicSizeRati

oI

XDAS_Int16 Input Not applicable for MJPEG Encoder

minPicSizeRati

oP

XDAS_Int16 Input Not applicable for MJPEG Encoder

maxPicSizeRati

oP

XDAS_Int16 Input Not applicable for MJPEG Encoder

minPicSizeRati

oB

XDAS_Int16 Input Not applicable for MJPEG Encoder

maxPicSizeRati

oB

XDAS_Int16 Input Not applicable for MJPEG Encoder

enablePRC XDAS_Int8 Input Not applicable for MJPEG Encoder

enablePartialF

rameSkip

XDAS_Int8 Input Not applicable for MJPEG Encoder

discardSavedBi

ts

XDAS_Int8 Input Control Flag to discard saved bits for future
pictures. In VBR ratecontrol mode, the saved bits
in low complexity scenes will be used for future
scene/pictures.
With this flag 0, encoder will use saved bits for
future scenes and for any non-zero value
encoder discards the saved bits

Only useful with VBR ratecontrol mode.
See chapter 11 for more details

reserved XDAS_Int8 Input Some part is maintained as reserved to add
parameters later without changing the foot print
of interface memory
See chapter 11 for more details

4-38

Field Data Type Input/
Output

Description

VBRDuration XDAS_Int32 Input This parameter is applicable to HF-VBR: High
Fidelity Variable Bitrate. The time interval (in
seconds) during which encoder collects statistics
related to the complexity of the video to vary the
instantaneous bitrate. Larger value of this
parameter results in the rate control algorithm
reacting to complexity changes slowly. Allowed
values are 1-3600 only

If VBRDuration is not set and only maxBitrate
value is set to a value that is atlaest 1.5 times the
target bit rate then VBRDuration is taken by the
encoder to be 8sec

See chapter 11 for more details

VBRsensitivity XDAS_Int8 Input Specifies the target bitrate used by rate control in
high complexity state. This parameter is used
only when IVIDENC2_Params :: maxBitRate is
greater than 1.5 times of
IVIDENC2_DynamicParams :: targetBitRate
See chapter 11 for more details

skipDistributi

onWindowLength

XDAS_Int16 Input Not applicable for MJPEG Encoder

numSkipInDistr

ibutionWindow

XDAS_Int16 Input Not applicable for MJPEG Encoder

enableHRDCompl

ianceMode

XDAS_Int8 Input Not applicable for MJPEG Encoder

frameSkipThMul

Q5

XDAS_Int32 Input Frame skip threshold in Q5 format. It is
compauted based on the following equation.
frameSkipTh = bufferSize - (num * avg_pic_size)
>> 5
See chapter 11 for more details

vbvUseLevelThQ

5

XDAS_Int32 Input VBV use level in Q5 format. It is computed based
on the following equation.
vbvUseLevel = (num * avg_pic_size) >> 5
See chapter 11 for more details

reservedRC[3] XDAS_Int32 Input Some part is maintained as reserved to add
parameters later

4.2.2.8 IJPEGVENC_PrivacyMaskingInput

║ Description

This structure defines the Privacy Masking parameters for the MJPEG

Encoder instance object.

║ Fields

4-39

Field Data Type Input/
Output

Description

listPM[IJPEGVE

NC_MAX_PM]

XDAS_Int8 Input List of regions to be privacy masked with their x
and y co-ordinates. Maximum number of privacy
mask regions can be 36. The X & Y co-ordinates
can range from 0 to (Width - 1) and (Height -1)
respectively

See chapter 10 for more details

noOfPrivacyMas

kRegions

XDAS_Int32 Input Number of Privacy Mask regions

See chapter 10 for more details

lumaValueForPM XDAS_UInt8 Input Y pixel value for Privacy Mask region

See chapter 10 for more details

cbValueForPM XDAS_UInt8 Input Cb pixel value for Privacy Mask region

See chapter 10 for more details

crValueForPM XDAS_UInt8 Input Cr pixel value for Privacy Mask region

See chapter 10 for more details

4.3 Interface Functions

This section describes the application programming interfaces used in the
MJPEG Encoder. The MJPEG Encoder APIs are logically grouped into the
following categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(),
algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

4-40

7) algFree()

control() can be called any time after calling the algInit() API.

4-41

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc() method

requires. This operation allows you to allocate sufficient space to call the

algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The

algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algAlloc()

4-42

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm functions

*/

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm. If
successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines the

creation parameters. This pointer may be NULL; however, in this case,

algAlloc(), must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter. algAlloc()

may return a pointer to its parent’s IALG functions. Since the client does not

require a parent object to be created, this pointer must be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory

requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference.

Note:

If you are using extended data structures, the first argument must be a

pointer to the extended Params data structure. Also, ensure that the size

field is set to the size of the extended data structure. Depending on the

value set for the size field, the algorithm uses either base or extended

parameters.

║ See Also

algNumAlloc(), algFree()

4-43

4.3.2 Initialization API

Initialization API is used to initialize an instance of the MJPEG Encoder. The

initialization parameters are defined in the IVIDENC2_Params structure (see

Data Structures section for details).
║ Name

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization parameters

*/

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run-time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated for
an algorithm instance. The number of initialized records is identical to the

number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no

parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm

initialization parameters. All fields in the params structure must be set as

described in IALG_Params structure (see Data Structures section for

details).

For more details, see TMS320 DSP Algorithm Standard API Reference.

Note:

If you are using extended data structures, the fourth argument must be a

pointer to the extended Params data structure. Also, ensure that the size

field is set to the size of the extended data structure. Depending on the

value set for the size field, the algorithm uses either base or extended

parameters.

4-44

║ See Also

algAlloc(), algMoved()

4.3.3 Control API

Control API is used for controlling the functioning of MJPEG Encoder during
run-time. This is done by changing the status of the controllable parameters
of the encoder during run-time. These controllable parameters are defined in

the IVIDENC2_DynamicParams data structure (see Data Structures section

for details).
║ Name

control() – change run-time parameters of the MJPEG Encoder and

query the encoder status
║ Synopsis

XDAS_Int32 (*control)(IVIDENC2_Handle handle, IVIDENC2_Cmd

id,IVIDENC2_DynamicParams *params, IVIDENC2_Status

*status);

║ Arguments

IVIDENC2_Handle handle; /* handle to the MJPEG encoder

instance */

IVIDENC2_Cmd id; /* MJPEG encoder specific control

commands*/

IVIDENC2_DynamicParams *params /* MJPEG encoder run-time

parameters */

IVIDENC2_Status *status /* MJPEG encoder instance status

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run-time parameters of MJPEG Encoder and
queries the status of encoder. control() must only be called after a

successful call to algInit() and must never be called after a call to

algFree().

The first argument to control() is a handle to the MJPEG Encoder

instance object.

The second argument is a command ID. See IVIDENC2_Cmd in

enumeration table for details.

The third and fourth arguments are pointers to the

IVIDENC2_DynamicParams and IVIDENC2_Status data structures

respectively.

4-45

Note:

If you are using extended data structures, the third argument must be a

pointer to the extended DynamicParams data structure. Also, ensure that

the size field is set to the size of the extended data structure. Depending

on the value set for the size field, the algorithm uses either base or

extended parameters.

║ See Also

algInit()

4-46

4.3.4 Data Processing API

Data processing API is used for processing the input data using the MJPEG
Encoder.

║ Name

algActivate()– initialize scratch memory buffers prior to processing.

║ Synopsis

Void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance’s scratch buffers using the

persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

4-47

║ Name

process() – basic video encoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDENC2_Handle handle,

IVIDEO2_BufDesc *inBufs, XDM2_BufDesc *outBufs,

IVIDENC2_InArgs *inargs, IVIDENC2_OutArgs *outargs);

║ Arguments

IVIDENC2_Handle handle; /* handle to the MJPEG encoder

instance */

IVIDEO2_BufDesc *inBufs; /* pointer to input buffer
descriptor data structure */

XDM2_BufDesc *outBufs; /* pointer to output buffer
descriptor data structure */

IVIDENC2_InArgs *inargs /* pointer to the MJPEG encoder
runtime input arguments data structure */

IVIDENC2_OutArgs *outargs /* pointer to the MJPEG encoder

runtime output arguments data structure */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function does the basic MJPEG video encoding. The first argument to
process() is a handle to the MJPEG Encoder instance object.

The second and third arguments are pointers to the input and output buffer

descriptor data structures respectively (see IVIDEO2_BufDesc and

XDM2_BufDesc data structure for details).

The fourth argument is a pointer to the IVIDENC2_InArgs data structure

that defines the run-time input arguments for the MJPEG Encoder instance
object.

The last argument is a pointer to the IVIDENC2_OutArgs data structure that

defines the run-time output arguments for the MJPEG Encoder instance
object.

The algorithm may also modify the output buffer pointers. The return value

is IALG_EOK for success or IALG_EFAIL in case of failure. The

extendedError field of the IVIDENC2_Status structure contains error

conditions flagged by the algorithm. This structure can be populated by

calling Control API using XDM_GETSTATUS command.

Note:

If you are using extended data structures, the fourth argument must be a
pointer to the extended InArgs data structure. Also, ensure that the size

field is set to the size of the extended data structure. Depending on the

value set for the size field, the algorithm uses either base or extended

parameters.

4-48

║ See Also

control()

║ Name

algDeactivate()– save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that

must be saved prior to next cycle of algActivate() and processing.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algActivate()

4-49

4.3.5 Termination API

Termination API is used to terminate the MJPEG Encoder and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree() determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

4-50

This page is intentionally left blank

5-1

Chapter 5

Frequenty Asked Questions

This section answers frequently asked questions related to using MJPEG
Encoder on HDVICP2 and Media Controller Based Platform.

5.1 Code Build and Execution

Question Answer

Build error saying that code
memory section is not sufficient

Make sure that project settings are not changed from the released
package settings such as making project settings as File -O0 and full
symbolic debug which throws an error that code memory section is not
sufficient.

Application returns an error
saying “Couldn't open
parameter file …..” while
running the host test app

Make sure that input file path is given correctly. If the application is
accessing input from network, ensure that the network connectivity is
stable.

Make file build fails Make sure you have set environment variable <CG_TOOL_DIR> as

defined in section2.3.
Make sure gmake utility path is added to PATH environment
variable as mentioned in section 2.3

5.2 Issues with Tools Version

Question Answer

Which tools are required to run
the stand-alone codec?

To run the codec on stand-alone setup, you need Framework
Components, Code Composer Studio, ARM compiler tools (CG tools).
If you are running on the simulator, then the correct version of the
HDVICP2 Simulation CSP is needed (See Section 2.1 for more details).

What CG tools version should I
use for code compilation?

You may use CG tools version 4.5.1 to compile the code.

5.3 Algorithm Related

Question Answer

Which XDM interface does
codec support?

Codec supports XDM IVIDENC2 interface.

Does MJPEG Encoder support
non-multiple of 16 frame
dimensions?

Yes, this encoder supports non-multiple of 16 image dimensions. Even
odd resolutions are supported in this version.

Frequenty Asked Questions

5-2

Question Answer

Does this MJPEG Encoder
support custom quantization
tables?

Yes.

Can I control image quality
levels?

Yes. There are two ways of doing this: a. By specifying the quality factor
for encoding, or b. Specifying a custom quantization table.

Does this MJPEG Encoder
support custom Huffman
tables?

No. This encoder always uses the Huffman tables suggested in Annex K
of the JPEG Standard document.

Does Algorithm support
DataSync mechanism for low-
delay applications?

Yes. It has the mechanism for both input and output buffers.

Does this encoder support
“generate header only” feature?

Yes.

Does this encoder support
insertion of APPx markers?

Yes. The encoder supports insertion of JFIF, Exif, and Comment markers
into the JPEG bitstream.

Does this encoder support
insertion of restart (RST)
markers?

Yes.

What are the maximum and
minimum resolutions supported
by the encoder?

This encoder supports resolutions ranging from 32x32 to 16384x8192 for
YUV420SP,YUV422ILE and YUV422IBE and 32x32 to 8192x8192

for YUV444P and YUV400P(GRAY) formats.

What are the chroma formats
supported for input?

The encoder supports YUV420 (Semi-Planar), YUV422 (YUYV),
YUV422(UYVY), YUV444 (Planar) and YUV400 chroma formats for
input.

Does the encoder support
encoding in multiple scans?

No. The output of the encoder always contains a single scan.

How can user specify the colour
for privacy masked region?

Set lumaValueForPM, cbValueForPM and crValueForPM of

IJPEGVENC_PrivacyMaskingInput structure in extended inArgs

with the Y,Cb,Cr combination.

Does Rate Control have control
at MB row level and MB level?

No. MJPEG does not support changing QP at MB level. The quantization
table is encoded at frame level and same is used for all MBs in a frame.
Hence, in complex sequences, the target bitrate is achieved by a delay of
2-3 seconds as compared to H.264 rate control.

Is Rate Control frame skip
supported?

No. MJPEG does not define any method to transmit frame skip
information to decoder.

 6-1

Chapter 6

Picture Format

This chapter explains the picture format details for MJPEG Encoder. MJPEG
Encoder expects the input uncompressed picture to be in one of the
following formats: YUV444 Planar, YUV420 Semi-Planar (NV12), YUV422
YUYV,YUV422 UYVY or YUV400 format.

6.1 NV12 Chroma Format

NV12 is YUV 420 semi-planar with two separate planes, one for Y, one for
U and V interleaved.

Luma Plane

Y0,0 Y0,1

Y1,0 Y1,1

Chroma Plane

U0,0 V0,0

U1,0 V1,0

WIDTH

H
EIG

H
T

H
EIG

H
T/2

Picture Format

6-2

6.2 Progressive Picture Format

ACTIVE REGION (LUMA)

picLumaBufferAddr

fr
a

m
e

H
e

ig
h

t

ACTIVE REGION (CHROMA)

picChromaBufferAddr

frameWidth

imagePitch[0]

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

2,0

Y

2,1

Y

2,2

Y

2,3

U

0,0

V

0,0

U

0,1

V

0,1

U

1,0

V

1,0

U

1,1

V

1,1

imagePitch[1]

frameWidth

fr
a

m
e

H
e

ig
h

t/
2

ActiveRegion: Data to be encoded

Extra region beyond the ActiveRegion may be allocated by application due
to imagePitch constraints.

Both luma and chroma buffers can be allocated independently and both can
have their pitch different.

6.3 Constraints on Parameters

imagePitch need to comply with following constraints

- imagePitch shall be greater or equal to the Width (passed by the
application host).

- imagePitch is “don’t care” if the buffer is in TILED8, TILED16 or
TILED32 region

Buffer Addresses need to comply with following constraints

- addresses shown as picLumaBufferAddr in figures shouldn’t point to
any region which is not TILED8 or RAW/TILED PAGE

- The addresses shown as picChromaBufferAddr in figures shouldn’t
point to any region which is not TILED8, TILED16 or RAW/TILED
PAGE

Picture Format

6-3

Constraints on resolutions are defined as below.

Minimum frameWidth = 32

Minimum frameHeight = 32

Maximum frameWidth = 16384

Maximum frameHeight = 8192

This encoder does not support interlaced input.

Picture Format

6-4

This page is intentionally left blank

 7-1

Chapter 7

Debug Trace Usage

This section describes the debug trace feature supported by codec and its
usage.

7.1 Introduction

This section explains the approach and overall design that will be adopted
for enabling a trace from a video codec.

The primary use of Debug Trace Usage are:

1) Make the codec implementation capable of producing a trace containing
details about the history of executing a particular instance of the codec

2) Enable the application to dump certain debug parameters from the
codec in case of a failure. A failure might even be a hang or crash but in
general can be defined as any unacceptable or erroneous behavior

Such a feature is targeted at providing more visibility into the operation of
the codec and thus easing and potentially accelerating the process of
debug.

7.2 Enabling and using debug information

To enable debug information, following two parameters are added to the
create time parameters

1) debugTraceLevel

2) lastNFramesToLog

Hence the MJPEG encoder create time parameters are modified as

typedef struct IJPEGVENC_Params {

 IVIDENC2_Params videnc2Params;

 XDAS_UInt16 maxThumbnailHSizeApp0;

 XDAS_UInt16 maxThumbnailVSizeApp0;

 XDAS_UInt16 maxThumbnailHSizeApp1;

 XDAS_UInt16 maxThumbnailVSizeApp1;

 XDAS_UInt32 debugTraceLevel;

Debug Trace Usage

7-2

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 Markerposition;

 } IJPEGVENC_Params;

7.2.1 debugTracelevel

This parameter configures the codec to dump a debug trace log

 0: Disables dumping of debug trace parameters

 >0: Enables the dumping of debug trace parameters. Value
specifies the level of debug trace information

7.2.2 lastNFramesToLog

This parameter configures the codec to maintain history of debug trace
parameters for last N frames.

 0: No history will be maintained by the codec

 >0 : History of past specified number of frames will be maintained

In order to avoid book-keeping by the application to know whether the codec
has been configured to dump debug trace and where the debug information
is available, the following changes are done in the Status structure.

typedef struct IJPEGVENC_Status {

 IVIDENC2_Status videnc2Status;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 * extMemoryDebugTraceAddr;

 XDAS_UInt32 extMemoryDebugTraceSize;

 XDAS_UInt32 extendedErrorCode0;

 XDAS_UInt32 extendedErrorCode1;

 XDAS_UInt32 extendedErrorCode2;

 XDAS_UInt32 extendedErrorCode3;

} IJPEGVENC_Status;

debugTraceLevel: Debug trace level configured for the codec - 0, 1, 2,3,4

lastNFramesToLog: Number of frames for which history information is
maintained by the codec

 Debug Trace Usage

7-3

extMemoryDebugTraceAddr: External memory address (as seen by Media
Controller) where debug trace information is being dumped – last memory
buffer requested by the codec

extMemoryDebugTraceSize: External memory buffer size (in bytes) where
debug trace information is being dumped - the size of last memory buffer

Now the application can retrieve this information from the codec at any time
by the existing GETSTATUS query through the codec’s Control API.

7.3 Debug Trace Levels

Debug trace has been (in this implementation) organized into 4 different
levels arranged in a hierarchical fashion.

 Level 1 – Frame level information and profile data

 Level 2 – Slice and MB level information

 Level 3 – Logs function call stack for with entry hook

 Level 4 – Logs function call stack for with exit hook

At each higher level, the previous lower levels are also enabled.

7.4 Requirements On The Application

The following are the requirements on the application side:

1. The application should be capable of configuring debugTraceLevel
and lastNFrameToLog which are part of the Initialization Parameters
of the codec

2. The application should be capable of querying the codec for its
debug parameter memory regions and size

3. The application should be capable of retrieving these memory
regions (In external memory or SL2) for the specified size and
preserving these memory dumps in case of any erroneous behavior
including a hang/crash.

4. The application, at any time (in case of hang, crash or any
unexpected behavior) is expected to be also capable of retrieving
the SL2 memory region as returned by the codec in Control-
GETSTATUS specified by the SL2 memory debug trace address
and size and provide it to the codec developer. The codec
developer will have a PC based tool to parse and interpret this
dump and produce a readable log of the debug trace parameters.

This page is intentionally left blank

Chapter 8

Data Sync API Usage

This section explains the sub-frame level data synchronization API usage for
MJPEG encoder from application point of view.

8.1 Description

Most of the TI Video Codec interfaces prior to IVIDENC2 and IVIDDEC3 allow
frame level data communication capabilities. A user can configure the codec to
encode/decode a complete frame but not any sub-frame level data
communications. If at all any, then it is via codec’s extended interface.

This document explains the sub-frame level data communication capabilities of
video codec using data synchronization call backs defined with IVIDENC2
interface.

8.2 MJPEG Encoder Input with Sub-frame Level Synchronization

This section explains the IVIDENC2 interface details, which help to achieve the
sub-frame level communications.

Table 7-1, Table 7-2 and Table 7-3 explain the creation, control and handshake
parameters related to sub frame level data communication for input data of
MJPEG Encoder respectively.

“Details” column is a generic column and “valid values” column is specific to
video encoder input.

Table 8-1 Creation time parameter related to sub frame level data communication for
input-data of MJPEG encoder

Parameter Name Details Valid Values

IVIDENC2_Params::

inputDataMode

Defines the mode of accepting
the input frame.

 IVIDEO_ENTIREFRAME: Entire frame

data is given to encoder

 IVIDEO_NUMROWS: Frame data is given

in unit of Number of MB rows, each MB row
is 16 lines of video data.

IVIDENC2_Params::

numInputDataUnits Unit of input data
Don’t care. As the information about the data
can be available during sub frame level
communication.

Data Sync API Usage

8-2

Table 8-2 Dynamic Parameters Related to sub–frame Level Data Communication for Input
Data of MJPEG Encoder

Parameter Name Details Valid Values

IVIDENC2_DynamicPara

ms::getDataFxn

This function pointer is provided by the
app/framework to the MJPEG Encoder. The
encoder calls this function to get partial video
buffer(s) from the app/framework.
Apps/frameworks that support datasync should
set this to non-NULL.

Any non-NULL value if
inputDataMode !=

IVIDEO_ENTIREFRAME

IVIDENC2_DynamicPara

ms::getDataHandle
It defines the handle to be used while requesting
data to application. This is a handle which the

codec must provide when calling getDataFxn.

For an algorithm, this handle is read-only; it
must not be modified when calling the
app-registered
VIDENC2_DynamicParams.getDataFxn()

The app/framework can use this handle to
differentiate callbacks form different algorithms.

Any Value

Table 8-3 Handshake Parameters Related to Sub-frame Level Data Communication for
Input Data of MJPEG Encoder

Parameter Name Details Valid Values
XDM_DataSyncDesc::si

ze
Size of the XDM_DataSyncDesc Structure Sizeof(XDM_DataSyncDes

c)

XDM_DataSyncDesc::

scatteredBlocksFlag
Flag indicating whether the individual data
blocks may be scattered in memory.
Note that each individual block must be
physically contiguous.
Valid values are XDAS_TRUE and

XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr field

points directly to the start of the first block, and
is not treated as a pointer to an array.
If set to XDAS_TRUE, the baseAddr array must

contain the base address of each individual
block.

Don’t care as buffer is
assumed to be contiguous.

XDM_DataSyncDesc::ba

seAddr

Base address of single data block or pointer to
an array of data block addresses of size
numBlocks.

If scatteredBlocksFlag is set to

XDAS_FALSE, this field points directly to the

start of the first block, and is not treated as a
pointer to an array.
If scatteredBlocksFlag is set to

XDAS_TRUE, this field points to an array of

pointers to the data blocks.

Don’t care since it is assumed
to be contiguous yuv buffer
and initial address is available
at process call.

XDM_DataSyncDesc::nu

mBlocks

Number of data blocks Any positive value. If less than
1, then it is an error.

XDM_DataSyncDesc::va

rBlockSizeFlag

Flag indicating whether any of the data blocks
vary in size.

Don’t care, as unit of size is
one row

XDM_DataSyncDesc::bl

ockSizes

Variable block sizes array. Don’t care Since unit is
assumed to be multiple of
number of rows which is

 Data Sync API Usage

8-3

indicated by numBlocks.

If the application wants to use MJPEG Encoder to operate with sub frame
on input side:

 It should create the MJPEG Encoder with
IVIDENC2_Params::inputDataMode = IVIDEO_NUMROWS.

 It should also make a control call with

IVIDENC2_DynamicParams::getDataFxn = non-NULL; to use sub

frame level data communication, control call is mandatory.

 It should provide the base address of the input buffer during process
call.

 It should provide all the data availability via getDataFxn call back,
during process call the input buffer is assumed to be data-less.

 IVIDENC2_DynamicParams::getDataFxn == NULL &&

IVIDENC2_Params::inputDataMode == IVIDEO_NUMROWS is

an erroneous situation and codec returns error during process call.

8.3 MJPEG Encoder Output with Sub-frame Level Synchronization

This section explains the IVIDENC2 interface details, which help to achieve the
sub frame level data synchronization for output.

Table 7-4, Table 7-5 and Table 7-6 explain the creation and control parameters
related to sub frame level data communication for output data of MJPEG
Encoder respectively.

“Details” column is a generic column and “valid values” column is specific to
MJPEG Encoder output.

Table 8-4 Creation Time Parameter Related to Sub-frame Level Data Communication for
Output Data of MJPEG Encoder

Parameter Name Details Valid Values
IVIDENC2_Params::outp

utDataMode
Defines the mode of providing the
output data.

IVIDEO_ENTIREFRAME : Entire frame

bitstream is given out by the encoder

IVIDEO_FIXEDLENGTH: bit-stream is

provided by encoder after a fixed length
of bytes. The length has to be multiple of
1K.

IVIDEO_SLICEMODE: bit-stream is

provided by encoder after producing a
single(or more) number of slice units

IVIDENC2_Params::numO

utputDataUnits
Unit of output data Don’t care if inputDataMode ==

IVIDEO_ENTIREFRAME

Any positive value if outputDataMode

!= IVIDEO_ENTIREFRAME.

If outputDataMode ==

Data Sync API Usage

8-4

IVIDEO_FIXEDLENGTH then it

indicates the basic unit of size (in
multiple of 1K) at
which encoder should inform the
application.

For example: Here 4 means that encoder
should inform after producing every
4*1024
bytes to application

if outputDataMode ==

IVIDEO_SLICEMODE then it indicates

the basic unit of slices at which encoder
should produce the bit- stream.

For example: Here 5 means that after
encoding a set of 5 slices, encoder
should inform to application

Table 8-5 Dynamic parameters related to sub frame level data communication for output
data of MJPEG encoder

Parameter Name Details Valid Values
IVIDENC2_DynamicPara

ms::putDataFxn
This function pointer is provided by the
app/framework to the MJPEG Encoder. The
encoder calls this function when data has
been put in output buffer. It is to inform the
app/framework. Apps/frameworks that
support datasync should set this to non-
NULL.

Any non-NULL value if
outputDataMode !=

IVIDEO_ENTIREFRAME

IVIDENC2_DynamicPara

ms::putDataHandle
It defines the handle to be used while
informing data availability to application.
This is a handle which codec must provide

when calling putDataFxn.

Apps/frameworks that support datasync
should set this to non-NULL. For an
algorithm, this handle is read-only; it must
not be modified when calling the
appregistered.

IVIDENC2_DynamicParams.putDa

taFxn(). The app/framework can use this

handle to differentiate callbacks from
different algorithms.

Any Value.

To simplify the codec implementation, the information sharing by codec to
application happens at a quantum of 1 Kbyte data. In this document, each 1
Kbyte is referred as page.

If application wants to use MJPEG Encoder to operate with sub-frame data
sync on output side:

 It should create the video encoder with
IVIDENC2_Params::outputDataMode = IVIDEO_SLICEMODE or

IVIDEO_FIXEDLENGTH.

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d

 Data Sync API Usage

8-5

 It should also make a control call with

IVIDENC2_DynamicParams::putDataFxn = non-NULL; to use sub

frame level data communication, control call is mandatory.

 It should provide the base address and available space of the output
buffer during process call.

 IVIDENC2_DynamicParams::putDataFxn == NULL &&

IVIDENC2_Params::outputDataMode != IVIDEO_ENTIREFRAME is

an erroneous situation and codec returns error during process call.

8.3.1 For outputDataMode Equal to IVIDEO_SLICEMODE

Table 7-6 explains the handshake parameters related to sub frame level data
communication (IVIDEO_SLICE mode) for output data of MJPEG Encoder
respectively. In case of outputDataMode = IVIDEO_SLICEMODE, following
points should be noted.

 When IVIDEO_SLICE mode is enabled, ensure that the Restart
Interval is a positive value. Enabling IVIDEO_SLICE mode without
Restart Interval is an error.

 Communication point by codec to application happens when number of

slices equals to numOutputDataUnit. i.e. if numOfSlice ==

numOutputDataUnit then make a putData call.

 numOutputDataUnit is the frequency after which codec will inform

to application. If ‘outputDataUnit’ is 8 then, after 8 slice codec has to

make putData call. Larger the number of outputDataUnit, larger the

size requirement of encoder in SL2 to retain the information for each
slice. So to keep the SL2 size impact minimal, TI’s encoder
implementations has constraint of limiting maximum allowed value of

outputDataUnit as 8.

 bit-stream is assumed to be contiguous in memory, hence the bit-
stream address is obtained during process call and the

XDM_DataSyncDesc::baseAddr is don’t care. It is a constraint of

TI’s encoder implementation.

 Application provides buffer size and address for bit-stream during
process call, both of them are honored and consumed by encoder until
it needs more space to write bit-stream (refer getBuf interface of
MJPEG Encoder for more details)

 All data availability is informed via data synch calls, while process
exit the bytesGenerated indicates the total sum (not the size of last
chunk).

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___params.html%23ada0dcc82ab146b034ecb7521e923226d

Data Sync API Usage

8-6

Table 8-6 Handshake parameters related to sub frame level data communication for
output data of MJPEG encoder (outputDataMode = IVIDEO_SLICEMODE)

Parameter Name
Details Valid values

XDM_DataSyncDesc:

:size

Size of the XDM_DataSyncDesc
structure

sizeof(XDM_DataSyncDe

sc)

XDM_DataSyncDesc:

:

scatteredBlocksFl

ag

Flag indicating whether the individual
data blocks may be scattered in
memory.
Note that each individual block must
be physically contiguous. Valid values
are XDAS_TRUE and XDAS_FALSE.
If set to XDAS_FALSE, the baseAddr
field points directly to the start of the
first block, and is not treated as a
pointer to an array.
If set to XDAS_TRUE, the baseAddr
array must contain the base address
of each individual block.

XDAS_FALSE.

Constraint: This will be

XDAS_FALSE as bit stream

memory is assumed to be
continuous in case of

IVIDEO_SLICEMODE mode.

XDM_DataSyncDesc:

:baseAddr

Base address of single data block or
pointer to an array of data block
addresses of size numBlocks.
If scatteredBlocksFlag is set to
XDAS_FALSE, this field points
directly to the start of the first block,
and is not treated as a pointer to an
array.
If scatteredBlocksFlag is set to
XDAS_TRUE, this field points to an
array of pointers to the data blocks.

Don’t Care

XDM_DataSyncDesc:

:numBlocks

Number of data blocks Should be always equal to ‘1’

XDM_DataSyncDesc:

:varBlockSizeFlag

Flag indicating whether any of the
data blocks vary in size.

XDAS_FALSE

XDM_DataSyncDesc:

:blockSizes

Variable block sizes array. If varBlockSizesFlag is
XDAS_TRUE, this array
contains the sizes of each
slice. So total slice size is sum
of (blockSizes[0] to
blockSizes[numBlocks -1].
If varBlockSizesFlag is
XDAS_FALSE, this contains
the size of same-size slices.
So total data given by encoder
to app would be (numBlocks *
blocSizes[0])

8.3.2 For outputDataMode Equal to IVIDEO_FIXEDLENGTH

Table 7-7 explains the handshake parameters related to sub frame level data
communication (IVIDEO_FIXEDLENGTH mode) for output data of MJPEG
Encoder respectively. In case of outputDataMode = IVIDEO_FIXEDLENGTH,
following points should be noted.

 Communication point is one of the below whichever is earlier.

 if 8 non-continuous blocks have been generated by encoder.
 1Kb * numOutputDataUnit of data is encoded.

 Data Sync API Usage

8-7

 numOututDataUnit is the frequency after which codec will inform to

App. so in IVIDEO_FIXED_LENGTH, lets outputDataUnit is 10 then
after 10 page cross over (which is communication point to app) in SL2
bitstream space, codec will make putData call. if numOutputDataUnit
is 10, and initial bitstream buffer size given in process call is 0.5 KB,
then codec will put a putData call after 9.5 kB of encoding, not after
10.5 kB.

 Application provides buffer size and address for bit-stream during

process call, both of them are honored and consumed by encoder
until it needs more space to write bit-stream (refer getBuf interface
of MJPEG Encoder for more details).

 All data availability is informed via data synch calls, while process exit

the bytesGenerated indicates the total sum (not the size of last chunk).

Table 8-7 Handshake parameters related to sub frame level data communication for output
data of MJPEG encoder (outputDataMode = IVIDEO_FIXEDLENGTH)

Parameter Name
Details Valid values

XDM_DataSyncDesc::

size

Size of the XDM_DataSyncDesc

structure

sizeof(XDM_DataSyncDesc)

XDM_DataSyncDesc::

scatteredBlocksFla

g

Flag indicating whether the individual
data blocks may be scattered in
memory.
Note that each individual block must
be physically contiguous. Valid
values are XDAS_TRUE and
XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr

field points directly to the start of the
first block, and is not treated as a
pointer to an array.
If set to XDAS_TRUE, the baseAddr

array must contain the base address
of each individual block.

Flag indicating whether the
individual data block may be
scattered in memory.
XDAS_TRUE or XDAS_FALSE.

XDM_DataSyncDesc:

:baseAddr

Base address of single data block or
pointer to an array of data block
addresses of size numBlocks.
If scatteredBlocksFlag is set to
XDAS_FALSE, this field points

directly to the start of the first block,
and is not treated as a pointer to an
array.
If scatteredBlocksFlag is set to
XDAS_TRUE, this field points to an

array of pointers to the data blocks.

Base address of single data block
or pointer to an array of block
addresses of size numBlocks.
If scatteredBlocksFlag is set to
XDAS_FALSE, this field points

directly to the start of the first block,
and is not treated as a pointer to an
array.
If scatteredBlocksFlag is set to
XDAS_TRUE, this field points to an

array of pointers to the data blocks
i.e. from baseAddr[0] to
baseAddr[numBlocks-1].

XDM_DataSyncDesc:

:numBlocks

Number of data blocks It is the number of blocks
generated till the point of putData
call.
1 <= numBlocks <= 8

XDM_DataSyncDesc:

:varBlockSizeFlag

Flag indicating whether any of the
data blocks vary in size.

Flag indicating whether any of the
data blocks vary in size. Valid
values XDAS_TRUE or
XDAS_FALSE.

Data Sync API Usage

8-8

XDM_DataSyncDesc:

:blockSizes

Variable block sizes array. If varBlockSizesFlag is

XDAS_TRUE, this array contains the

sizes of each block. So total data
size or bitstream is sum of
(blockSizes[0] to
blockSizes[numBlocks -1].
If varBlockSizesFlag is
XDAS_FALSE, this contains the size

of same-size data blocks.So total
data given by encoder to app would
be (numBlocks * blocSizes[0]).

8.4 MJPEG Encoder with partial buffer on output side

With IVIDENC2 interface, MJPEG Encoder can work with a situation when it
has not been provided complete bit-stream buffer to it during process call.
Application can provide non contiguous chunks of memory with some size
constraints to encoder and it can produce the bit-stream in these buffers. It is

achieved by IVIDENC2_DynamicParams::getBufFxn() interface. To get

the encoder working with partial output buffer, there is no specific creation time
parameter. Control call is mandatory and application need to provide a valid

function pointer as IVIDENC2_DynamicParams::getBufFxn.

Table 7-8 and Table 7-9 explains the control and handshake parameters
related to sub frame level data communication to handle partial output buffer by
MJPEG Encoder respectively.

“Details” column is a generic column and “valid values” column is specific to
MJPEG Encoder.

Table 8-8 Dynamic parameters related to accept partial buffer for output bit-stream
Parameter
Name

Details Valid values

IVIDENC2_

DynamicPa

rams::get

BufFxn

This function pointer is provided by the app/framework to
the MJPEG Encoder. The encoder calls this function to
get partial bit-stream buffer(s) from the app/framework.
Apps/frameworks that support datasync should set this to
non-NULL.

Any non-NULL value
to use partial buffer
for bit-stream space

IVIDENC2_

DynamicPa

rams::get

DataHandl

e

This is a handle which the codec must provide when
calling the app-registered
IVIDENC2_DynamicParam.getBufferFxn().

Apps/frameworks that don't support datasync should set
this to NULL. For an algorithm, this handle is read-only; it
must not be modified when calling the app-registered
IVIDENC2_DynamicParams.getBufferFxn(). The

app/framework can use this handle to differentiate
callbacks from different algorithms.

Any Value

file:///D:/pramod/project/Personal/MFC/Tutorial/Examples/xdais_7_10_00_02_eng/docs/html/struct_i_v_i_d_e_n_c2___dynamic_params.html%23ac9bbac064cbd7e401ee7ead04e93971c

 Data Sync API Usage

8-9

Table 8-9 Handshake parameters related to accept partial buffer for output bit-stream
Parameter
Name

Details Valid values

XDM_DataSyn

cDesc::size

Size of the XDM_DataSyncDesc structure sizeof(XDM_DataSyncDes

c)

XDM_DataSyn

cDesc::

scatteredBl

ocksFlag

Flag indicating whether the individual data
blocks may be scattered in memory.
Note that each individual block must be
physically contiguous.

Valid values are XDAS_TRUE and XDAS_FALSE.

If set to XDAS_FALSE, the baseAddr field points

directly to the start of the first block, and is not
treated as a pointer to an array.
If set to XDAS_TRUE, the baseAddr array must

contain the base address of each individual
block.

XDAS_TRUE or XDAS_FALSE

XDM_DataSyn

cDesc::base

Addr

Base address of single data block or pointer to
an array of data block addresses of size
numBlocks.

If scatteredBlocksFlag is set to XDAS_FALSE,

this field points directly to the start of the first
block, and is not treated as a pointer to an
array.

If scatteredBlocksFlag is set to XDAS_TRUE,

this field points to an array of pointers to the
data blocks.

non-NULL, in case if
IVIDEO_FIXED_LENGTH

mode. Don’t care in
IVIDEO_SLICE mode.

XDM_DataSyn

cDesc::numB

locks

Number of data blocks 1<= numBlocks <= 8.

XDM_DataSyn

cDesc::varB

lockSizeFla

g

Flag indicating whether any of the data blocks
vary in size.

XDAS_TRUE or XDAS_FALSE

XDM_DataSyn

cDesc::bloc

kSizes

Variable block sizes array. blockSizes[i] should be
always multiple of 1K.

totalBlockSize = SUM
(blockSizes[0] to
blockSizes[numBlocks-1]) if
varBlockSizesFlag is non
zero.

totalBlockSize = numBlocks *
blockSizes[0] if
varBlockSizesFlag is zero.

Following points should be noticed to use MJPEG Encoder with partial buffer
on output side:

 getBuf is independent of outputDataMode or inputDataMode. It is only
meant for codec to ask application for a buffer, if encoder has
exhausted for output bit-stream.

 During process call the initial stream address and size are provided by
application. The following are some constraints in providing the initial
stream buffer.

Data Sync API Usage

8-10

o In FIXEDLENGTH mode, the initial stream buffer size should
not be less than the page size (1 KB) and initial stream buffer
size should be multiples of page size(1 kB).

o In SLICEMODE, the initial stream buffer size should be
multiple of page size (1 KB).

 During data synch (via getBuf) codec can accept a multiple non
contiguous buffers from application each of them has to be multiple of
1K.

 In FIXEDLENGTH mode, when Thumbnail or Comment Markers are
enabled, the initial stream buffer size should be greater than or equal to
the sum of twice the page size, Thumbnail and Comment sizes. For
example, if the thumbnail size is 4.2 KB and the comment marker size
is 1.4 KB, then the initial stream buffer size should be greater than or
equal to 7.6 KB (1 * 2 + 4.2 + 1.4 = 7.6 KB).

 In SLICEMODE, when Thumbnail or Comment Markers are enabled,

the initial stream buffer size should be greater than or equal to the sum
of twice the page size, thumbnail and comment sizes. In addition, the
initial stream buffer size should be multiple of page size (1 KB).

 In FIXEDLENGTH mode, if scatteredBlocksFlag is FALSE and

varBlockSizeFlag is TRUE, then this combination is treated as an
ERROR case.

 if scatteredBlocksFlag is non zero

Constraint: Maximum number of blocks provided by user should be 8.
If application provides more than 8 block then codec will just accept 8
blocks and rest of the blocks will be ignored.

If the function pointer IVIDENC2_DynamicParams::getBufFxn provided is

null then encoder will first consume the buffer provided in process call (by
writing the bit stream data), if that buffer is exhausted then encoder has to do
proper pipe down and come out from the process call with error.

Chapter 9

Error Handling

This section explains the error handling by MJPEG encoder.

9.1 Description

 This version of the encoder supports handling of erroneous situations while
 encoding. If encoder encounters any erroneous situations, it shall
 exit gracefully without any hang or crash. Also, encoder process call shall

 return IVIDENC2_EFAIL and relevant error code will be populated in

 extendedError field of outArgs. Different error codes and their meanings

 are described below.

 Some of the erroneous situations will get reported as XDM_FATALERROR by

 the encoder. In certain fatal erroneous situations, the application might flush
 out the locked buffers, if need be. See below table for more details on error
 situations when flush can be performed.

 Meanings of various error codes and the recommended application behavior
 are provided in the following tables:

Table 9-1 Error Codes used to set the extendedError field in IVIDENC2_OutArgs and
IVIDENC2_Status

Bit Error Code Explanation Recommended App Behaviour

0 IJPEGVENC_ERR_UNSUPPORTED_VIDENC2PARA

MS

This error code has been
deprecated

NA

1 IJPEGVENC_ERR_UNSUPPORTED_VIDENC2DYNA

MICPARAMS

Unsupported
VIDENC2DynamicParam

s are passed to the
codec

Call GETSTATUS control by passing
extended Status structure to get more

details about the error through

extendedErrorCode0 or

extendedErrorCode1 parameters.

Then, refer Table 8-2 for recommended
app behaviour.

2 IJPEGVENC_ERR_UNSUPPORTED_JPEGENCDYNA

MICPARAMS

Unsupported
JPEGVENC_DynamicPa
rams are passed to the

codec

Call GETSTATUS control by passing
extended Status structure to get more

details about the error through

extendedErrorCode0 or

extendedErrorCode1 parameters.

Then, refer Table 8-2 for recommended
app behaviour.

3 IJPEGVENC_ERR_IMPROPER_DATASYNC_SETTI

NG

This error code has been
deprecated

NA

4 IJPEGVENC_ERR_NOSLICE This error code has been
deprecated

NA

5 IJPEGVENC_ERR_SLICEHDR This error code has been
deprecated

NA

Error Handling

9-2

6 IJPEGVENC_ERR_MBDATA This error code has been
deprecated

NA

7 IJPEGVENC_ERR_UNSUPPFEATURE This error code has been
deprecated

NA

16 IJPEGVENC_ERR_STREAM_END This error code has been
deprecated

NA

17 IJPEGVENC_ERR_INVALID_MBOX_MESSAGE Invalid MailBox Message
has been received

This error will occur only when number of
mail box messages from HDVICP2 to

Media Controller exceeds (2
32

- 1).

18 IJPEGVENC_ERR_HDVICP_RESET This error code has been
deprecated

NA

19 IJPEGVENC_ERR_HDVICP_WAIT_NOT_CLEAN_E

XIT

Exit from HDVICP2 is not
clean

20 IJPEGVENC_ERR_IRES_RESHANDLE This error code has been
deprecated

NA

21 IJPEGVENC_ERR_STANDBY HDVICP was not in
standby when given to

codec

Put HDVICP2 in standby and invoke
process call again.

22 IJPEGVENC_ERR_INPUT_DATASYNC Error in the Input Data
Sync Call Function

Call GETSTATUS control by passing
extended Status structure to get more

details about the error through

extendedErrorCode0 or

extendedErrorCode1 parameters.

Then, refer Table 8-2 for recommended
app behaviour.

23 IJPEGVENC_ERR_OUTPUT_DATASYNC Error in the Output Data
Sync Call Function

Call GETSTATUS control by passing
extended Status structure to get more

details about the error through

extendedErrorCode0 or

extendedErrorCode1 parameters.

Then, refer Table 8-2 for recommended
app behaviour.

24 IJPEGVENC_ERR_PRIVACY_MASKING_PARAMS Error in input Privacy
Masking params

This error will occur if any of the input
privacy masking params is invalid.

25 IJPEGVENC_ERR_RATECONTROLPARAMS Error in Rate Control
params

This error will occur if any of the rate
control params is invalid.

Table 9-2 Error Codes used to set the extendedErrorCode0 and extendedErrorCode1
fields in IJPEGVENC_Status

Bit Error Code Explanation XDM Error

Code

Mapping

Recommended

App Behaviour

0 IJPEGVENC_DYNAMIC_PARAMS_HANDLE_ER

ROR

Dynamic Params pointer
passed to codec is NULL

XDM_FATALERR

OR

Invoke control call
again with proper
DynamicParams
structure

1 IJPEGVENC_STATUS_HANDLE_ERROR Status Pointer passed to
codec is NULL

XDM_FATALERR

OR

Invoke control call
again with proper
Status structure

2 IJPEGVENC_DYNAMIC_PARAMS_SIZE_ERRO

R

Invalid size of
dynamic parameters

passed
to codec

XDM_FATALERR

OR

Invoke control call again
with proper
DynamicParams
structure

3 IJPEGVENC_ENCODE_HEADER_ERROR Invalid GenerateHeader
value passed to the codec

No XDM

mapping

Invoke control call again
with proper value for
generateHeader

4 IJPEGVENC_UNSUPPORTED_RESOLUTION Frame height and Frame
width passed to the codec
is less than 32 or greater
than Max Width and Max
Height provided during

create time

No XDM

Mapping

Invoke control call again
with proper values for
frame width and frame
height

5 IJPEGVENC_CAPTURE_WIDTH_ERROR Invalid Capture Width
value passed to the codec

No XDM

Mapping

Invoke control call again
with proper value for
captureWidth

6 IJPEGVENC_GET_DATA_FXN_NULL_POINTE

R

No call back function
pointer is passed for

getDataFxn

No XDM

Mapping

Invoke control call again
with proper pointer for
getDataFxn

 Error Handling

9-3

7 IJPEGVENC_GET_BUFFER_FXN_NULL_POIN

TER

No call back function
pointer is passed for

getBufferFxn OR
putDataFxn

No XDM

Mapping

Invoke control call again
with proper pointer for
getBufferFxn and
putDataFxn

8 IJPEGVENC_INVALID_RESTART_INTERVAL

_ERROR

Invalid Restart Interval
value (< 0) passed to the

codec

No XDM

Mapping

Codec does not insert
any restart marker in this
case. Invoke control call
again with proper value
for restart interval if you
want restart marker to
be inserted.

9 IJPEGVENC_INVALID_QUALITY_FACTOR_E

RROR

Invalid Quality factor value
passed to the codec. Valid

range is [1, 100].

No XDM

Mapping

Codec uses quality
factor of 50 by default.
Invoke control call again
with proper value for
quality factor if you want
to encode with another
quality factor.

10 IJPEGVENC_INVALID_INPUT_CHROMA_FOR

MAT_ERROR

Invalid chroma format
passed to the codec

No XDM

Mapping

Invoke control call again
with proper value for
input chroma format.

11 IJPEGVENC_NULL_QUANT_TABLE_POINTER

_ERROR

Both quality factor and
user defined quantization

table are valid

No XDM

Mapping

Invoke control call again
with either proper quality
factor or user defined
quantization table but
not both.

12 IJPEGVENC_NULL_INARGS_POINTER_ERRO

R

InArgs Pointer passed to
codec in process call is

NULL

XDM_FATALERR

OR

Invoke process call
again with proper
IJPEGVENC_InArgs
pointer.

13 IJPEGVENC_NULL_INARGS_APP_POINTER_

ERROR

Both APP0 & APP1
Segments are passed to

the codec

XDM_FATALERR

OR

Invoke process call
again either with APP0
pointer or APP1 pointer
but not both.

14 IJPEGVENC_INARGS_SIZE_ERROR Invalid size of InArgs
passed to the codec

XDM_FATALERR

OR

Invoke process call
again with proper InArgs
size

16 IJPEGVENC_INVALID_INPUT_ID_ERROR Value of 0 was passed as
input ID

XDM_FATALERR

OR
Invoke process call
again with proper input

ID if you want to encode
a frame

17 IJPEGVENC_NULL_INPUT_BUF_DESC_ERRO

R

Input Buffer descriptor
pointer passed to codec is

NULL when
generateHeader is

XDM_ENCODE_AU

XDM_FATALERR

OR

Invoke process call
again with proper
IVIDEO2_BufDesc
structure pointer

18 IJPEGVENC_NULL_INPUT_BUFFER_POINTE

R_ERROR

Input Buffer pointer
passed to codec is NULL
when generateHeader is

XDM_ENCODE_AU

XDM_FATALERR

OR

Invoke process call
again with input plane
descriptor buffer pointer
(planeDesc.buf) in the
IVIDEO2_BufDesc
structure.

19 IJPEGVENC_INVALID_INPUT_BUFFER_SIZ

E_ERROR

Input buffer size is zero XDM_FATALERR

OR

Invoke process call
again with proper input
buffer sizes.

20 IJPEGVENC_INVALID_NUM_OF_INPUT_BUF

FERS_ERROR

Invalid number of input
buffers (less than 1 OR

greater than 3) passed to
the codec when

generateHeader is
XDM_ENCODE_AU

XDM_FATALERR

OR

Invoke process call
again with proper
number of input planes.

21 IJPEGVENC_INVALID_INPUT_BUFFER_MEM

TYPE_ERROR

Invalid input buffer
memory type is passed to

the codec when
generateHeader is

XDM_ENCODE_AU

XDM_FATALERR

OR

Invoke process call
again with proper
memory type of the input
buffer.

22 IJPEGVENC_INVALID_OUTPUT_BUFFER_ME

MTYPE_ERROR

Invalid output buffer
memory type is passed to

the codec

XDM_FATALERR

OR

Invoke process call
again with proper
memory type of the
output buffer.

23 IJPEGVENC_NULL_OUTARGS_POINTER_ERR

OR

OutArgs Pointer passed to
codec in process call is

NULL

XDM_FATALERR

OR

Invoke process call
again with proper
IVIDENC2_OutArgs
pointer.

24 IJPEGVENC_INVALID_OUTARGS_SIZE Invalid size of OutArgs
passed to the codec

XDM_FATALERR

OR

Invoke process call
again with proper
OutArgs size

Error Handling

9-4

25 IJPEGVENC_NULL_OUTPUT_BUF_DESC_ERR

OR

Output Buffer descriptor
pointer passed to codec is

NULL

XDM_FATALERR

OR

Invoke process call
again with output buffer
descriptor pointer in the
XDM2_BufDesc
structure.

26 IJPEGVENC_NULL_OUTPUT_BUFFER_POINT

ER_ERROR

Output Buffer pointer
passed to codec is NULL

XDM_FATALERR

OR

Invoke process call
again with output plane
descriptor buffer pointer
(planeDesc.buf) in the
XDM2_BufDesc
structure.

27 IJPEGVENC_INVALID_OUTPUT_BUFFER_SI

ZE_ERROR

Output buffer size is zero XDM_INSUFFIC

IENTDATA

Invoke process call
again with proper output
buffer sizes.

28 IJPEGVENC_INVALID_NUM_OF_OUTPUT_BU

FFERS_ERROR

Number of output buffers
passed to the codec is not

1

XDM_FATALERR

OR

Invoke process call
again with proper
number of output
buffers.

29 IJPEGVENC_INSUFFICIENT_OUTPUT_BUFF

ER_SIZE_ERROR

Number of bytes encoded
is greater than the number
of bytes allocated to output

buffer

XDM_INSUFFIC

IENTDATA

Invoke process call
again with sufficient
output buffer size.

30 IJPEGVENC_INVALID_JFIF_THUMBNAIL_E

NABLE_ERROR

Invalid
thumbnailIndexApp0 value
(neither 0 nor 1) passed to

codec through InArgs in
process call

XDM_FATALERR

OR

Invoke process call
again with proper
thumbnailIndexApp0
value

31 IJPEGVENC_INVALID_EXIF_THUMBNAIL_E

NABLE_ERROR

Invalid
thumbnailIndexApp1 value
(neither 0 nor 1) passed to

codec through InArgs in
process call

XDM_FATALERR

OR

Invoke process call
again with proper
thumbnailIndexApp1
value

32 IJPEGVENC_INPUT_BUFFER_POINTER_ALI

GN_ERROR

The base address of the
input 2D buffer in TILER
region is not aligned to

 16 bytes

XDM_FATALERR

OR

Invoke process call
again with base address
of the input 2D buffer in
TILER region aligned to
16 bytes

33 IJPEGVENC_DATASYNC_GET_ROW_DATA_ER

ROR

numBlocks was set to a
value less than 1 by input

data sync call back
function (getDataFxn)

No XDM

Mapping

Invoke process call
again after reviewing the

implementation of the
getDataFxn call back
function

34 IJPEGVENC_DATASYNC_INVALID_RESTART

_INTERVAL_ERROR

Invalid Restart Interval
when Data Sync (Slice

Mode) is Enabled

No XDM

Mapping

Invoke process call
again after enabling
restart marker insertion

35 IJPEGVENC_DATASYNC_BLOCK_POINTER_E

RROR

Invalid Buffer Pointer in
the output data sync

(getBufferFxn) call back
function

No XDM

Mapping

Invoke process call
again after reviewing the
implementation of the
getBufferFxn call back
function

36 IJPEGVENC_DATASYNC_BLOCK_SIZE_ERRO

R

Invalid Buffer Size in the
output data sync

(getBufferFxn) call back
function

No XDM

Mapping

Invoke process call
again after reviewing the
implementation of the
getBufferFxn call back
function

37 IJPEGVENC_DATASYNC_INVALID_BLOCKS_

ERROR

Invalid Buffer Count in the
output data sync

(getBufferFxn) call back
function

No XDM

Mapping

Invoke process call
again after reviewing the
implementation of the
getBufferFxn call back
function

38 IJPEGVENC_DATASYNC_NOT_VALID_COMBI

NATION_ERROR

Invalid Combination of
scatteredBlocksFlag

and

varBlockSizesFlag in

the output data sync
(getBufferFxn) call back

function

No XDM

Mapping

Invoke process call
again after reviewing the
implementation of the
getBufferFxn call back
function

39 IJPEGVENC_INVALID_IMAGEPITCH non-multiple of 16
imagePitch is passed to

codec

No XDM

Mapping

Invoke process call
again with multiple of 16
value for imagePitch

 10-1

Chapter 10

Privacy Masking

This section explains the Privacy Masking feature in MJPEG encoder.

10.1 Description

This version of MJPEG encoder supports Privacy Masking feature. Using
this feature, user can avoid encoding of actual frame data in some regions
 of the frame and replace it with user defined Y, Cb and Cr values.

To use this feature, user should set enablePrivacyMasking =
IJPEGVENC_PRIVACYMASKING_ENABLE in dynamic params and also
should set “pmInputParams” in extended inArgs structure.

When user enables privacy masking, he should also set following
parameters of “pmInputParams” structure in extended inArgs –

 Set “listPM” to x and y co-ordinates of the different regions to be
masked. If user desires to mask more than one region then, he
should set x and y co-ordinates for all the regions.

 Set “noOfPrivacyMaskRegions” to number of regions to be privacy
masked. User should same number of x and y co-ordinates in
“listPM”.

 Set lumaValueForPM, cbValueForPM and crValueForPM. As
names imply, these values are for Y, Cb and Cr of privacy mask
regions. All the privacy mask regions in the frame are encoded
with same Y, Cb and Cr values.

Privacy Masking

10-2

This page is intentionally left blank

 11-1

Chapter 11

Rate Control

This chapter provides an insight to the Constant Bitrate (CBR) Rate Control details of the MJPEG
encoder.

11.1 Description

 The Rate Control algorithm (RC) in an encoder is required to –

 Ensure that the overall bits generated is meets the target bit-rate
 specified to the encoder.

 Ensure that the overall perceptual video quality is maximized.

 Conventional rate control algorithms are designed to achieve same average bitrate for
all durations of the video sequence High Fidelity Variable Bitrate (HF-VBR) Rate control
algorithm is a new rate control which adapts the instantaneous bit-rate to change at
different times based on the complexity of video at that point in time. HF-VBR reacts to
the instantaneous video complexity in the below way.

 Use higher-than-average bitrate in highly complex segment of video.

 Use lower-than-average bitrate when in simple segment of video.

Rate Control – Constant Bitrate

11-2

Figure 4 - Graph representing VBR reaction to the video complexity.

VBR rate control allows the bitrate to change based on the complexity of the scene. The rate
control takes two inputs viz. 1. targetBitrate and 2. maxBitrate. For scene with normal complexity,
the RC operates at targetBitrate. When the scene complexity increases, the RC increases the
operating bitrate to a higher value. However it is not allowed to exceed maxBitrate. In a longer
duration, the overall bitrate achieved will be targetBitrate. VBR rate control is specially suited for
video surveillance where one would intend to encode with better quality when there is an increase
in scene complexity

Note: VBR: Variable Bitrate Rate control scheme is designed to achieve targetBitrate in longer
duration of time. Hence if one observes the overall bitrate (for long duration), it will always be same
as targetBitrate. It will go nearer to maxBitrate for short duration in case the complexity increases..
The complexity estimate done by VBR is based on previous history. If you start and stop the video
recording with high complex video throughout, VBR will not treat it differently. This condition will be
treated like normal VBR and you will see the instantaneous bitrate does not go above the
targetBitrate for the whole duration. Hence in lab test, one has to be careful when inferring at
results. They should let video get recorded with static sequence for few seconds before changing to
complex video (like hand movement before camera etc.)

11.2 Parameters and Configuration

rateControlPreset – This parameter of create time param structure has to be set to –
 IVIDEO_LOW_DELAY – For CBR
 If this parameter is set to IVIDEO_NONE, rate control is disabled

targetFrameRate - This parameter of dynamic params structure has to be set to any value
 greater than 0

targetBitRate - This parameter of dynamic params structure has to be set to any value

 greater than 16384. To change bitrate dynamically, call XDM_SETPARAMS
 with updated initialBufferLevel

minBitRate - This parameter of create-time params structure has to be set to any value
 greater than 0

 Error Handling

9-3

maxBitRate - This parameter limits the maximum bitrate which the rate control can achieve
 during the high complexity duration of the video. The value of maxBitRate must
 be at least 1.5 times targetBitRate. Only then VBR: Variable Bitrate control is
 turned ON in the encoder.

rateControlParamPreset – This parameter can be set to following values –

 IJPEGVENC_RATECONTROLPARAMS_DEFAULT – For codec
 chosen rate control params

 IJPEGVENC_RATECONTROLPARAMS_USERDEFINED - For
 user given rate control params

 IJPEGVENC_RATECONTROLPARAMS_EXISTING - Keep the
 Rate Control params as existing. This is useful because during
 control call if user don't want to change the Rate Control
 Params

rcAlgo – This parameter can be set to following values –

 IJPEGVENC_RATECONTROL_VBR_STORAGE – VBR rate
control when rateControlPreset = IVIDEO_USER_DEFINED

 IJPEGVENC_RATECONTROL_CBR_LOW_DELAY – CBR rate
control when rateControlPreset = IVIDEO_USER_DEFINED

 IJPEGVENC_RATECONTROL_DISABLE – Whenever rcAlgo is
set to this mode, rate control will be disabled and qualityFactor will
be used to generate quantization table.

qpI – This parameter gives the initial QP for rate control module to start with. Range is -1 to 51
When qpI is set to -1, codec internally decides which QP to start with; Otherwise user given
QP is used. If qpI = 51, then highest compression can be seen i.e. low bitrate.

qpMaxI – Maximum QP value. Care should be taken to set this vaue > 24 when qpI = -1 as codec
 chosen initial QP when qpI = -1 is 24. Range 0 to 51.

qpMinI – Minimum QP value. This value should be less than qpI and qpMaxI. Range 0 to 51.

initialBufferLevel – Ideally, this should be bitrate/2 for CBR and 2*bitrate for VBR.

HRDBufferSize – Ideally, same as initialBufferLevel

11.3 How to specify RC mode

Settings for Variable Bitrate Rate Control –

rateControlPreset = IVIDEO_STORAGE

or

rateControlPreset = IVIDEO_USER_DEFINED

Rate Control – Constant Bitrate

11-2

rcAlgo = 0

and

maxBitRate >= (1.5 x targetBitRate)

Settings for Contant Bitrate Rate Control –

rateControlPreset = IVIDEO_LOW_DELAY

or

rateControlPreset = IVIDEO_USER_DEFINED

rcAlgo = 1

Settings for disabling Rate Control using rcAlgo –

rateControlPreset = IVIDEO_USER_DEFINED

rcAlgo = 2

11.4 How to change bitrate dynamically

 Call XDM_SETPARAMS with new values for – initialBufferLevel, HRDBufferSize,
targetBitRate, targetFrameRate. The values of qpI, qpMaxI, qpMinI, maxBitRate,
minBitRate, rateControlParamsPreset, rcAlgo, VBRDuration, VBRsensitivity,
vbvUseLevelThQ5 will not be considered by codec for dynamic changing and
values for these params given during create time will be carried forward. So user is
allowed to change only - initialBufferLevel, HRDBufferSize, targetBitRate,
targetFrameRate values dynamically.

 Please note that rate control will be reset for new values only if initialBufferLevel is
changed, otherwise the new values will not be reflected.

11.5 Limitations

 Since rate control operates only at frame level, 1-2 seconds delay may be expected
to reach target bitrate compared to other codecs (H.264).

 Error Handling

9-3

 Since the compression ratio of MJPEG compared to H.264 is 1:50, for a particular
resolution, optimum (minimum) target bitrate for visual quality will be comparatively
higher in case of MJPEG for 30Fps.

 Since MJPEG standard doesn’t allow frame skips or bit-stuffing, in case of VBR if
there is high fluctuation in video content, the max and min bitrate may not be
obeyed.

