

MPEG2 Main Profile Decoder on HDVICP2 and
Media Controller Based Platform

User’s Guide

Literature Number: SPRUH45
November 2018

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and
other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per
JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of
each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or
services are used. Information published by TI regarding third-party products or services does not constitute a license to use
such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third
party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or
liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related
requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-
related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise
to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their
consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully
indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical
applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components,
TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized
officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and
intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or
aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely
responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any
case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-
defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright© 2014, Texas
Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’ (TI)
MPEG2 Main Profile Decoder implementation on the HDVICP2 and Media
Contrller based platform. It also provides a detailed Application Programming
Interface (API) reference and information on the sample application that
accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate TI’s
codecs with other software to build a multimedia system based on the
HDVICP2 based platform.

This document assumes that you are fluent in the C language, have a good
working knowledge of Digital Signal Processing (DSP), digital signal
processors, and DSP applications. Good knowledge of eXpressDSP
Algorithm Interface Standard (XDAIS) and eXpressDSP Digital Media (XDM)
standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and lists
its supported features.

 Chapter 2 - Installation Overview, describes how to install, build, and
run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the codec.

 Chapter 4 - API Reference, describes the data structures and interface
functions used in the codec.

 Chapter 5 – Frequently Asked Questions, answers few frequently
asked questions related to using MPEG2 Main Profile Decoder on
HDVICP2 and Media Controller Based Platform.

 Chapter 6 – Picture Format, provides information on format of YUV
buffers provided to decoder.

Read This First

iv

 Chapter 7 – Debug Trace Usage, describes the debug trace feature
supported by the codec and its usage.

 Chapter 8 – Error Handling, explains the error handling and error
robustness features of this MPEG-2 Decoder.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such as,
XDAIS and XDM. To obtain a copy of any of these TI documents, visit the
Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320 DSP
Algorithm Inteface Standard (also known as XDAIS) specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm Standard
which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-compliant
algorithm may be used effectively in a static system with limited
memory.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

 Using IRES and RMAN Framework Components for C64x+ (literature
number SPRAAI5), describes the IRES interface definition and function
calling sequence

Related Documentation

You can use the following documents to supplement this user guide:

 ISO/IEC-13838-2: Information Technology- Generic coding of moving
pictures and associated audio information: Video

Abbreviations

The following abbreviations are used in this document.

Table 0-1. List of Abbreviations

Abbreviation Description

BIOS TI’s simple RTOS for DSPs

http://www.ti.com/

Read This First

v

Abbreviation Description

CSL Chip Support Library

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN DMA Manager

DPB Decoded Picture Buffer

EVM Evaluation Module

HDTV High Definition Television

IRES Interface standard to request and receive
handles to resources

ISO International Standards Organization

HDVICP2 Image Video Accelerator

MB Macro Block

MPEG Moving Pictures Experts Group

MV Motion Vector

NAL Network Adaptation Layer

NTSC National Television Standards Committee

RMAN Resource Manager

RTOS Real Time Operating System

VCL Video Coding Layer

VGA Video Graphics Array (640 x 480
resolution)

VOP Video Object Plane

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

YUV Color space in luminance and
chrominance form

Read This First

vi

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and

command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(MPEG2 Main Profile Decoder on HDVICP2) and version number. The
version number of the codec is included in the title of the Release Notes that
accompanies this codec.

Trademarks

Code Composer Studio, DSP/BIOS, eXpressDSP, TMS320, HDVICP2,are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

Read This First

vii

This page is intentionally left blank

viii

Contents

READ THIS FIRST ... III

ABOUT THIS MANUAL ... III
INTENDED AUDIENCE ... III
HOW TO USE THIS MANUAL ... III
RELATED DOCUMENTATION FROM TEXAS INSTRUMENTS .. IV
RELATED DOCUMENTATION .. IV
ABBREVIATIONS .. IV
TEXT CONVENTIONS .. VI
PRODUCT SUPPORT ... VI
TRADEMARKS ... VI

CONTENTS .. VIII

FIGURES ... X

TABLES ... XII

INTRODUCTION ... 1-1

1.1 OVERVIEW OF XDAIS AND XDM .. 1-2
1.1.1 XDAIS Overview ... 1-2
1.1.2 XDM Overview ... 1-3
1.1.3 IRES Overview .. 1-4

1.2 OVERVIEW OF MPEG2 MAIN PROFILE DECODER ... 1-5
1.3 SUPPORTED SERVICES AND FEATURES ... 1-6

INSTALLATION OVERVIEW .. 2-1

2.1 SYSTEM REQUIREMENTS .. 2-2
2.1.1 Hardware ... 2-2
2.1.2 Software .. 2-2

2.2 INSTALLING THE COMPONENT ... 2-3
2.3 BEFORE BUILDING THE SAMPLE TEST APPLICATION ... 2-4
2.4 BUILDING AND RUNNING THE SAMPLE TEST APPLICATION .. 2-6

2.4.1 Building the Sample Test Application .. 2-6
2.4.2 Running the Sample Test Application on Netra HDVICP2 Simulator 2-6
2.4.3 Running the Sample Test Application on DM816x EVM .. 2-7

2.5 CONFIGURATION FILES .. 2-8
2.5.1 Generic Configuration File ... 2-8
2.5.2 Decoder Configuration File .. 2-9

2.6 UNINSTALLING THE COMPONENT .. 2-10

SAMPLE USAGE ... 3-1

3.1 OVERVIEW OF THE TEST APPLICATION .. 3-2
3.1.1 Parameter Setup .. 3-3
3.1.2 Algorithm Instance Creation and Initialization .. 3-3
3.1.3 Process Call .. 3-4

ix

3.1.4 Algorithm Instance Deletion .. 3-6
3.2 FRAME BUFFER MANAGEMENT BY APPLICATION .. 3-6

3.2.1 Frame Buffer Input and Output ... 3-6
3.2.2 Frame Buffer Format ... 3-7
3.2.3 Frame Buffer Management by Application ... 3-7

3.3 HANDSHAKING BETWEEN APPLICATION AND ALGORITHM .. 3-8
3.4 ADDRESS TRANSLATIONS ... 3-10
3.5 SAMPLE TEST APPLICATION .. 3-10

API REFERENCE ... 4-1

4.1 SYMBOLIC CONSTANTS AND ENUMERATED DATA TYPES .. 4-2
4.2 DATA STRUCTURES ... 4-25

4.2.1 Common XDM Data Structures .. 4-25
4.2.2 MPEG2 Decoder Data Structures ... 4-39

4.3 INTERFACE FUNCTIONS .. 4-43
4.3.1 Creation APIs.. 4-44
4.3.2 Initialization API ... 4-46
4.3.3 Control API ... 4-47
4.3.4 Data Processing API ... 4-48
4.3.5 Termination API ... 4-52

FREQUENTY ASKED QUESTIONS .. 5-1

5.1 CODE BUILD AND EXECUTION ... 5-1
5.2 ISSUES WITH TOOLS VERSION ... 5-1
5.3 ALGORITHM RELATED ... 5-1

PICTURE FORMAT ... 6-1

6.1 NV12 CHROMA FORMAT ... 6-1
6.2 PROGRESSIVE PICTURE FORMAT .. 6-2
6.3 INTERLACED PICTURE FORMAT .. 6-4
6.4 CONSTRAINTS ON BUFFER ALLOCATION FOR DECODER .. 6-6

DEBUG TRACE USAGE ... 7-1

7.1 INTRODUCTION .. 7-1
7.2 ENABLING AND USING DEBUG INFORMATION ... 7-1

7.2.1 debugTracelevel ... 7-2
7.2.2 lastNFramesToLog ... 7-2

7.3 DEBUG TRACE LEVELS ... 7-3
7.4 REQUIREMENTS ON THE APPLICATION ... 7-3

ERROR CONCEALMENT USAGE .. 8-1

8.1 INTRODUCTION .. 8-1
8.2 ENABLING AND USING ERROR CONCEALMENT .. 8-1

8.2.1 ErrorConcealmentON ... 8-2
8.2.2 Transcode Mode .. 8-2
8.2.3 MetaData Type .. 8-2

8.3 METADATA BUFFER REQUIREMENT ... 8-2
8.4 REQUIREMENTS ON THE APPLICATION ... 8-3

ERROR HANDLING ... 9-1

9.1 DESCRIPTION ... 9-1

x

Figures

FIGURE 1-1. IRES INTERFACE DEFINITION AND FUNCTION CALLING SEQUENCE .. 1-5
FIGURE 1-2. FLOW DIAGRAM OF THE MPEG2 DECODER ... 1-5
FIGURE 2-1. COMPONENT DIRECTORY STRUCTURE ... 2-3
FIGURE 3-1. TEST APPLICATION SAMPLE IMPLEMENTATION ... 3-2
FIGURE 3-2. PROCESS CALL WITH HOST RELEASE .. 3-5
FIGURE 3-3. INTERACTION OF FRAME BUFFERS BETWEEN APPLICATION AND FRAMEWORK .. 3-7
FIGURE 3-4. INTERACTION BETWEEN APPLICATION AND CODEC .. 3-9

xi

This page is intentionally left blank

xii

Tables

TABLE 0-1. LIST OF ABBREVIATIONS .. IV
TABLE 2-1. COMPONENT DIRECTORIES ... 2-4
TABLE 4-1. LIST OF ENUMERATED DATA TYPES .. 4-2
TABLE 9-1 ERROR CODES USED TO SET THE EXTENDEDERROR FIELD IN IVIDDEC3_OUTARGS AND IVIDDEC3_STATUS 9-1
TABLE 9-2 ERROR CODES USED TO SET THE EXTENDEDERRORCODE0 ,EXTENDEDERRORCODE1, EXTENDEDERRORCODE2 AND

EXTENDEDERRORCODE3 FIELDS IN IMPEG2VDEC_STATUS ... 9-3

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also provides
an overview of TI’s implementation of the MPEG2 Main Profile Decoder on the
HDVICP2 and Media Controller based platform and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of MPEG2 Main Profile Decoder 1-5

1.3 Supported Services and Features 1-6

Introduction

1-2

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP Digital
Media (XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the abstract
interface IALG. The IALG API takes the memory management function away
from the algorithm and places it in the hosting framework. Thus, an interaction
occurs between the algorithm and the framework. This interaction allows the
client application to allocate memory for the algorithm and also share memory
between algorithms. It also allows the memory to be moved around while an
algorithm is operating in the system. In order to facilitate these functionalities,
the IALG interface defines the following APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the algorithm

to initialize the memory allocated by the client application. The algFree() API

allows the algorithm to communicate the memory to be freed when an instance
is no longer required.

Once an algorithm instance object is created, it can be used to process data in

real-time. The algActivate() API provides a notification to the algorithm

instance that one or more algorithm processing methods is about to be run
zero or more times in succession. After the processing methods have been run,

the client application calls the algDeactivate() API prior to reusing any of

the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),

algNumAlloc(), and algMoved(). For more details on these APIs, see

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

Introduction

1-3

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a video
decoder system, you can use any of the available video decoders (such as
MPEG4, H.263, or MPEG-2) in your system. To enable easy integration with
the client application, it is important that all codecs with similar functionality use
similar APIs. XDM was primarily defined as an extension to XDAIS to ensure
uniformity across different classes of codecs (for example audio, video, image,
and speech). The XDM standard defines the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm instance

and receive status information from the algorithm in real-time. The control()

API replaces the algControl() API defined as part of the IALG interface. The

process() API does the basic processing (encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass to
these APIs. The client application can define additional implementation specific
parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an interface
between the client application and the codec component. XDM insulates the
client application from component-level changes. Since TI’s multimedia
algorithms are XDM compliant, it provides you with the flexibility to use any TI
algorithm without changing the client application code. For example, if you
have developed a client application using an XDM-compliant MPEG4 video
decoder, then you can easily replace MPEG4 with another XDM-compliant
video decoder, say H.263, with minimal changes to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query, initialization
and activation interface. The application framework defines, implements, and
supports concrete resource interfaces in the form of IRES extensions. Each
algorithm implements the generic IRES interface, to request one or more
concrete IRES resources. IRES defines standard interface functions that the
framework uses to query, initialize, activate/deactivate and reallocate concrete
IRES resources. To create an algorithm instance within an application
framework, the algorithm and the application framework agrees on the concrete
IRES resource types that are requested. The framework calls the IRES
interface functions, in addition to the IALG functions, to perform IRES resource
initialization, activation, and deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative sharing
of scratch resources. Co-operative preemption allows activated algorithms to
yield to higher priority tasks sharing common scratch resources. Framework
components include the following modules and interfaces to support algorithms
requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages and
grants concrete IRES resources to algorithms and applications. RMAN
uses a new standard interface, the IRESMAN, to support run-time
registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Introduction

1-5

 Figure 1-1. IRES Interface Definition and Function Calling Sequence

For more details, see Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5).

1.2 Overview of MPEG2 Main Profile Decoder

MPEG-2 is a widely used video compression algorithm that uses motion
compensated prediction, Discrete Cosine Transform (DCT) coding of the
prediction error signal and modified Huffman entropy coding.

Please refer to ISO/IEC-13838-2 for detailed algorithm and working of
MPEG-2 decoder.

 Figure 1-2. Flow Diagram of the MPEG2 Decoder

From this point onwards, all references to MPEG2 Decoder means MPEG2
Main Profile Decoder only.

Introduction

1-6

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of MPEG2 Decoder on
the HDVICP2 based platform.

This version of the codec has the following supported features:

 eXpressDSP Digital Media (XDM IVIDDEC3) compliant

 Uses hardware accelerators of HDVICP2

 Supports up to High level of Main Profile (MP)

 Supports decoding of MPEG-1 constrained video streams

 Supports progressive and interlaced type picture decoding

 Supports P and B frames

 Supports frame based decoding

 Supports picture width and height (resolutions) greater than 64 pixels
including all standard resolutions up to 2048x2048

 Supports optional out-of-loop deblocking for display

 Supports graceful exit under error conditions

 Supports YUV420 semi-planar chroma format

 Independent of any Operating System

 Has logic and checks to help application to support trick mode playback

 Supports multi-channel functionality

 Supports dump of macroblock information (useful in transcode
applications)

 Supports error concealment

 Supports debug trace dump

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information on
building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-3

2.3 Before Building the Sample Test Application 2-4

2.4 Building and Running the Sample Test Application 2-6

2.5 Configuration Files 2-8

2.6 Uninstalling the Component 2-10

Installation Overview

2-2

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been tested on the HDVICP2 and Media Controller based
OMAP4 ES1.0 and DM816x DDR2 EVM REV-B hardware platforms.

2.1.2 Software

The following are the software requirements for the normal functioning of the
codec:

 Development Environment: This project is developed using Code
Composer Studio (Code Composer Studio v4) version 4.2.0.09000.

http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setu
p_CCS_4.2.0.09000.zip

 Code Generation Tools: This project is compiled, assembled, archived,
and linked using the code generation tools version 4.5.1.

Although CG tools v 4.5.1 is a part of Code Composer Studio v4
installation, it is recommended that you re-install CG tools by downloading
from the following link.

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

 And also install CG Tools version 5.0.3, this comes as a part of CCS
installation. CG tools v5.0.3 are used in code compilation for Media
Controller processor

 HDVICP2 Simulator: This codec has been tested using HDVICP2
Simulator version 5.0.16 (HDVICP2 Simulation CSP 1.1.5). This
release can be obtained by software updates on Code Composer
Studio v4. Ensure that the following site is listed as part of “Update
sites to visit”.

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.
xml

This codec has also been tested using Netra CSP (Simulation) version
0.7.1. This version of Simulator can be downloaded through software
updates on Code Composer Studio v4. Ensure that the following site is
listed as part of “Update sites to visit”.

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site
.xml

http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml

Installation Overview

2-3

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip file
extraction creates a top-level directory called 500.V.MPEG2.D.IVAHD.01.00
under which under which the directory named IVAHD_001 is created:

 Figure 2-1 shows the sub-directories created in the IVAHD_001 directory.

 Figure 2-1. Component Directory Structure

 Table 2-1 provides a description of the sub-directories created in the
500.V.MPEG2.D.IVAHD.01.00 directory.

Sub-Directory Description

\client\build\TestAppDeviceName Contains the Media Controller cmd file. The name of this
directory will not be same as exactly mentioned here. Instead of
DeviceName string, actual name of Device will be present.

\client\build\TestAppDeviceName\mak
e

Contains the make file for the test application project. The name
of this directory will not be same as exactly mentioned here.
Instead of DeviceName string, actual name of Device will be
present.

\client\build\TestAppDeviceName\map Contains the memory map generated on compilation of the code

\client\build\TestAppDeviceName\obj Contains the intermediate .asm and/or .obj file generated on
compilation of the code

Installation Overview

2-4

Sub-Directory Description

\client\build\TestAppDeviceName\Out Contains the final application executable (.out) file generated by
the sample test application

\client\test\inc Contains header files needed for the application code

\client\test\src Contains application C files

\client\test\testvecs\config Contains sample configuration file for MPEG-2 Decoder

\client\test\testvecs\input Contains input test vectors

\client\test\testvecs\output Contains output generated by the codec. It is empty directory as
part of release.

\client\test\testvecs\reference Contains read-only reference output to be used for cross-
checking against codec output

\docs Contains user guide, data sheet

\inc Contains interface header files of MPEG-2 Decoder

\lib Contains jpegvdec_ti_host.lib – HDVICP2 MPEG-2 Decoder built
as a library on Media Controller

 Table 2-1. Component Directories

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need TI Framework Components (FC).

This version of the codec has been validated with Framework Components
(FC) version 3.20.00.22 GA.

To run the Simulator version of the codec, the HDVICP2 simulator has to be
installed. The version of the simulator is 5.0.16. This can be done using the
“Help->Software Updates->Find and Install” option in CCSv4. Detailed
instructions to set up the configuration can be found in
ivahd_sim_user_guide.pdf present in <CCSv4 Installation
Dir>\simulation_csp_omap4\docs\pdf\ directory.

This codec has also been validated on Netra Video Processing Simulator that
simulates all the three HDVICP2s in DM816x. The simulator required for this is
Netra CSP (Simulation) version 0.7.1. This simulator can also be installed
using the “Help->Software Updates->Find and Install” option in CCSv4.
Detailed instructions to set up the configuration can be found in
netra_sim_user_guide.pdf present in <CCSv4 Installation Dir>\
simulation_netra\docs\user_guide directory.

Install CG Tools version 4.5.1 for ARM (TMS470) at the following location in
your system: <CCSv4.2_InstallFolder>\ccsv4\tools\compiler\tms470.

CGTools 4.5.1 can be downloaded from

Installation Overview

2-5

 https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Please note that CG Tools 4.5.1 is installed at the location mentioned above
along with the CCS v4.2 installation by default. But, as some problems have
been reported about this, we recommend that you install CG Tools 4.5.1 again
with the installer obtained from the above link.

And also install CG Tools version 5.0.3, this comes as a part of CCS
installation. CG tools v5.0.3 are used in code compilation for Media Controller
processor.

Set environment variable CG_TOOL_DIR to <cgtools_install_dir>.

<CG_TOOL_DIR>/bin should contain all required code generation tools
executables.

Set environment variable CG_TOOL_DIR_M3 pointing to <cg_tools v5.0.3>

<CG_TOOL_DIR_M3>/bin should contain all required code generation tools
executables.

Set environment variables HDVICP2_INSTALL_DIR and CSP_INSTALL_DIR
to the locations where the HDVICP20 API library and HDVICP2 CSL are
present. The HDVICP20 API library and the HDVICP2 CSL can be downloaded
from the same place as the codec package. The HDVICP20 API .lib files
should be present at HDVICP2_INSTALL_DIR/lib and HDVICP20 API interface
header files at HDVICP2_INSTALL_DIR/inc. The folders csl_ivahd and csl_soc
of HDVICP2 CSL should be present at CSP_INSTALL_DIR/.

This version of the codec has been validated with HDVICP2.0 API library
version 01.00.00.23 and HDVICP2.0 CSL Version 00.05.02.

Set the system environment variable TI_DIR to the CCSv4 installation path.
Example: TI_DIR = <CCSv4 Installation Dir>\ccsv4.

Add gmake (GNU Make version 3.78.1) utility folder path (for example,
“C:\CCStudioV4.0\ccsv4\utils\gmake”) at the beginning of the PATH
environment variable.

The version of the XDC tools required is 3.20.04.68 GA.

2.3.1 Installing Framework Component (FC)

You can download FC from the TI website:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_F
DS.html

Extract the FC zip file to the some location and set the system environment
variable FC_INSTALL_DIR to this path. For example: if the zip file was
extracted to C:\CCSv4\, set FC_INSTALL_DIR as C:\CCSv4\
framework_components_3_20_00_22.

The test application uses the following IRES and XDM files:

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html

Installation Overview

2-6

 HDVICP related IRES header files, these are available in the
FC_INSTALL_DIR\packages\ti\sdo\fc\ires\hdvicp directory.

 Tiled memory related Header file, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\sdo\fc\ires\tiledmemory
directory.

 XDM related header files, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\xdais directory

2.3.2 Installing XDC Tools

XDC Tools is required to build the test application. The test application uses
the standard files like <std.h> from XDC tools. The xdc tools can be
downloaded and installed from the following URL:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index
_FDS.html

Also, ensure that the environment variable XDCROOT is set to the XDC
installation directory.

2.4 Building and Running the Sample Test Application

2.4.1 Building the Sample Test Application

MPEG-2 decoder on HDVICP2 and Media Controller based platform has the
following projects.

Project Make file Path Output files

Test

Application

\client\build\<TestAppDeviceNam

e>\make\

\client\build\TestApp<DeviceName>\out

\mpeg2vdec_ti_hosttestapp.out

The make file for the project can be built using the following commands.

gmake –k –s deps

gmake –k –s all

Use the following command to clean previous builds.

gmake –k –s clean

2.4.2 Running the Sample Test Application on Netra HDVICP2 Simulator

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on HDVICP2 Simulator, follow these steps:

1) Ensure that you have installed IVAHD CSP (Simulation) version 1.1.5.

2) Start Code Composer Studio v4 and set up the target configuration for
Netra IVA-HD Simulator.

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html

Installation Overview

2-7

3) Select the Debug perspective in the workbench. Launch Netra IVA-HD
simulator in CCSv4 (View > Target Configurations > %Netra
Simulator%).

4) Select M3_Video device and Target > Load Program, browse to the
\500.V.MPEG2.D.IVAHD.01.00\IVAHD_001\client\build\TestAppDeviceNa
me\out\ sub-directory, select the codec executable
“mpeg2vdec_ti_hosttestapp.out” and load it into Code Composer Studio in
preparation for execution.

5) Select HDVICP2_0_ICONT1 device and Target > Run to give iCont1
device a free run.

6) Select HDVICP2_0_ICONT2 device and Target > Run to give iCont2
device a free run.

7) Select Target > Run to execute the application for M3_Video device.

8) Test application will take input streams from
\500.V.MPEG2.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\input\
directory and generates outputs in
\500.V.MPEG2.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\output\
directory.

2.4.3 Running the Sample Test Application on DM816x EVM

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on DM816x EVM, follow these steps:

1) Start Code Composer Studio v4 and set up the target configuration for
DM816x EVM Emulator.

2) Ensure that the clock is enabled for Media Controller and HDVICP2.

3) Select the Debug perspective in the workbench. Launch DM816x EVM
Emulator in CCSv4 (View > Target Configurations > %DM816x EVM%).

4) Select Cortex_M3_RTOS_0 device, right click and choose “Connect
Target” and wait for emulator to connect to Media Controller

5) Select Cortex_M3_RTOS_0 device and Target > Load Program, browse
to \500.V.MPEG2.D.IVAHD.01.00\
IVAHD_001\client\build\TestAppDM816x\out\ sub-directory, select the
codec executable “mpeg2vdec_ti_hosttestapp.out” and load it in
preparation for execution.

6) Select Target > Run to execute the application for Cortex_M3_RTOS_0
device.

7) Test application will take input streams from
\500.V.MPEG2.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\input\
directory and generates outputs in
\500.V.MPEG2.D.IVAHD.01.00\IVAHD_001\client\test\testvecs\output\
directory.

Installation Overview

2-8

Note:

Order of connecting to the devices is important and it should be as
mentioned in above steps.

2.5 Configuration Files

This codec is shipped along with:

 Generic configuration file (Testvecs.cfg) – specifies input and reference
files for the sample test application.

 Decoder configuration file (Testparams.cfg) – specifies the configuration
parameters used by the test application to configure the Decoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files for
running the codec and checking for compliance. The Testvecs.cfg file is
available in the \Client\Test\TestVecs\Config sub-directory.

The format of the Testvecs.cfg file is:

X

Config

Input

Output or Reference

SizeFile

where:

 X may be set as:

o 1 - for compliance checking.

o 0 - for writing the output to the output file

 Config is the Decoder configuration file. For details, see Section 2.5.2

 Input is the input file name (use complete path).

 Output is the output .yuv file name (output dump mode). Reference is

the reference .yuv file name (in compliance checking mode).

 SizeFile is the file containing offsets and size of each frame for

TST_FRAME_MODE.

Installation Overview

2-9

A sample Testvecs.cfg file is as shown:

0

..\..\Test\TestVecs\Config\Testparams.cfg

..\..\Test\TestVecs\Input\davincieffect_qcif_25fps.mp2

..\..\Test\TestVecs\Output\davincieffect_qcif_25fps.yuv

..\..\Test\TestVecs\Config\sizeFile.cfg

In compliance mode of operation, the decoder compares the reference and the
generated output and declares Pass/Fail message. If output dump mode is
selected(X set to 0), then the decoder dumps the output to the specified file.

A sample SizeFile is as shown:

/* The first field gives offset from

start of input file for each frame */

/* The second field gives frame size

+3, i.e size including the start code

of next picture */

0 4840

4837 4475

9309 978

10284 958

11239 6147

/* To indicate no more input frames */

0 0

Note that an additional 3 bytes should be added to the frame size (to include
the next start code).

2.5.2 Decoder Configuration File

The decoder configuration file, Testparams.cfg contains the configuration
parameters required for the decoder. The Testparams.cfg file is available in the
\Client\Test\TestVecs\Config sub-directory.

A sample Testparams.cfg file is as shown:

New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

Parameters

ImageWidth = 2048 # Image width in Pels

ImageHeight = 2048 # Image height in Pels

ChromaFormat = 9 # 256 =>XDM_YUV_420SP

FramesToDecode = 100 # Number of frames to be coded

DumpFrom = 0 # Start dumping from this frame

Installation Overview

2-10

Note:

ChromaFormat supported in this codec is 420 semi-planar, that is, the
chroma planes (Cb and Cr) are interleaved.

2.6 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

This page is intentionally left blank

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-2

3.2 Frame Buffer Management by Application 3-6

3.3 Handshaking Between Application and Algorithm 3-8

3.4 Address Translations 3-10

3.5 Sample Test Application 3-10

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDDEC3 base class of the MPEG2

Decoder library. The main test application files are
mpeg2vdec_ti_hosttestapp.c and mpeg2vdec_ti_rmanConfig.c. These files
are available in the \dec\mpeg2\client\test\src directory.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application. Currently, the test application does not use RMAN resource
manager. However, all the resource allocations happens through IRES
interfaces.

Figure 3-1. Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters such
as video height, video width, and so on. The test application obtains the
required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

Opens the generic configuration file, Testvecs.cfg and reads the compliance
checking parameter, Decoder configuration file name (Testparams.cfg), input
file name, and output/reference file name.

Opens the Decoder configuration file, (Testparams.cfg) and reads the various
configuration parameters required for the algorithm. For more details on the
configuration files, see Section 0.

Sets the IVIDDEC3_Params structure based on the values it reads from the

Testparams.cfg file.

Reads the input bit-stream into the application input buffer.

After successful completion of these steps, the test application does the
algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs are
called in sequence:

algNumAlloc() - To query the algorithm about the number of memory

records it requires.

algAlloc() - To query the algorithm about the memory requirement to be

filled in the memory records.

algInit() - To initialize the algorithm with the memory structures provided

by the application.

A sample implementation of the create function that calls algNumAlloc(),

algAlloc(), and algInit() in sequence is provided in the

ALG_create() function implemented in the alg_create.c file.

Sample Usage

3-4

Note:

 Decoder requests only one memory buffer through algNumAlloc.

This buffer is for the algorithm handle.

 Other memory buffer requirements are done through IRES
interfaces.

After successful creation of the algorithm instance, the test application does
HDVICP Resource and memory buffer allocation for the algorithm. Currently,
RMAN resource manager is not used. However, all the resource allocations
happen through IRES interfaces:

numResourceDescriptors() - To understand the number of resources

(HDVICP and buffers) needed by algorithm.

getResourceDescriptors() – To get the attributes of the resources.

initResources() - After resources are created, application gives the

resources to algorithm through this API.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application
does the following:

Sets the dynamic parameters (if they change during run-time) by calling the

control() function with the XDM_SETPARAMS command.

Sets the input and output buffer descriptors required for the

process()function call. The input and output buffer descriptors are obtained

by calling the control() function with the XDM_GETBUFINFO command.

Implements the process call based on the non-blocking mode of operation
explained in step 4. The behavior of the algorithm can be controlled using
various dynamic parameters (see Section 4.2.1.8). The inputs to the

process()functions are input and output buffer descriptors, pointer to the

IVIDDEC3_InArgs and IVIDDEC3_OutArgs structures.

On the call to the process() function for encoding/decoding a single frame

of data, the software triggers the start of encode/decode. After triggering the

start of the encode/decode frame, the video task can be put to SEM-pend

state using semaphores. On receipt of interrupt signal at the end of frame
encode/decode, the application releases the semaphore and resume the
video task, which does any book-keeping operations by the codec and

updates the output parameter of IVIDDEC3_OutArgs structure.

Sample Usage

3-5

Figure 3-2. Process call with Host release

The control() and process() functions should be called only within the

scope of the algActivate() and algDeactivate() XDAIS functions

which activate and deactivate the algorithm instance respectively. Once an

algorithm is activated, there could be any ordering of control() and

process() functions. The following APIs are called in a sequence:

algActivate() - To activate the algorithm instance.

control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control commands.

process() - To call the Decoder with appropriate input/output buffer and

arguments information.

control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control commands.

algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates picture level process() call and updates

the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer

exhausts. It also protects the process() call from file operations by placing

appropriate calls for cache operations. The test application does a cache

invalidate for the valid input buffers before process() and a cache write

back invalidate for output buffers after a control() call with GET_STATUS

command.

In the sample test application, after calling algDeactivate(), the output

data is either dumped to a file or compared with a reference file.

Host
System
application

Process call frame n

HDVICP

Tasks
MB level tasks for
frame n

Host Video
Task

Transfer of
tasks at Host

MB level tasks for
frame n+1

Process call frame n+1

Host system
tasks

HDVICP Busy

Interrupt between
HDVICP and Host

Sample Usage

3-6

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application frees the memory
resources and deletes the current algorithm instance. The following APIs are
called in sequence:

numResourceDescriptors() - To get the number of resources and free

them. If the application needs handles to the resources, it can call

getResourceDescriptors().

algNumAlloc() - To query the algorithm about the number of memory

records it used.

algFree() - To query the algorithm for memory, to free when removing an

instance.

A sample implementation of the delete function that calls

algNumAlloc() and algFree() in sequence is provided in the

ALG_delete() function implemented in the alg_create.c file.

3.2 Frame Buffer Management by Application

3.2.1 Frame Buffer Input and Output

With the new XDM, decoder does not ask for frame buffer at the time of

alg_create(). It uses buffer from XDM2_BufDesc *outBufs, which it

reads during each decode process call. Hence, there is no distinction
between DPB and display buffers. The framework needs to ensure that it
does not overwrite the buffers that are locked by the codec.

mp2VDEC_create();

mp2VDEC_control(XDM_GETBUFINFO); /* Returns default 1080p

HD size */

do{

mp2VDEC_decode(); //call the decode API

mp2VDEC_control(XDM_GETBUFINFO); /* updates the memory

required as per the size parsed in stream header */

}

while(all frames)

 Note:

 Application can take the information retured by the control function

with the XDM_GETBUFINFO command and change the size of the

buffer passed in the next process call.

 The output luma buffer size required is :
((width aligned to multiple of 16 +2)*(height

aligned to multiple of 16 +2).

For chroma buffer, the height need to be halved. This assumes
worst case padding requirement, That is, for interlaced coding. For

the first GETBUFINFO call, maxheight and maxwidth are used for

calculating buffer size. For subsequent GETBUFINFO calls (That is,

after the first process call, when the decoder gets to know the

Sample Usage

3-7

actual height and width from the headers) the actual height and
with are used. Hence, this can be optionally used by the
application to re allocate the buffer sizes, if required.

 Application can re-use the extra buffer space of the 1st frame, if
the above control call returns a small size than that was provided.

The frame pointer given by the application and that returned by the algorithm

may be different. BufferID (InputID/outputID) provides the unique ID to

keep a record of the buffer given to the algorithm and released by the
algorithm.

As explained above, buffer pointer cannot be used as a unique identifier to
keep a record of frame buffers. Any buffer given to algorithm should be
considered locked by algorithm, unless the buffer is returned to the

application through IVIDDEC3_OutArgs->freeBufID[].

 Note:

 BufferID returned in IVIDDEC3_OutArgs ->outputID[] is only

for display purpose. Application should not consider it free unless it
is a part of IVIDDEC3_OutArgs->freeBufID[].

3.2.2 Frame Buffer Format

The frame buffer format to be used for both progressive and interlaced
pictures is as explained in Chapter 6 of this document.

3.2.3 Frame Buffer Management by Application

The application framework can efficiently manage frame buffers by
keeping a pool of free frames from which it gives the decoder empty
frames on request.

 Figure 3-3. Interaction of Frame Buffers Between Application and Framework

Video Decode
 Thread Free

Frame
Buffers

Post
Processing or
Display
Subsystem

Video Decoder

XDM API

GetFreeBuffer()

ReleaseBuffer()

Framework Algorithm

Sample Usage

3-8

The sample application also provides a prototype for managing frame
buffers. It implements the following functions, which are defined in file
buffermanager.c provided along with test application.

 BUFFMGR_Init() - BUFFMGR_Init function is called by the test

application to initialize the global buffer element array to default and to
allocate the required number of memory data for reference and output
buffers. The maximum required DPB size is defined by the supported
profile and level.

 BUFFMGR_ReInit() - BUFFMGR_ReInit function allocates global luma

and chroma buffers and allocates entire space to the first element. This
element will be used in the first frame decode. After the picture height
and width and its luma and chroma buffer requirements are obtained,
the global luma and chroma buffers are re-initialized to other elements
in the buffer array.

 BUFFMGR_GetFreeBuffer() - BUFFMGR_GetFreeBuffer function

searches for a free buffer in the global buffer array and returns the
address of that element. Incase none of the elements are free, then it
returns NULL.

 BUFFMGR_ReleaseBuffer() - BUFFMGR_ReleaseBuffer function

takes an array of buffer-IDs which are released by the test application.
0 is not a valid buffer ID, hence this function moves until it encounters a

buffer ID as zero or it hits the MAX_BUFF_ELEMENTS.

 BUFFMGR_DeInit()- BUFFMGR_DeInit function releases all memory

allocated by buffer manager.

3.3 Handshaking Between Application and Algorithm

Application provides the algorithm with its implementation of functions for the
video task to move to SEM-pend state, when the execution happens in the

co-processor. The algorithm calls these application functions to move the

video task to SEM-pend state.

Sample Usage

3-9

 Figure 3-4. Interaction Between Application and Codec

 Note:

 Process call architecture to share Host resource among multiple
threads.

 ISR ownership is with the Host layer resource manager – outside the
codec.

 The actual codec routine to be executed during ISR is provided by the
codec.

 OS/System related calls (SEM_pend, SEM_post) also outside the

codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

 void HDVICP_Acquire(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle, IRES_YieldContext *

yieldCtxt, Bool *reloadHDVICP)

This function is called by the algorithm to acquire the HDVICP2
resource.

 HDVICP_Configure(IALG_Handle handle,

IRES_HDVICP2_Handle iresHandle,

void(*IRES_HDVICP2_CallbackFxn)(IALG_Handle handle,

void *cbArgs), void *cbArgs)

Framework Provided
HDVICP Callback APIs

process()

Application Side

Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDDEC3::process() {

 :

//Call to Acquire API */

HDVICP_Acquire(handle,

iresHandle, yieldCtxt,

reloadHDVICP);

 …. set up for frame decode

 HDVICP_Configure(mp2d, mp2d-

>hdvicpHandle,

 mp2DISRFunction);

 HDVICP_Wait(h264d, h264d-

>hdvicpHandle);

 // Release of HOST

 …. End of frame processing

}

void mp2DISRFunction(IALG_Handle

handle)

{ mp2D_TI_Obj *mp2d = (void

*)handle;

 HDVICP_done(h264d ,

 h264d-

>hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

HDVICP_Wait(handle,

hdVicpHandle){

SEM_pend(_doneSemaphore);

}

HDVICP_Done(handle,

hdVicpHandle) {

 SEM_post(_doneSemaphore)

}

Sample Usage

3-10

This function is called by the algorithm to register its ISR function, which
the application needs to call when it receives interrupts pertaining to the
video task.

 HDVICP_Wait (void *hdvicpHandle)

This function is called by the algorithm to move the video task to SEM-

pend state.

 HDVICP_Done (void *hdvicpHandle)

This function is called by the algorithm to release the video task from

SEM-pend state. In the sample test application, these functions are

implemented in hdvicp_framework.c file. The application can implement
it in a way considering the underlying system.

3.4 Address Translations

The buffers addresses(DDR addresses) as seen by Media Controller and
HDVICP2(VDMA) will be different. Hence, address translations are needed
to convert from one address view to another. The application needs to
implement a MEMUTILS function for this address translation (which will be
later implemented by the framework components). An example of the
address translation function is as shown. The codec will make a call to this
function from the host (Media Controller) library. Therefore, the function
name and arguments should follow the example provided below. For a given
input address, this function returns the VDMA view of the buffer (that is,
address as seen by HDVICP2).

void *MEMUTILS_getPhysicalAddr(Ptr Addr)

{

return ((void *)((unsigned int)Addr & VDMAVIEW_EXTMEM));

}

Sample settings for the macro VDMAVIEW_EXTMEM is as shown.

#if defined(HOSTARM968_FPGA)

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#elif defined(HOSTCORTEXMEDIA CONTROLLER_OMAP4)

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#else

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#endif

3.5 Sample Test Application

The test application exercises the IVIDDEC3 base class of the MPEG-2

Decoder.

/*Main Function acting as a client for Video Decode Call*/

 BUFFMGR_Init();

 TestApp_SetInitParams(¶ms.viddecParams);

 /*---------------- Decoder creation -----------------*/

 handle = (IALG_Handle) mp2VDEC_create();

Sample Usage

3-11

 /* Get Buffer information */

 MPEG2VDEC_TI_control(handle, XDM_GETBUFINFO);

 /* Do-While Loop for Decode Call for a given stream */

 do

 {

/* Read the bitstream in the Application Input Buffer */

 validBytes = TestApp_ReadByteStream(inFile);

 /* Get free buffer from buffer pool */

 buffEle = BUFFMGR_GetFreeBuffer();

/* Optional: Set Run-time parameters in the Algorithm via

control() */

 MPEG2VDEC_TI_control(handle, XDM_SETPARAMS);

/*--*/

/* Start the process : To start decoding a frame */

/*--*/

 retVal = MPEG2VDEC_TI_decode

 (

 handle,

 (XDM1_BufDesc *)&inputBufDesc,

 (XDM_BufDesc *)&outputBufDesc,

 (IVIDDEC3_InArgs *)&inArgs,

 (IVIDDEC3_OutArgs *)&outArgs

);

 /* Get the statatus of the decoder using comtrol */

 MPEG2VDEC_TI_control(handle, IMPEG2VDEC_GETSTATUS);

 /* Get Buffer information */

 MPEG2VDEC_TI_control(handle, XDM_GETBUFINFO);

 /* Optional: Reinit the buffer manager in case the

 /* frame size is different */

 BUFFMGR_ReInit();

 /* Always release buffers - which are released from

 /* the algorithm side -back to the buffer manager

*/

 BUFFMGR_ReleaseBuffer((XDAS_UInt32

*)outArgs.freeBufID);

} while(1);

/* end of Do-While loop - which decodes frames */

ALG_delete (handle);

BUFFMGR_DeInit();

Sample Usage

3-12

 Note:

 This sample test application does not depict the actual function
parameter or control code. It shows the basic flow of the code.

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-25

4.3 Interface Functions 4-43

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to define
any implementation specific parameters for a codec component.

 Table 4-1. List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FrameType IVIDEO_NA_FRAME Frame type not available

IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame

IVIDEO_IDR_FRAME Intra coded frame that can be used
for refreshing video content. Not
supported in this version of MPEG2
Decoder.

IVIDEO_II_FRAME Interlaced Frame, both fields are I
frames

IVIDEO_IP_FRAME Interlaced Frame, first field is an I
frame, second field is a P frame

IVIDEO_IB_FRAME Interlaced Frame, first field is an I
frame, second field is a B frame. Not
supported in this version of MPEG2
Decoder.

IVIDEO_PI_FRAME Interlaced Frame, first field is a P
frame, second field is a I frame. Not
supported in this version of MPEG2
Decoder.

IVIDEO_PP_FRAME Interlaced Frame, both fields are P
frames

IVIDEO_PB_FRAME Interlaced Frame, first field is a P
frame, second field is a B frame. Not
supported in this version of MPEG2
Decoder.

IVIDEO_BI_FRAME Interlaced Frame, first field is a B
frame, second field is an I frame.
Not supported in this version of
MPEG2 Decoder.

IVIDEO_BP_FRAME Interlaced Frame, first field is a B
frame, second field is a P frame. Not
supported in this version of MPEG2
Decoder.

API Reference

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_BB_FRAME Interlaced Frame, both fields are B
frames. Not supported in this version
of MPEG2 Decoder.

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame. Not
supported in this version of MPEG2
Decoder.

IVIDEO_MBAFF_P_FRAME

Forward inter coded MBAFF frame.
Not supported in this version of
MPEG2 Decoder.

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame. Not supported in this version of
MPEG2 Decoder.

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that can be
used for refreshing video content. Not
supported in this version of MPEG2
Decoder.

IVIDEO_FRAMETYPE_DEFAUL

T

Default set to IVIDEO_I_FRAME

IVIDEO_ContentType IVIDEO_CONTENTTYPE_NA Content type is not applicable

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE_FRAM

E

Progressive video content

IVIDEO_INTERLACED

IVIDEO_INTERLACED_FRAME

Interlaced video content

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Top field

IVIDEO_INTERLACED_BOTTO

MFIELD

Interlaced video content, Bottom
field

IVIDEO_CONTENTTYPE_DEFA

ULT

Default set to
IVIDEO_PROGRESSIVE

IVIDEO_FrameSkip IVIDEO_NO_SKIP Do not skip the current frame.
Default Value.

IVIDEO_SKIP_P Skip forward inter coded frame. Not
supported in this version of MPEG2
Decoder.

IVIDEO_SKIP_B Skip bi-directional inter coded frame.

IVIDEO_SKIP_I Skip intra coded frame. Not
supported in this version of MPEG2
Decoder.

API Reference

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_SKIP_IP Skip I and P frame/field(s). Not
supported in this version of MPEG2
Decoder.

IVIDEO_SKIP_IB Skip I and B frame/field(s).
Not supported in this version of
MPEG2 Decoder.

IVIDEO_SKIP_PB Skip P and B frame/field(s).
Not supported in this version of
MPEG2 Decoder.

IVIDEO_SKIP_IPB Skip I/P/B/BI frames
Not supported in this version of
MPEG2 Decoder.

IVIDEO_SKIP_IDR Skip IDR Frame
Not supported in this version of
MPEG2 Decoder.

IVIDEO_SKIP_NONREFERENC

E

Skip non reference frame.

IVIDEO_SKIP_DEFAULT Default set to IVIDEO_NO_SKIP

IVIDEO_VideoLayout IVIDEO_FIELD_INTERLEAVE

D

Buffer layout is interleaved.

IVIDEO_FIELD_SEPARATED Buffer layout is field separated.

IVIDEO_TOP_ONLY Buffer contains only top field.

IVIDEO_BOTTOM_ONLY Buffer contains only bottom field

IVIDEO_OperatingMode IVIDEO_DECODE_ONLY Decoding Mode

IVIDEO_ENCODE_ONLY Encoding Mode. Not applicable for
decoder.

IVIDEO_TRANSCODE_FRAMEL

EVEL

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the frame level.

IVIDEO_TRANSCODE_MBLEVE

L

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the MB level. Not supported in this
version of decoder.

IVIDEO_TRANSRATE_FRAMEL

EVEL

Transrate Mode of operation for
encoder, which consumes transrate
information at the frame level. Not
supported in this version of decoder.

API Reference

4-5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_TRANSRATE_MBLEVE

L

Transrate Mode of operation for
encoder, which consumes transrate
information at the MB level. Not
supported in this version of decoder.

IVIDEO_OutputFrameStatus IVIDEO_FRAME_NOERROR Output buffer is available.

IVIDEO_FRAME_NOTAVAILAB

LE

Codec does not have any output
buffers.

IVIDEO_FRAME_ERROR Output buffer is available and
corrupted.

IVIDEO_FRAME_OUTPUTSKIP The video frame was skipped (that
is not decoded)

IVIDEO_OUTPUTFRAMESTATU

S_DEFAULT

Default set to
IVIDEO_FRAME_NOERROR

IVIDEO_PictureType IVIDEO_NA_PICTURE Frame type not available

IVIDEO_I_PICTURE Intra coded picture

IVIDEO_P_PICTURE Forward inter coded picture

IVIDEO_B_PICTURE Bi-directional inter coded picture

IVIDEO_DataMode IVIDEO_FIXEDLENGTH Input to the decoder is in multiples
of a fixed length (example, 4K)
(input side for decoder). Not
supported in this version of MPEG2
Decoder.

IVIDEO_SLICEMODE Slice mode of operation (Input side
for decoder).
Not supported in this version of
MPEG2 Decoder.

IVIDEO_NUMROWS Number of rows, each row is 16
lines of video (output side for
decoder).
Not supported in this version of
MPEG2 Decoder.

IVIDEO_ENTIREFRAME Processing of entire frame data

IVIDDEC3_displayDelay IVIDDEC3_DISPLAY_DELAY_

AUTO

Decoder decides the display delay.
Not supported in this version of
MPEG2 Decoder.

IVIDDEC3_DECODE_ORDER Display frames are in decoded order
without delay

IVIDDEC3_DISPLAY_DELAY_

1

Display the frames with 1 frame
delay

API Reference

4-6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDDEC3_DISPLAY_DELAY_

2

Display the frames with 2 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

3

Display the frames with 3 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

4

Display the frames with 4 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

5

Display the frames with 5 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

6

Display the frames with 6 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

7

Display the frames with 7 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

8

Display the frames with 8 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

9

Display the frames with 9 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

10

Display the frames with 10 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

11

Display the frames with 11 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

12

Display the frames with 12 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

13

Display the frames with 13 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

14

Display the frames with 14 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAY_DELAY_

15

Display the frames with 15 frame
delay. Not supported in this version
of MPEG2 Decoder.

API Reference

4-7

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDDEC3_DISPLAY_DELAY_

16

Display the frames with 16 frame
delay. Not supported in this version
of MPEG2 Decoder.

IVIDDEC3_DISPLAYDELAY_D

EFAULT

Same as
IVIDDEC3_DISPLAY_DELAY_AU

TO. Not supported in this version of

MPEG2 Decoder.

XDM_DataFormat XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
MPEG2 Decoder.

XDM_LE_32 32-bit little endian stream.
Not supported in this version of
MPEG2 Decoder.

XDM_LE_64 64-bit little endian stream.
Not supported in this version of
MPEG2 Decoder.

XDM_BE_16 16-bit big endian stream.
Not supported in this version of
MPEG2 Decoder.

XDM_BE_32 32-bit big endian stream.
Not supported in this version of
MPEG2 Decoder.

XDM_BE_64 64-bit big endian stream.
Not supported in this version of
MPEG2 Decoder.

XDM_ChromaFormat XDM_YUV_420P YUV 4:2:0 planar. Not supported in
this version of MPEG2 Decoder.

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of
MPEG2 Decoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).
Not supported in this version of
MPEG2 Decoder.

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian)
(default value). Not supported in this
version of MPEG2 Decoder.

XDM_YUV_444P YUV 4:4:4 planar. Not supported in
this version of MPEG2 Decoder.

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of
MPEG2 Decoder.

API Reference

4-8

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_GRAY Gray format.
Not supported in this version of
MPEG2 Decoder.

XDM_RGB RGB color format.
Not supported in this version of
MPEG2 Decoder.

XDM_YUV_420SP YUV 4:2:0 chroma semi-planar

XDM_ARGB8888 ARGB8888 color format.
Not supported in this version of
MPEG2 Decoder.

XDM_RGB555 RGB555 color format.
Not supported in this version of
MPEG2 Decoder.

XDM_RGB565 RGB565 color format.
Not supported in this version of
MPEG2 Decoder.

XDM_YUV_444ILE YUV 4:4:4 interleaved (little endian)
color format.
Not supported in this version of
MPEG2 Decoder.

XDM_MemoryType XDM_MEMTYPE_ROW Raw Memory Type (deprecated)

XDM_MEMTYPE_RAW Raw Memory Type i.e., Linear
(standard) memory.

XDM_MEMTYPE_TILED8 2D memory in 8-bit container of tiled
memory space.

XDM_MEMTYPE_TILED16 2D memory in 16-bit container of
tiled memory space.

XDM_MEMTYPE_TILED32 2D memory in 32-bit container of
tiled memory space. Not supported
in this version of MPEG2 Decoder.

XDM_MEMTYPE_TILEDPAGE 2D memory in page container of
tiled memory space.

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill

Status structure

XDM_SETPARAMS Set run-time dynamic parameters

via the DynamicParams structure

XDM_RESET Reset the algorithm.

API Reference

4-9

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_SETDEFAULT Initialize all fields in Params

structure to default values specified
in the library.

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

XDM_GETVERSION Query the algorithm’s version. The
result will be returned in the data

field of the Status structure.

Application has to allocate memory
for a buffer passed through data
field. The minimum buffer size
required is 96 bytes.

XDM_GETCONTEXTINFO Query a split codec part for its
context needs. Not supported in this
version of MPEG2 Decoder.

XDM_GETDYNPARAMSDEFAULT Query algorithm instance regarding
the dynamic parameters default
values.

XDM_SETLATEACQUIREARG Set an algorithm's 'late acquire'
argument.

XDM_AccessMode XDM_ACCESSMODE_READ The algorithm read from the buffer
using the CPU

XDM_ACCESSMODE_WRITE The algorithm wrote from the buffer
using the CPU

XDM_ErrorBit XDM_APPLIEDCONCEALMENT Bit 9
1 - applied concealment
0 - Ignore

XDM_INSUFFICIENTDATA Bit 10
1 - Insufficient data
0 - Ignore

XDM_CORRUPTEDDATA Bit 11
1 - Data problem/corruption
0 - Ignore

XDM_CORRUPTEDHEADER Bit 12
1 - Header problem/corruption
0 - Ignore

API Reference

4-10

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_UNSUPPORTEDINPUT Bit 13
1 - Unsupported feature/parameter
in input
0 - Ignore

XDM_UNSUPPORTEDPARAM Bit 14
1 - Unsupported input parameter or
configuration
0 - Ignore

XDM_FATALERROR Bit 15
1 - Fatal error
0 - Recoverable error

IMPEG2VDEC_ExtendedErrorC

odes

IMPEG2VDEC_ERR_UNSUPPOR

TED_VIDDEC3PARAMS

Bit 0

This error code has been
deprecated.

IMPEG2VDEC_ERR_UNSUPPOR

TED_VIDDEC3DYNAMICPARAM

S

Bit 1
1 - Base class Dynamic params out
of supported range
0 - Ignore

IMPEG2VDEC_ERR_UNSUPPOR

TED_MPEG2DECDYNAMICPARA

MS

Bit 2
1 - Extended class Dynamic params
out of supported range
0 - Ignore

IMPEG2VDEC_ERR_IMPROPER

_DATASYNC_SETTING

Bit 3

This error code has been
deprecated.

IMPEG2VDEC_ERR_NOSLICE Bit 4
1 - Illegal start code search error
from ECD
0 - Ignore

IMPEG2VDEC_ERR_SLICEHDR Bit 5
1 - Illegal Slice start/End error from
ECD
0 - Ignore

IMPEG2VDEC_ERR_MBDATA Bit 6
1 - Data error detected by ECD
0 - Recoverable error

IMPEG2VDEC_ERR_UNSUPPFE

ATURE

Bit 7
1 - Unsupported header extensions
and profile/levels
0 - Ignore

API Reference

4-11

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IMPEG2VDEC_ERR_STREAM_E

ND

Bit 16
1 - End of stream Detected while
parsing
0 - Ignore

IMPEG2VDEC_ERR_UNSUPPRE

SOLUTION

Bit 17
1 - Stream resolution out of create
time range
0 - Ignore

IMPEG2VDEC_ERR_STANDBY Bit 18
1 - HDVICP2 not in standby on
acquire
0 - Ignore

IMPEG2VDEC_ERR_INVALID_

MBOX_MESSAGE

Bit 19
1 - Message from icont to host not
defined
0 - Recoverable error

IMPEG2VDEC_ERR_HDVICP_R

ESET

Bit 20
1 - HDVICP2 reset API from host to
RMAN failed
0 - Ignore

IMPEG2VDEC_ERR_HDVICP_W

AIT_NOT_CLEAN_EXIT

Bit 21
1 - Erroneous exit from the wait API
from host to RMAN
0 - Ignore

IMPEG2VDEC_ERR_SEQHDR Bit 22
1 - Invalid values of the parameters
in sequence header
0 - Ignore

IMPEG2VDEC_ERR_GOP_PICH

DR

Bit 23
1 - Invalid values of the parameters
in GOP and picture headers
0 - Ignore

IMPEG2VDEC_ERR_SEQLVL_E

XTN

Bit 24
1 - Invalid values of the parameters
in sequence level extension
headers
0 - Recoverable error

IMPEG2VDEC_ERR_PICLVL_E

XTN

Bit 25
1 - Invalid values of the parameters
in picture level extension headers
0 - Ignore

IMPEG2VDEC_ERR_TRICK_MO

DE

Bit 26
1 - Denotes frame skipped/
reference frame skipped in Trick
mode
0 - Ignore

API Reference

4-12

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IMPEG2VDEC_ERR_PICSIZEC

HANGE

Bit 27
1 - Change in frame dimensions in
repeat sequence header
0 - Ignore

IMPEG2VDEC_ERR_SEMANTIC Bit 28
1 - Semantic rules of a MPEG-2
stream not followed
0 - Ignore

IMPEG2VDEC_ERR_DECODE_E

XIT

Bit 29
1 - Decoder failed to consume all
the input bytes / All Mbs not
decoded. This has been added to
detect the corruption of dimension
parameters in header.
0 - Ignore

IMPEG2VDEC_ERR_IRES_RES

HANDLE

Bit 30
1 - Invalid resource handle in IRES
interface
0 - Ignore

IMPEG2VDEC_ERR_IRES_RES

DESC

Bit 31

This error code has been
deprecated.

Impeg2VDEC_ErrorStatus MPEG2_ECD_ILLEGAL_EOM Bit 0 of extendedErrorCode0

1 – ECD3 cannot find EOM, end of
macroblock, at the end of
macroblock when picture_type is D-
picture
0 - Error not found

MPEG2_ECD_ILLEGAL_EOB Bit 1 of extendedErrorCode0

1 - ECD3 cannot find EOB, end of
block, in a 64 coefficient block
0 - Error not found

MPEG2_ECD_ILLEGAL_MP1_E

SCAPE_LVL

Bit 2 of extendedErrorCode0

1 - Decoded level from MPEG-2
ESCAPE code is 0x000 or 0x800
0 - Error not found

MPEG2_ECD_ILLEGAL_MP2_E

SCAPE_LVL

Bit 3 of extendedErrorCode0

1 - Decoded level from MPEG-1
ESCAPE code is 0x0000 or 0x8000
0 - Error not found

API Reference

4-13

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_ECD_ILLEGAL_MARKE

R_CONCEAL

Bit 4 of extendedErrorCode0

1 - Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_MBTYP

E_D_PIC

Bit 5 of extendedErrorCode0

1 - Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_DCT_C

OEFF

Bit 6 of extendedErrorCode0

1 - Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_CBP Bit 7 of extendedErrorCode0

1 - Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_MOTIO

N_CODE

Bit 8 of extendedErrorCode0

1 - Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_MB_TY

PE

Bit 9 of extendedErrorCode0

1 – Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_MB_AD

DR_INCR

Bit 10 of extendedErrorCode0

1 – Invalid parameter value in data
0 - Error not found

MPEG2_ECD_ILLEGAL_EOS Bit 11 of extendedErrorCode0

1 – End of slice cannot be found at
the end of picture
0 - Error not found

MPEG2_ECD_ILLEGAL_QUANT

_SCALE_CODE

Bit 12 of extendedErrorCode0

1 – Decoded quantizer_scale_code
is zero
0 - Error not found

MPEG2_ECD_ILLEGAL_SLICE

_START_POS

Bit 13 of extendedErrorCode0

1 – Showing that two data is
mismatched. ECD3 uses
macroblock position in ECD3
ON registers and continue
processing.
0 - Error not found

API Reference

4-14

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_ECD_ILLEGAL_START

_CODE_SEARCH

Bit 14 of extendedErrorCode0

1 – Showing next start code
searching infinite error
0 - Error not found

MPEG2_ECD_ILLEGAL_DC_CO

EFF_OVFL

Bit 15
1 – Result of DC prediction is
overflow or underflow
0 - Error not found

MPEG2_DYNAMIC_PARAMS_HA

NDLE_ERROR

Bit 16 of extendedErrorCode0

1 – Dynamic parameters handle
NULL
0 - Error not found

MPEG2_STATUS_HANDLE_ERR

OR

Bit 17 of extendedErrorCode0

This error code has been
deprecated.

MPEG2_DYNAMIC_PARAMS_SI

ZE_ERROR

Bit 18 of extendedErrorCode0

1 – Dynamic params size neither
base class or extended class size
0 - Error not found

MPEG2_STATUS_SIZE_ERROR Bit 19 of extendedErrorCode0

This error code has been
deprecated.

MPEG2_DECODE_HEADER_ERR

OR

Bit 20 of extendedErrorCode0

1 – DynamicParams.decodeHeader
value out of supported range
0 - Error not found

MPEG2_DISPLAY_WIDTH_ERR

OR

Bit 21 of extendedErrorCode0

1 – DynamicParams.displayWidth
value out of supported range
0 - Error not found

MPEG2_FRAME_SKIP_MODE_E

RROR

Bit 22 of extendedErrorCode0

1 –
DynamicParams.frameSkipMode
value out of supported range
0 - Error not found

API Reference

4-15

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_NEW_FRAME_FLAG_ER

ROR

Bit 23 of extendedErrorCode0

1 – DynamicParams.newFrameFlag
value out of supported range
0 - Error not found

MPEG2_GOTO_IFRAME_ERROR Bit 24 of extendedErrorCode0

1 – Extended Dynamic param
gotoNextIFrame out of supported
range
0 - Error not found

MPEG2_SKIP_BFRAME_ERROR Bit 25 of extendedErrorCode0

1 – Extended Dynamic param
skipBFrame out of supported range
0 - Error not found

MPEG2_SKIP_CURRENTFRAME

_ERROR

Bit 26 of extendedErrorCode0

1 – Extended Dynamic param
skipCurrFrame out of supported
range
0 - Error not found

MPEG2_SEEK_FRAMEEND_ERR

OR

Bit 27 of extendedErrorCode0

1 – Extended Dynamic param
seekFrameEnd out of supported
range
0 - Error not found

MPEG2_NULL_STATUS_DATA_

BUF
Bit 28 of extendedErrorCode0

1 – Data Buffer pointer in status
structure NULL in GETVERSION
control call
0 - Error not found

MPEG2_INSUFFICIENT_STAT

US_DATA_BUF

Bit 29 of extendedErrorCode0

1 – Data buffers within status
structure less than 96 bytes during
getversion control call
0 - Error not found

MPEG2_NULL_INARGS_POINT

ER_ERROR

Bit 30 of extendedErrorCode0

1 – InArgs pointer in process call
NULL
0 - Error not found

API Reference

4-16

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_INARGS_SIZE_ERROR Bit 31 of extendedErrorCode0

1 – InArgs size in process call
neither base class size nor extended
class size
0 - Error not found

MPEG2_INVALID_INPUT_BYT

ES_ERROR

Bit 0 of extendedErrorCode1

1 – Non-positive value of the input
bytes(pInArgs->numBytes) to
process call
0 - Error not found

MPEG2_INVALID_INPUT_ID_

ERROR

Bit 1 of extendedErrorCode1

1 – The input ID of output buffer is 0
0 - Error not found

MPEG2_DECODER_NOT_INITI

ALIZED_ERROR

Bit 2 of extendedErrorCode1

This error code has been
deprecated.

MPEG2_NULL_INPUT_BUF_DE

SC_ERROR

Bit 3 of extendedErrorCode1

1 – Pointer to the Input Buffer
descriptor is NULL
0 - Error not found

MPEG2_NULL_INPUT_BUFFER

_POINTER_ERROR

Bit 4 of extendedErrorCode1

1 – Input buffer pointer is NULL
0 - Error not found

MPEG2_INVALID_INPUT_BUF

FER_SIZE_ERROR

Bit 5 of extendedErrorCode1

1 – Invalid Input buffer size: when
non-positive values for bytes in raw
and dimensions in tiler
0 - Error not found

MPEG2_INVALID_NUM_OF_IN

PUT_BUFFERS_ERROR

Bit 6 of extendedErrorCode1

1 – Insufficient buffers (when
number of Input Buffers less than 1)
0 - Error not found

MPEG2_EXCESS_NUM_OF_INP

UT_BUFFERS_ERROR

Bit 7 of extendedErrorCode1

1 – Redundant input buffers (greater
than 1)
0 - Error not found

API Reference

4-17

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_INVALID_INPUT_BUF

FER_MEMTYPE_ERROR

Bit 8 of extendedErrorCode1

1 – Input stream buffer memory type
other than RAW/Page mode
0 - Error not found

MPEG2_NULL_OUTARGS_POIN

TER_ERROR

Bit 9 of extendedErrorCode1

1 – OutArgs pointer is NULL
0 - Error not found

MPEG2_INVALID_OUTARGS_S

IZE

Bit 10 of extendedErrorCode1

1 – OutArgs size set to value other
than base class or extended class
size
0 - Error not found

MPEG2_NULL_OUTPUT_BUF_D

ESC_POINTER_ERROR

Bit 11 of extendedErrorCode1

1 – The Display buffer descriptor
pointer in OutArgs is NULL
0 - Error not found

MPEG2_NULL_OUTPUT_BUF_D

ESC_ERROR

Bit 12 of extendedErrorCode1

1 – The Output buffer descriptor
pointer provided in process call is
NULL
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER0_POINTER_ERROR

Bit 13 of extendedErrorCode1

1 – Luma output buffer pointer is
NULL
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER0_SIZE_ERROR

Bit 14 of extendedErrorCode1

1 – Luma output buffer
size/dimensions being non-positive
0 - Error not found

MPEG2_INVALID_NUM_OF_OU

TPUT_BUFFERS_ERROR

Bit 15 of extendedErrorCode1

1 – Number of Output buffers other
than 2 (3 in metadataType Mbinfo)
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER0_MEMTYPE_ERROR

Bit 16 of extendedErrorCode1

1 – Luma buffer memory other than
Raw, tiled8, and tiledpage mode
0 - Error not found

API Reference

4-18

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_INVALID_OUTPUT_BU

FFER0_ALIGNMENT_ERROR

Bit 17 of extendedErrorCode1

1 – Luma buffer base address not
128-bit aligned
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER1_POINTER_ERROR

Bit 18 of extendedErrorCode1

1 – Chroma output buffer pointer is
NULL
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER1_SIZE_ERROR
Bit 19 of extendedErrorCode1

1 –Chroma output buffer
size/dimensions being non-positive
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER1_MEMTYPE_ERROR

Bit 20 of extendedErrorCode1

1 – Chroma buffer memory other
than Raw, tiled 8, tiled16 and page
mode
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER1_ALIGNMENT_ERROR

Bit 21 of extendedErrorCode1

1 – Chroma buffer base address not
128-bit aligned
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER2_POINTER_ERROR

Bit 22 of extendedErrorCode1

1 – MBinfo output buffer pointer is
NULL in metadataType Mbinfo
mode
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER2_SIZE_ERROR

Bit 23 of extendedErrorCode1

1 – MBinfo output buffer size is non-
positive in metadataType Mbinfo
mode
0 - Error not found

MPEG2_INVALID_OUTPUT_BU

FFER2_MEMTYPE_ERROR

Bit 24 of extendedErrorCode1

1 – MBinfo output buffer memory
type other than RAW in
metadataType Mbinfo mode
0 - Error not found

MPEG2_INVALID_BUFFER_US

AGE_MODE

Bit 25 of extendedErrorCode1

This error code has been
deprecated.

API Reference

4-19

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_SEQ_HDR_INVALID_F

RAME_WIDTH

Bit 26 of extendedErrorCode1

1 – Frame width from header being
0 or greater than max width
provided at create time
0 - Error not found

MPEG2_SEQ_HDR_INVALID_F

RAME_HEIGHT

Bit 27 of extendedErrorCode1

1 – Frame height from header being
0 or greater than max height
provided at create time
0 - Error not found

MPEG2_SEQ_HDR_INVALID_A

SPECT_RATIO

Bit 28 of extendedErrorCode1

1 – Aspect ratio from sequence
header is not standard compliant
0 - Error not found

MPEG2_SEQ_HDR_INVALID_F

RAME_RATE_CODE

Bit 29 of extendedErrorCode1

1 – Frame rate code from sequence
header not standard compliant
0 - Error not found

MPEG2_INVALID_INTRA_QUA

NT_MAT

Bit 30 of extendedErrorCode1

1 – Intra quantization matrix in
sequence header or quantization
matrix extension is not standard
compliant
0 - Error not found

MPEG2_INVALID_NON_INTRA

_QUANT_MAT

Bit 31 of extendedErrorCode1

1 – Non-Intra quantization matrix in
sequence header or quantization
matrix extension is not standard
compliant
0 - Error not found

MPEG2_SEQ_HDR_INVALID_I

NTRA_ESCAPE_BIT

Bit 0 of extendedErrorCode2

1 – Escape bit in ProfileandLevel
indication of sequence extension is
not standard compliant
0 - Error not found

MPEG2_SEQ_HDR_INVALID_P

ROFILE

Bit 1 of extendedErrorCode2

1 – Unsupported Profile, other than
simple and main
0 - Error not found

API Reference

4-20

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_SEQ_HDR_INVALID_L

EVEL

Bit 2 of extendedErrorCode2

1 – Invalid level indication in
sequence extension
0 - Error not found

MPEG2_SEQ_HDR_INVALID_R

ESOLUTION_FORLVL

Bit 3 of extendedErrorCode2

1 – Level based resolution
constraints violated
0 - Error not found

MPEG2_SEQ_HDR_INVALID_C

HROMA_FORMAT
Bit 4 of extendedErrorCode2

1 – Chroma format in sequence
extension other than 4:2:0
0 - Error not found

MPEG2_SEQ_HDR_INVALID_L

OW_DELAY

Bit 5 of extendedErrorCode2

1 – Low-delay flag set to '1' in
sequence extension not supported
0 - Error not found

MPEG2_SEQ_DSP_INVALID_V

IDEO_FORMAT

Bit 6 of extendedErrorCode2

1 – Video format parameter in
sequence display extension not
standard compliant
0 - Error not found

MPEG2_SEQ_DSP_INVALID_C

OLOUR_PRIM

Bit 7 of extendedErrorCode2

1 – Colour primaries parameter in
sequence display extension not
standard compliant
0 - Error not found

MPEG2_SEQ_DSP_INVALID_T

RF_CHARS

Bit 8 of extendedErrorCode2

1 – Transfer characteristics
parameter in sequence display
extension not standard compliant
0 - Error not found

MPEG2_SEQ_DSP_INVALID_M

AT_COEFFS

Bit 9 of extendedErrorCode2

1 – Matrix coefficients for colour
conversion in sequence display
extension not standard compliant
0 - Error not found

MPEG2_GOP_HDR_INVALID_D

ROP_FLAG

Bit 10 of extendedErrorCode2

1 – The drop flag in GOP header
set when frame rate is not 29.97 Hz
0 - Error not found

API Reference

4-21

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_GOP_HDR_INVALID_H

OUR

Bit 11 of extendedErrorCode2

1 – Invalid 'hour' parameter in GOP
header
0 - Error not found

MPEG2_GOP_HDR_INVALID_M

IN

Bit 12 of extendedErrorCode2

1 – Invalid 'minute' parameter in
GOP header
0 - Error not found

MPEG2_GOP_HDR_INVALID_S

EC
Bit 13 of extendedErrorCode2

1 – Invalid 'second' parameter in
GOP header
0 - Error not found

MPEG2_GOP_HDR_INVALID_T

IME_CODE_PICTURES

Bit 14 of extendedErrorCode2

1 – Invalid 'frame' parameter in GOP
header
0 - Error not found

MPEG2_GOP_HDR_INVALID_B

ROKEN_LINK

Bit 15 of extendedErrorCode2

1 – broken link in GOP header for a
closed GOP
0 - Error not found

MPEG2_PIC_HDR_INVALID_T

EMP_REF

Bit 16 of extendedErrorCode2

This error code has been
deprecated.

MPEG2_PIC_HDR_INVALID_P

IC_TYPE

Bit 17 of extendedErrorCode2

1 – Invalid picture type code: D-
picture in MPEG2 and B-picture in
MPEG1 simple profile.
0 - Error not found

MPEG2_PIC_HDR_INVALID_V

BV_DELAY

Bit 18 of extendedErrorCode2

This error code has been
deprecated.

MPEG1_PIC_HDR_INVALID_F

WD_FCODE

Bit 19 of extendedErrorCode2

1 – Forward f-code in picture header
for B/P pictures is '0'
0 - Error not found

API Reference

4-22

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG1_PIC_HDR_INVALID_B

WD_FCODE

Bit 20 of extendedErrorCode2

1 – Backward f-code in picture
header for B pictures is '0'
0 - Error not found

MPEG2_PIC_HDR_INVALID_F

CODE

Bit 21 of extendedErrorCode2

1 – Invalid fcode values in picture
extension
0 - Error not found

MPEG2_PIC_HDR_INVALID_P

IC_STRUCTURE
Bit 22 of extendedErrorCode2

1 – Invalid picture_structure value in
picture extension. Also, progressive
sequence has to contain 'frame'
pictures.
0 - Error not found

MPEG2_PIC_HDR_INVALID_F

IELD_COMB

Bit 23 of extendedErrorCode2

1 – Picture type combinations for
filed pictures not standard
compliant. Valid types: II, IP, PP, BB
0 - Error not found

MPEG2_PIC_HDR_INVALID_T

FF

Bit 24 of extendedErrorCode2

1 – Top_field_first flag in picture
coding extension not standard
compliant
0 - Error not found

MPEG2_PIC_HDR_INVALID_F

PFD

Bit 25 of extendedErrorCode2

1 – framePredFrameDct flag in
picture coding extension not
standard compliant: has to be '1' for
progressive sequence; has to be '0'
for field pictures
0 - Error not found

MPEG2_PIC_HDR_INVALID_R

FF

Bit 26 of extendedErrorCode2

1 – RepeatFirstField flag in picture
coding extension had to be '0' for a
progressive sequence
0 - Error not found

MPEG2_PIC_HDR_INVALID_P

ROG_FLAG

Bit 27 of extendedErrorCode2

1 – Picture structure has to be
'frame' in a progressive frame
0 - Error not found

API Reference

4-23

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_QUANT_EXT_INVALID

_LOAD_CHROMA_INTRA_FLAG

Bit 28 of extendedErrorCode2

1 –
load_chroma_intra_quantizer_matrix
shall be '0' for 4:2:0 format
0 - Error not found

MPEG2_QUANT_EXT_INVALID

_LOAD_CHROMA_NON_INTRA_

FLAG

Bit 29 of extendedErrorCode2

1 –
load_chroma_non_intra_quantizer_
matrix shall be '0' for 4:2:0 format
0 - Error not found

MPEG2_INVALID_EXTN_CODE Bit 30 of extendedErrorCode2

1 – Undefined header extension
code
0 - Error not found

MPEG2_SEQ_HDR_MISSING Bit 31 of extendedErrorCode2

1 – Picture header is encountered
before sequence header
0 - Error not found

MPEG2_NO_PICTURE_ENCODE

D_ERROR

Bit 0 of extendedErrorCode3

This error code has been
deprecated.

MPEG2_SEQ_EXT_MISSING Bit 1 of extendedErrorCode3

1 – Occurrence of picture coding
extension without sequence
extension
0 - Error not found

MPEG2_PIC_CODING_EXT_MI

SSING

Bit 2 of extendedErrorCode3

This error code has been
deprecated.

MPEG2_SEQ_DISP_EXT_MISS

ING

Bit 3 of extendedErrorCode3

This error code has been
deprecated.

MPEG2_GOP_FIRST_FRAME_N

OT_I

Bit 4 of extendedErrorCode3

1 – First picture of a GOP not an I
picture
0 - Error not found

API Reference

4-24

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_SCALABILITY_NOT_S

UPPORTED

Bit 5 of extendedErrorCode3

1 – Scalable extensions not
supported, hence just parsed
0 - Error not found

MPEG2_END_OF_SEQ_DETECT

ED

Bit 6 of extendedErrorCode3

1 – Sequence end code detected
on parsing
0 - Error not found

MPEG2_PIC_HDR_RFF_FRAME

_RATE_MISMATCH
Bit 7 of extendedErrorCode3

1 – Standard defined dependency
of repeatFirstField flag on frame rate
violated
0 - Error not found

MPEG2_PIC_HDR_INVALID_D

C_PRECISION

Bit 8 of extendedErrorCode3

1 – intraDcPrecision decides the
scaling factor in the inverse
quantization process for the DC
coefficient of an intra block. This has
an invalid value.
0 - Error not found

MPEG2_INVALID_FRAME_RAT

E

Bit 9 of extendedErrorCode3

1 – Frame rate from header is '0' or
greater than the max value set
during create time
0 - Error not found

MPEG2_INVALID_BIT_RATE Bit 10 of extendedErrorCode3

1 – Bit-rate from header is '0' or
greater than the max value set
during create time
0 - Error not found

MPEG2_FRAME_SKIPPED Bit 11 of extendedErrorCode3

1 – Indicates that the current picture
has been skipped from decoding in
trick mode
0 - Error not found

MPEG2_REF_FRAME_SKIPPED Bit 12 of extendedErrorCode3

1 – Indicates that the reference
picture for P/B piture has been
skipped under trick mode
0 - Error not found

API Reference

4-25

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

MPEG2_NO_REF_TO_FLUSH Bit 13 of extendedErrorCode3

1 – No more reference pictures held
by the codec to provide in the flush
call
0 - Error not found

MPEG2_EXCESS_INPUT_BYTE

S

Bit 14 of extendedErrorCode3

1 – Entire input bytes have not been
consumed by the codec
0 - Error not found

MPEG2_ALL_MBS_NOT_DECOD

ED

Bit 15 of extendedErrorCode3

1 – Number of decoded MBs is
lesser than the expected number of
MBs in the picture
0 - Error not found

MPEG2_NO_REF_PFRAME Bit 16 of extendedErrorCode3

1 - No reference pictures for P
Frame.
 0 - Error not found

MPEG2_NO_REF_PFRAME Bit 17 of extendedErrorCode3

1 - No reference pictures for B
Frame
0 - Error not found

XDM_MemoryUsageMode XDM_MEMUSAGE_DATASYNC Bit 0 - Data Sync mode. If this bit is
set, the memory will be used in data
sync mode.
Data sync feature is not supported
in this version of MPEG-2 decoder.

4.2 Data Structures

This section describes the XDM defined data structures, which are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM2_SingleBufDesc

 XDM2_BufDesc

 XDM1_AlgBufInfo

 IVIDEO2_BufDesc

API Reference

4-26

 IVIDDEC3_Fxns

 IVIDDEC3_Params

 IVIDDEC3_DynamicParams

 IVIDDEC3_InArgs

 IVIDDEC3_Status

 IVIDDEC3_OutArgs

4.2.1.1 XDM2_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Data Type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

memType XDAS_Int16 Input Type of memory. See XDM_MemoryType

enumeration for more details.

usageMode XDAS_Int16 Input Memory usage descriptor.

bufSize XDM2_BufSize Input Size of the buffer(for tile memory/row memory)

accessMask XDAS_Int32 Output If the buffer was not accessed by the algorithm
processor (for example, it was filled by DMA or other
hardware accelerator that does not write through the
algorithm CPU), then bits in this mask should not be
set.

4.2.1.2 XDM2_BufSize

║ Description

This defines the union describing a buffer size.
║ Fields

Field Data Type Input/
Output

Description

width XDAS_Int32 Input Width of buffer in 8-bit bytes.
Required only for tiled memory.

height XDAS_Int32 Input Height of buffer in 8-bit bytes.
Required only for tiled memory.

API Reference

4-27

Field Data Type Input/
Output

Description

bytes XDM2_BufSi

ze

Input Size of the buffer in bytes

4.2.1.3 XDM2_BufDesc

║ Description

This structure defines the buffer descriptor for output buffers.
║ Fields

Field Data Type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX

_IO_BUFFERS]

XDM2_Singl

eBufDesc

Input Array of buffer descriptors

4.2.1.4 XDM1_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output

buffers. This structure is filled when you invoke the control() function with

the XDM_GETBUFINFO command.

║ Fields

Field Data Type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_MAX_IO

_BUFFERS]

XDM2_BufSize Output Size required for each input buffer

minOutBufSize[XDM_MAX_I

O_BUFFERS]

XDM2_BufSize Output Size required for each output buffer

inBufMemoryType[XDM_MAX

_IO_BUFFERS]

XDAS_Int32 Output Memory type for each input buffer

outBufMemoryType[XDM_MA

X_IO_BUFFERS]

XDAS_Int32 Output Memory type for each output buffer

minNumBufSets XDAS_Int32 Output Minimum number of buffer sets for
buffer management

API Reference

4-28

Note:

 For MPEG2 Main Profile Decoder, the buffer details are:

 Number of input buffer required is 1.

 Number of output buffers required is 2 if no metadata is requested
by the application (one for Y plane and 1 for Cb/Cr plane).

 For frame mode of operation, there is no restriction on input buffer
size except that it should contain atleast one frame of encoded data.

 The output buffer sizes (in bytes) for a resolution (X,Y) are

 Y buffer = ((ROUND_TO_NEXT_MULT16(X)+2) *
(ROUND_TO_NEXT_MULT16(Y)+2))

 UV buffer = ((ROUND_TO_NEXT_MULT16(X)+2) *
(ROUND_TO_NEXT_MULT16(Y)/2 +2))

 Example: Output buffer sizes required for 1080p are

 Y buffer = (1920 + 2) * (1088 + 2)
UV buffer = (1920 + 2) * (544 + 2)

 These are the maximum buffer sizes but they can be reconfigured
depending on the format of the bit-stream.

 The memory types supported for input buffers are XDM_MEMTYPE_RAW

and XDM_MEMTYPE_TILEDPAGE.

 The memory types supported for luma output buffers are

XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILEDPAGE and

XDM_MEMTYPE_RAW.

 The memory types supported for chroma output buffers are
XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILED16,

XDM_MEMTYPE_TILEDPAGE and XDM_MEMTYPE_RAW.

4.2.1.5 IVIDEO2_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data Type Input/
Output

Description

numPlanes XDAS_Int32 Input/O
utput

Number of buffers for video planes

numMetaPlanes XDAS_Int32
Input/O
utput Number of buffers for Metadata

dataLayout XDAS_Int32 Input/
Output

Video buffer layout. See
IVIDEO_VideoLayout

enumeration for more details

planeDesc

[IVIDEO_MAX_NUM_PLANES]

XDM1_Singl

eBufDesc

Input/
Output

Description for video planes

API Reference

4-29

Field Data Type Input/
Output

Description

metadataPlaneDesc

[IVIDEO_MAX_NUM_METADATA_PLA

NES]

XDM1_Singl

eBufDesc

Input/
Output

Description for metadata planes

secondFieldOffsetWidth[IVIDE

O_MAX_NUM_PLANES] XDAS_Int32

Input/
Output

Offset value for second field in

planeDesc buffer (width in pixels)

secondFieldOffsetHeight[IVID

EO_MAX_NUM_PLANES]

XDAS_Int32 Input/
Output

Offset value for second field in

planeDesc buffer (height in lines)

imagePitch

XDAS_Int32

[]

Input/
Output Image pitch for each plane

imageRegion XDM_Rect Input/
Output

Decoded image region including
padding /encoder input image

activeFrameRegion XDM_Rect

Input/
Output Actual display region/capture region

extendedError XDAS_Int32 Input/
Output

Provision for informing the error type
if any

frameType XDAS_Int32 Input/
Output

Video frame types. See enumeration

IVIDEO_FrameType.

Not applicable for encoders

topFieldFirstFlag XDAS_Int32 Input/
Output

Indicates when the application
(should display)/(had captured) the
top field first.
Not applicable for progressive
content.

repeatFirstFieldFlag XDAS_Int32 Input/
Output

Indicates when the first field should
be repeated.

frameStatus XDAS_Int32 Input/
Output

Video in/out buffer status.

repeatFrame XDAS_Int32 Input/
Output

Number of times to repeat the
displayed frame.

contentType XDAS_Int32 Input/
Output

Video content type. See
IVIDEO_ContentType.

chromaFormat XDAS_Int32 Input/
Output

Chroma format for encoder input
data/decoded output buffer. See

XDM_ChromaFormat enumeration

for details.

scalingWidth XDAS_Int32 Input/
Output

Scaled image width for post
processing for decoder.

API Reference

4-30

Field Data Type Input/
Output

Description

scalingHeight XDAS_Int32 Input/
Output

Scaled image height for post
processing for decoder.

rangeMappingLuma XDAS_Int32 Input/
Output

Applicable for VC1, set to -1 as
default for other codecs

rangeMappingChroma XDAS_Int32 Input/
Output

Applicable for VC1, set to -1 as
default for other codecs

enableRangeReductionFlag XDAS_Int32 Input/
Output

ON/OFF, default is OFF.

Applicable only for VC1.

Note:

 IVIDEO_MAX_NUM_PLANES: Max YUV buffers - one each for Y, U,

and V.

 The following parameters are not supported/updated in this version
of the decoder

 scalingWidth

 scalingHeight

 rangeMappingLuma

 rangeMappingChroma

 enableRangeReductionFlag

4.2.1.6 IVIDDEC3_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

║

Field Data Type Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

API Reference

4-31

Field Data Type Input/
Output

Description

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.7 IVIDDEC3_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

║

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

maxHeight XDAS_Int32 Input Maximum video height to be supported in pixels.
The supported range is [64, 2048]. Default is
1088.

maxWidth XDAS_Int32 Input Maximum video width to be supported in pixels.
The supported range is [64, 2048]. Default is
1920.

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.
Default is 30000.

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second. For example, if bit-rate is 10 Mbps, set
this field to 10485760.
Default is 10000000.

dataEndianness XDAS_Int32 Input Should be set to XDM_BYTE.

forceChromaFormat XDAS_Int32 Input Sets the output to the specified format. Only 420
semi-planar format supported.

Default is XDM_YUV_420SP.

See XDM_ChromaFormat and

eChromaFormat_t enumerations for details.

operatingMode XDAS_Int32 Input Video coding mode of operation
(encode/decode/transcode/transrate).
Only decode and transcode modes are
supported in this version. Default is

IVIDEO_DECODE_ONLY.

displayDelay XDAS_Int32 Input Display delay to start display. Supported values

are IVIDDEC3_DISPLAY_DELAY_AUTO,

IVIDDEC3_DECODE_ORDER and

IVIDDEC3_DISPLAY_DELAY_1.

API Reference

4-32

Field Data Type Input/
Output

Description

Default value is

IVIDDEC3_DISPLAY_DELAY_1.

inputDataMode XDAS_Int32 Input Input mode of operation.
For decoder, it is fixed length/slice mode/entire
frame.
This version of the decoder supports only the
entire frame mode.

outputDataMode XDAS_Int32 Input Output mode of operation.
For decoder, it is row mode/entire frame.
This version of the decoder supports only the
entire frame mode.

numInputDataUnits XDAS_Int32 Input Number of input slices/rows.
Not applicable for this MPEG-2 Decoder as it
does not support sub-frame data
synchronization.

numOutputDataUnit

s

XDAS_Int32 Input Number of output slices/rows.
Not applicable for this MPEG-2 Decoder as it
does not support sub-frame data
synchronization.

errorInfoMode XDAS_Int32 Input Enable/disable packet error information for
input/output. Only

IVIDEO_ERRORINFO_OFF is supported.

displayBufsMode XDAS_Int32 Input Indicates the displayBufs mode. This field

can be set either as
IVIDDEC3_DISPLAYBUFS_EMBEDDED

or IVIDDEC3_DISPLAYBUFS_PTRS. Default

is IVIDDEC3_DISPLAYBUFS_PTRS.

metadataType XDAS_Int32[] Input Type of each metadata plane. This field can be
set to either

IVIDEO_METADATAPLANE_MBINFO or

IVIDEO_METADATAPLANE_NONE. Default is

IVIDEO_METADATAPLANE_NONE.

Note:

 MPEG2 Decoder does not use the maxFrameRate and maxBitRate fields

for creating the algorithm instance. In the current implementation,
maxFrameRate is set to 1000 * 30, and maxBitRate is set to 10000000.

 Maximum video height and width supported are 2048 pixels and 2048 pixels
respectively.

 The minimum height and width supported is 64 pixels.

 dataEndianness field should be set to XDM_BYTE.

 The default value of displayDelay is 1.

API Reference

4-33

 InputDataMode can be set to IVIDEO_ENTIREFRAME only.

4.2.1.8 IVIDDEC3_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance

object. Set this data structure to NULL, if you are not sure of the values to be

specified for these parameters.
║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int

32

Input Size of the basic or extended (if being used) data
structure in bytes.

decodeHeader XDAS_Int

32

Input Number of access units to decode:

0 (XDM_DECODE_AU) - Decode entire frame including

all the headers

1 (XDM_PARSE_HEADER) - Decode only one NAL

unit or Parse the header only

Default is XDM_DECODE_AU.

displayWidth XDAS_Int

32

Input If the field is set to:
0 - Uses decoded image width as pitch
If any other value greater than the decoded image
width is given, then this value in pixels is used as
pitch.

When the output buffer is in non-TILED region, display
width should be multiple of 128. Default value is 0.

frameSkipMode XDAS_Int

32

Input Frame skip mode. See IVIDEO_FrameSkip

enumeration for details.

newFrameFlag XDAS_Int

32

Input Flag to indicate that the algorithm should start a new
frame.

Valid values are XDAS_TRUE and XDAS_FALSE.

This is useful for error recovery, for example, when the
end of frame cannot be detected by the codec but is
known to the application. Not supported in this
decoder.

*putDataFxn XDM_Data

SyncPutF

xn

Input DataSync call back function pointer for putData.

Not supported in this decoder.

putDataHandle XDM_Data

SyncHand

le

Input DataSync handle for putData. Not supported in

this decoder.

*getDataFxn XDM_Data

SyncGetF

xn

Input DataSync call back function pointer for getData.

Not supported in this decoder.

API Reference

4-34

Field Data Type Input/
Output

Description

getDataHandle XDM_Data

SyncHand

le

Input DataSync handle for getData. Not supported in

this decoder.

putBufferFxn XDM_Data

SyncPutB

ufferFxn

Input Not supported in this decoder.

putBufferHandle XDM_Data

SyncHand

le

Input Not supported in this decoder.

lateAcquireArg XDAS_Int

32

Input Argument used during late acquire. Default value is

IRES_HDVICP2_UNKNOWNLATEACQUIREARG.

Note:

 The decoder supports displayWidth >=0. A value of 0 indicated

the decoder will choose the displaywidth (displaywidth =

imagewidth). The displayWidth should be >= image width.

The default value of displayWidth is 0.

 MPEG2 Decoder does not support newFrameFlag. Their values

are set as zero.

 In case of XDM_PARSE_HEADER, the application should provide a

minimum of Sequence header including sequence extensions (if
any) of the stream as input to the decoder.

4.2.1.9 IVIDDEC3_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm instance
object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

numBytes XDAS_Int32 Input Size of input data (in bytes) provided to the algorithm for
decoding

inputID XDAS_Int32 Input Application passes this ID to algorithm and decoder will
attach this ID to the corresponding output frames. This is
useful in case of re-ordering (for example, B frames). If

there is no re-ordering, outputID field in the

API Reference

4-35

IVIDDEC3_OutArgs data structure will be same as

inputID field.

Note:

MPEG2 Decoder copies the inputID value to the outputID value of

IVIDDEC3_OutArgs structure after factoring in the display delay.

4.2.1.10 IVIDDEC3_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if
being used) data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See

XDM_ErrorBit enumeration for

details.

data XDM1_SingleBufDesc Output Buffer information structure for
information passing buffer.

maxNumDisplayBufs XDAS_Int32 Output Maximum number of buffers
required by the codec.

maxOutArgsDisplayB

ufs

XDAS_Int32 Output The maximum number of display
buffers that can be returned through
IVIDDEC3_OutArgs.displayB

ufs.

outputHeight XDAS_Int32 Output Output height in pixels

outputWidth XDAS_Int32 Output Output width in pixels

frameRate XDAS_Int32 Output This value will be derived from VUI
parameters as,

frameRate = time_scale / (2 *

num_units_in_ticks).
In case the VUI parameters are

absent, the frameRate will be

reported as 0, which should be
inferred as ‘not available’.

bitRate XDAS_Int32 Output Average bit-rate in bits per second

API Reference

4-36

Field Data Type Input/
Output

Description

contentType XDAS_Int32 Output Video content. See
IVIDEO_ContentType

enumeration for details.

sampleAspectRatioH

eight

XDAS_Int32 Output Sample aspect ratio for height

sampleAspectRatioW

idth

XDAS_Int32 Output Sample aspect ratio for width

bitRange XDAS_Int32 Output Bit range. It is set to

IVIDEO_YUVRANGE_FULL.

forceChromaFormat XDAS_Int32 Output Output chroma format. See

XDM_ChromaFormat and

eChromaFormat_t enumeration

for details.

operatingMode XDAS_Int32 Output Mode of operation:
Encoder/Decoder/Transcode/Transr
ate. This decoder supports

IVIDEO_DECODE_ONLY and

IVIDEO_TRANSCODE_FRAMELEV

EL only.

frameOrder XDAS_Int32 Output Indicates the output frame order.

See IVIDDEC3_displayDelay

enumeration for more details.

inputDataMode XDAS_Int32 Output Input mode of operation.
For decoder, it is fixed length/slice
mode/entire frame.
This version of the decoder supports
only the entire frame mode.

outputDataMode XDAS_Int32 Output Output mode of operation.
For decoder, it is the row
mode/entire frame.
This version of the decoder supports
only the entire frame mode.

bufInfo XDM_AlgBufInfo Output Input and output buffer information.

See XDM_AlgBufInfo data

structure for details.

metadataType XDAS_Int32[] Input Type of each metadata plane.

decDynamicParams IVIDDEC3_DynamicPar

ams

Output Current values of the decoder's
dynamic parameters.

Note:

 frameOrder field in the status structure is set to the actual display

API Reference

4-37

delay value used by the decoder.

4.2.1.11 IVIDDEC3_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

extendedError XDAS_Int32 Output extendedError Field

bytesConsumed XDAS_Int32 Output Bytes consumed per decode call

OutputID[IVIDEO2

_MAX_IO_BUFFERS]

XDAS_Int32 Output Output ID corresponding to displayBufs

A value of zero (0) indicates an invalid ID. The first
zero entry in array will indicate end of valid

outputIDs within the array. Hence, the application

can stop reading the array when it encounters the
first zero entry.

decodedBufs IVIDEO2_Bu

fDesc

Output The decoder fills this structure with buffer pointers to
the decoded frame. Related information fields for the
decoded frame are also populated.
When frame decoding is not complete, as indicated

by outBufsInUseFlag, the frame data in this

structure will be incomplete. However, the algorithm
will provide incomplete decoded frame data in case
application may choose to use it for error recovery
purposes.

freeBufID[IVIDEO

2_MAX_IO_BUFFERS

]

XDAS_Int32 Output This is an array of inputIDs corresponding to the

frames that have been unlocked in the current
process call.

outBufsInUseFlag XDAS_Int32 Output Flag to indicate that the outBufs provided with the

process() call are in use. No outBufs are

required to be supplied with the next process()

call.

displayBufsMode XDAS_Int32 Output Indicates which mode the displayBufs are

presented in. See the note below for details.

bufDesc [1] IVIDEO2_Bu

fDesc

Output Array containing display frames corresponding to

valid ID entries in the outputID array.

See IVIDEO2_BufDesc data structure for more

details.

*pBufDesc[IVIDEO IVIDEO2_Bu Output Array containing pointers to display frames

API Reference

4-38

Field Data Type Input/
Output

Description

2_MAX_IO_BUFFERS

]

fDesc * corresponding to valid ID entries in the @c

outputID[]

Note:

The display buffer mode can be set as either

IVIDDEC3_DISPLAYBUFS_EMBEDDED or

IVIDDEC3_DISPLAYBUFS_PTRS.

The current implementation of the decoder will always return a
maximum of one display buffer per process call. If the mode is

IVIDDEC3_DISPLAYBUFS_EMBEDDED, then the instance of the display

buffer structure will be present in OutArgs. If the mode is

IVIDDEC3_DISPLAYBUFS_PTRS, then a pointer to the instance will be

present in OutArgs.

API Reference

4-39

4.2.2 MPEG2 Decoder Data Structures

This section includes the following MPEG2 Decoder specific data structures:

 IMPEG2VDEC_Params

 IMPEG2VDEC_DynamicParams

 IMPEG2VDEC_InArgs

 IMPEG2VDEC_Status

 IMPEG2VDEC_OutArgs

4.2.2.1 IMPEG2VDEC _Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for an MPEG2 Decoder instance object.
The creation parameters are defined in the XDM data structure,

IVIDDEC3_Params.

║ Fields

Field Data Type Input/
Output

Description

viddec3Params IVIDDEC3_Params Input See IVIDDEC3_Params data structure

for details.

ErrorConcealmen

tON

XDAS_Int32 Input Set it to 1 to enable error concealment
and 0 to disable error concealment.

If the user wishes to enable error
concealment, decoder needs to be
operated in
IVIDEO_TRANSCODE_FRAMELEVEL

mode and application should provide a
meta data buffer through process call.
metadataType for this buffer should be
set to
IVIDEO_METADATAPLANE_MBINFO.

Default value is 0.

outloopDeBlocki

ng

XDAS_Int32 Input Enables/disables out-of-loop deblocking.
Also specifies the strength of deblocking
if enabled.
0-> Disable de-blocking
1-> Enable de-blocking : Minor
2-> Enable deblocking : Medium
3-> Enable de-blocking : High
4-> Enable deblocking : Strong
Default value is 0.

API Reference

4-40

Field Data Type Input/
Output

Description

debugTraceLevel XDAS_UInt32 Input Specifies the debug trace level. MPEG-2
Decoder supports till level 4. Each higher
level logs more debug trace data. Default
value is 0 (no debug trace log).

lastNFramesToLo

g

XDAS_UInt32 Input Specifies the number of most recent
frames to log in debug trace. Minimum
value supported is 0 and maximum value
supported is 10. Default value is 0.

4.2.2.2 IMPEG2VDEC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for an MPEG-2 instance object. The
run-time parameters are defined in the XDM data structure,

IVIDDEC3_DynamicParams.

║ Fields

Field Data Type Input/
Output

Description

viddec3DynamicParam

s

IVIDDEC3_DynamicPara

ms
Input See

IVIDDEC3_DynamicParams

data structure for details.

gotoNextIFrame XDAS_Int32 Input If set to 1, only I frames are
decoded and provided to the
application for display. P/B frames
are skipped. This continues until
the flag is reset. Default value is 0.

skipBFrame XDAS_Int32 Input On setting this flag, decoder skips
B frames encountered. It searches
for the valid I/P frames and
decodes them. This continues until
the flag is reset. Default value is 0.

skipCurrFrame XDAS_Int32 Input If the flag is set, the current frame
is skipped and decoding is
continued from the next frame.
Default value is 0.

API Reference

4-41

Field Data Type Input/
Output

Description

seekFrameEnd XDAS_Int32 Input “seekFrameEnd” is always used in
conjunction with flags
“gotoNextIFrame”, “skipBFrame”
or “skipCurrFrame”. If this flag is
set to 1, decoder seeks to the
frame end in case of P/B pictures
without decoding and updates the
bytes consumed accordingly. ”. If
this flag is set to 0, decoder just
parses the picture type parameter
and if the picture type is P/B
picture, the decoder returns with
bytes consumed set to zero.
Default value is 1.

4.2.2.3 IMPEG2VDEC_InArgs

║ Description

This structure defines the run-time input arguments for an MPEG2 instance
object.

║ Fields

Field Data Type Input/
Output

Description

viddec3InArgs IVIDDEC3_InArgs Input See IVIDDEC3_InArgs data structure for

details.

4.2.2.4 IMPEG2VDEC_Status

║ Description

This structure defines parameters that describe the status of the MPEG2

Decoder and any other implementation specific parameters. The status

parameters are defined in the XDM data structure, IVIDDEC3_Status.

║ Fields

Field Data Type Input/
Output

Description

viddec3Status IVIDDEC3_Status Output See IVIDDEC3_Status data structure for details

extendedError

Code0

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

extendedError

Code1

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

extendedError

Code2

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

API Reference

4-42

Field Data Type Input/
Output

Description

extendedError

Code3

XDAS_UInt32 Output Parameter added to capture specific errors not
captured in base Status structure

debugTraceLev

el

XDAS_UInt32 Output Specifies the debug trace level. MPEG2 Decoder
supports till level 4. Each higher level logs more
debug trace data.

lastNFramesTo

Log

XDAS_UInt32 Output Specifies the number of most recent frames to log
in debug trace.

extMemoryDebu

gTraceAddr

XDAS_UInt32 * Output Specifies the address of the debug trace dump in
external memory.

extMemoryDebu

gTraceSize

XDAS_UInt32 Output Specifies the size of the debug trace dump in
external memory.

4.2.2.5 IMPEG2VDEC_OutArgs

║ Description

This structure defines the run-time output arguments for the MPEG2
Decoder instance object.

║ Fields

Field Data Type Input/
Output

Description

viddec3OutArgs IVIDDEC3_OutArgs Output See IVIDDEC3_OutArgs data structure for

details.

API Reference

4-43

4.3 Interface Functions

This section describes the application programming interfaces used in the
MPEG2 Decoder. The MPEG2 Decoder APIs are logically grouped into the
following categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

API Reference

4-44

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc() method

requires. This operation allows you to allocate sufficient space to call the

algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The

algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algAlloc()

API Reference

4-45

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm functions

*/

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm. If
successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines the

creation parameters. This pointer may be NULL; however, in this case,

algAlloc(), must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter. algAlloc()

may return a pointer to its parent’s IALG functions. Since the client does not

require a parent object to be created, this pointer must be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory requirements

of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference.

Note:

If you are using extended data structures, the first argument must be a pointer

to the extended Params data structure. Also, ensure that the size field is set

to the size of the extended data structure. Depending on the value set for the

size field, the algorithm uses either base or extended parameters.

║ See Also

algNumAlloc(), algFree()

API Reference

4-46

4.3.2 Initialization API

Initialization API is used to initialize an instance of the MPEG2 Decoder. The

initialization parameters are defined in the IVIDDEC3_Params structure (see

Data Structures section for details).
║ Name

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params;/*algorithm initialization parameters*/

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run-time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated for an
algorithm instance. The number of initialized records is identical to the number

returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm

initialization parameters. All fields in the params structure must be set as

described in IALG_Params structure (see Data Structures section for details).

For more details, see TMS320 DSP Algorithm Standard API Reference.

Note:

If you are using extended data structures, the fourth argument must be a
pointer to the extended Params data structure. Also, ensure that the size field
is set to the size of the extended data structure. Depending on the value set for
the size field, the algorithm uses either base or extended parameters.

║ See Also

algAlloc(), algMoved()

API Reference

4-47

4.3.3 Control API

Control API is used for controlling the functioning of MPEG2 Decoder during
run-time. This is done by changing the status of the controllable parameters of
the decoder during run-time. These controllable parameters are defined in the

IVIDDEC3_DynamicParams data structure (see Data Structures section for

details).
║ Name

control() – change run-time parameters of the MPEG2 Decoder and

query the decoder status
║ Synopsis

XDAS_Int32 (*control)(IVIDDEC3_Handle handle, IVIDDEC3_Cmd

id,IVIDDEC3_DynamicParams *params, IVIDDEC3_Status

*status);

║ Arguments

IVIDDEC3_Handle handle; /* handle to the MPEG2 decoder

instance */

IVIDDEC3_Cmd id; /* MPEG2 decoder specific control

commands*/

IVIDDEC3_DynamicParams *params /* MPEG2 decoder run-time

parameters */

IVIDDEC3_Status *status /* MPEG2 decoder instance status

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run-time parameters of MPEG2 Decoder and queries

the status of decoder. control() must only be called after a successful call to

algInit() and must never be called after a call to algFree().

The first argument to control() is a handle to the MPEG2 Decoder instance

object.

The second argument is a command ID. See IVIDDEC3_Cmd in enumeration

table for details.

The third and fourth arguments are pointers to the IVIDDEC3_DynamicParams

and IVIDDEC3_Status data structures respectively.

Note:

If you are using extended data structures, the third argument must be a pointer

to the extended DynamicParams data structure. Also, ensure that the size

field is set to the size of the extended data structure. Depending on the value

set for the size field, the algorithm uses either base or extended parameters.

║ See Also

algInit()

API Reference

4-48

4.3.4 Data Processing API

Data processing API is used for processing the input data using the MPEG2
Decoder.

║ Name

algActivate()– initialize scratch memory buffers prior to processing.

║ Synopsis

Void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance’s scratch buffers using the

persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-49

║ Name

process() – basic video decoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDDEC3_Handle handle, XDM2_BufDesc

*inBufs, XDM2_BufDesc *outBufs, IVIDDEC3_InArgs *inargs,

IVIDDEC3_OutArgs *outargs);

║ Arguments

IVIDDEC3_Handle handle; /* handle to the MPEG2 decoder

instance */

XDM2_BufDesc *inBufs; /* pointer to input buffer descriptor
data structure */

XDM2_BufDesc *outBufs; /* pointer to output buffer
descriptor data structure */

IVIDDEC3_InArgs *inargs /* pointer to the MPEG2 decoder
runtime input arguments data structure */

IVIDDEC3_OutArgs *outargs /* pointer to the MPEG2 decoder

runtime output arguments data structure */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function does the basic MPEG2 video decoding. The first argument to
process() is a handle to the MPEG2 Decoder instance object.

The second and third arguments are pointers to the input and output buffer

descriptor data structures respectively (see XDM1_BufDesc and

XDM_BufDesc data structure for details).

The fourth argument is a pointer to the IVIDDEC3_InArgs data structure that

defines the run-time input arguments for the MPEG2 Decoder instance object.

Note:

Prior to each decode call, ensure that all fields are set as described in
XDM2_BufDesc and IVIDDEC3_InArgs structures.

The last argument is a pointer to the IVIDDEC3_OutArgs data structure that

defines the run-time output arguments for the MPEG2 Decoder instance object.

The algorithm may also modify the output buffer pointers. The return value is

IALG_EOK for success or IALG_EFAIL in case of failure. The extendedError

field of the IVIDDEC3_Status structure contains error conditions flagged by

the algorithm. This structure can be populated by calling Control API using

XDM_GETSTATUS command.

API Reference

4-50

Note:

If you are using extended data structures, the fourth argument must be a

pointer to the extended InArgs data structure respectively. Also, ensure that

the size field is set to the size of the extended data structure. Depending on

the value set for the size field, the algorithm uses either base or extended

parameters.

║ See Also

control()

API Reference

4-51

║ Name

algDeactivate()– save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that

must be saved prior to next cycle of algActivate() and processing.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algActivate()

API Reference

4-52

4.3.5 Termination API

Termination API is used to terminate the MPEG2 Decoder and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree() determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions after
closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

5-1

Chapter 5

Frequenty Asked Questions

This section answers frequently asked questions related to using MPEG-2
Main Profile Decoder on HDVICP2 and Media Controller Based Platform.

5.1 Code Build and Execution

Question Answer

Build error saying that code
memory section is not sufficient

Make sure that project settings are not changed from the released package
settings such as making project settings as File -O0 and full symbolic
debug which throws an error that code memory section is not sufficient.

Application returns an error
saying “Couldn't open
parameter file …..” while
running the host test app

Make sure that input file path is given correctly. If the application is
accessing input from network, ensure that the network connectivity is stable.

5.2 Issues with Tools Version

Question Answer

Which tools are required to run
the stand-alone codec?

To run the codec on stand-alone setup, you need Framework Components,
Code Composer Studio, ARM compiler tools (CG tools).
If you are running on the simulator, then the correct version of the HDVICP2
Simulation CSP is needed (See Section 2.1 for more details).

What CG tools version should I
use for code compilation?

You may use CG tools version 4.5.1 to compile the code.

5.3 Algorithm Related

Question Answer

Which XDM interface does
codec support?

Codec supports XDM IVIDDEC3 interface.

Does MPEG-2 Decoder support
non-multiple of 16 frame
dimensions?

Yes, this decoder supports non-multiple of 16 image dimensions. Even
odd resolutions are supported in this version.

Does this MPEG-2 Decoder
support MPEG-1 constrained
video streams?

Yes.

Which profiles and levels are
supported by this decoder?

This decoder supports Simple Profile upto Main level and Main Profile
upto High level.

5-2

Question Answer

Does this decoder support
decoding of interlaced video?

Yes.

Does this decoder support
“decode header only” feature?

Yes.

Does this version of decoder
have support for error
concealment?

Yes. This version of decoder has support for error concealment (both
spatial and temporal).

What are the maximum and
minimum resolutions supported
by the decoder?

This decoder supports resolutions ranging from 64x64 to 2048x2048.

Does this version of decoder
support display delay?

Only display delay of 1 or 0 frames is supported in this release. Display
delay 0 means decoding order.

Does Algorithm support
DataSync mechanism?

No. This decoder does not support DataSync mechanism for either input
or output buffers.

Does this decoder support
return of MB Info and Error Info
to enable transcode
applications?

Yes.

Does the decoder support meta
data output?

No. The decoder does not support returning metadata parsed from the
bitstream (except the MBInfo and error info for transcoding, as stated in
answer to previous FAQ).

Does the decoder support out-
of-loop deblocking?

Yes. The decoder supports optional out-of-loop deblocking for display.

What is the 128 byte alignment
requirement for output buffers?

In case the output buffer is in TILED region, the decoder requires a luma
buffer of size ((Width aligned to 16) + 2) * ((Height aligned to 16) + 2) and
a chroma buffer of size ((Width aligned to 16) + 2) * ((Height/2 aligned to
16) + 2). In this case, there is no requirement for a 128 byte aligned
picture/output buffer width. Decoder will use the corresponding TILED
region pitch as the image pitch.

In case the output buffer is in non-TILED region, the decoder requires a
picture/output buffer with 128 byte aligned width. Thus the buffer
requirements will be
128_byte_aligned(((Width aligned to 16) + 2)) * ((Height aligned to 16) +
2) for luma buffer and
128_byte_aligned(((Width aligned to 16) + 2)) * ((Height/2 aligned to 16)
+ 2) for chroma buffer

Please note that the decoder does not assume a 128 byte aligned picture
buffer width, so the application has to inform the same using
displayWidth feature supported by decoder. Then decoder will use this as
image pitch.

6-1

Chapter 6

Picture Format

This Appendix explains picture format details for MPEG2 decoder. Decoder
outputs YUV frames in NV 12 format.

6.1 NV12 Chroma Format

NV12 is YUV 420 semi-planar with two separate planes, one for Y, one for
U and V interleaved.

Luma Plane

Y0,0 Y0,1

Y1,0 Y1,1

Chroma Plane

U0,0 V0,0

U1,0 V1,0

WIDTH

H
EIG

H
T

H
EIG

H
T/2

6-2

6.2 Progressive Picture Format

ActiveRegion and ImageRegion offsets for

chroma are derived from luma offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset>>1) & 0xfffffffe;

ACTIVE REGION (LUMA)

imagePitch

activeRegion.topLeft

activeRegion.bottomRight

fr
a

m
e

H
e
ig

h
t

m
a
x
H

e
ig

h
t

maxWidth

ACTIVE REGION (CHROMA)

picChromaBufferAddr

imagePitch

fr
a

m
e
H

e
ig

h
t/

2

m
a
x
H

e
ig

h
t/
2

maxWidth

imageRegion.topLeft
picLumaBufferAddr

imageRegion.bottomRight

U

0,0

V

0,0

U

0,1

V

0,1

U

1,0

V

1,0

U

1,1

V

1,1

frameWidth

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

1,0

Y

1,1

Y

1,2

Y

1,3

frameWidth

6-3

Note that for decoder in case of progressive sequence:

 Luma and chroma buffer addresses can be allocated independently

 Application shall provide this through separate buffer addresses

 The outermost yellow coloured region is the minimum buffer that application should allocate for
a given maxWidth and maxHeight

 activeRegion

o The displayable region

 imageRegion

o Image data decoded by the decoder whose dimensions are always multiple of 16.

o Contains the activeRegion as a proper subset.

 Picture Buffer (pic(Luma/Chroma)BufferAddr)

o Contains some extra region due to alignment and other constraints.

o The dimensions (width, height, size) of this buffer should be queried from codec
through GETBUFINFO control call

o Contains the imageRegion as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer.

 Padding Amounts

o In vertical direction (bottom), padding amount is 2 pixels for both Luma buffer and
chroma buffer.

o In horizontal direction (right), padding amount is 2 pixels for both Luma buffer chroma
buffer.

6-4

6.3 Interlaced Picture Format

ACTIVE REGION

TOP FIELD (Luma)

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

2,0

Y

2,1

Y

2,2

Y

2,3

ACTIVE REGION

BOTTOM FIELD (Luma)

Y

1,0

Y

1,1

Y

1,2

Y

1,3

Y

3,0

Y

3,1

Y

3,2

Y

3,3

ACTIVE REGION

TOP FIELD (Chroma)

U

0,0

V

0,0

U

0,1

V

0,1

U

2,0

V

2,0

U

2,1

V

2,1

ACTIVE REGION

BOTTOM FIELD (Chroma)

U

1,0

V

1,0

U

1,1

V

1,1

U

3,0

V

3,0

U

3,1

V

3,1

maxWidth

m
a

xH
e
ig

h
t

m
a

xH
e
ig

h
t/

2

maxWidth

imagePitch

frameWidth

frameWidth

frameWidth

fr
a

m
e
H

e
ig

h
t/

2
fr

a
m

e
H

e
ig

h
t/
4

fr
a
m

e
H

e
ig

h
t/
4

fr
a
m

e
H

e
ig

h
t/
2

imageRegion.topLeft activeRegion.topLeft

picLumaBufferAddr =

lumaTopFieldOutput

lumaBottomFieldOutput

imagePitch

picChromaBufferAddr =

chromaTopFieldOutput

chromaTopFieldOutput

frameWidth

 ActiveRegion and ImageRegion offsets for chroma are derived from luma

offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset >> 1) & 0xfffffffe;

 ActiveRegion and ImageRegion offsets are same for top and bottom field

 For top field, offsets should be calculated from lumaTopFieldOutput

 For bottom field, offsets should be calculated from lumaBottomFieldOutput

ActiveRegion and ImageRegion offsets are same for top and bottom field

For top field, offsets should be calculated from lumaTopFieldOutput

For bottom field, offsets should be calculated from lumaBottomFieldOutput

imageRegion.bottomRightactiveRegion.bottomRight

Padded region

Decoded region multiple of

16x16 macroblock

Display region of any integer

number of pixels in horizontal

and vertical direction

6-5

Note that for decoder in case of interlaced sequence:

 Luma and chroma buffers can be allocated independently

 Field buffer allocation cannot be independent

 For every pair of top and bottom field, decoder shall expect a single buffer address from the
application

 The outermost yellow coloured region is the minimum buffer that application should allocate for
a given maxWidth and maxHeight

 activeRegion

o The displayable region

 imageRegion

o Image data decoded by the decoder.

o Contains the activeRegion as a proper subset.

 Picture Buffer (pic(Luma/Chroma)BufferAddr)

o Contains some extra region due to alignment and other constraints.

o The dimensions (width, height, size) of this buffer should be queried from codec
through GETBUFINFO control call

o Contains the imageRegion as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer.

 Padding Amounts

o In vertical direction (bottom), padding amount is 2 pixels for both Luma buffer and
chroma buffer.

o In horizontal direction (right), padding amount is 2 pixels for both Luma buffer chroma
buffer.

6-6

6.4 Constraints on Buffer Allocation for Decoder

 maxWidth and maxHeight are inputs given to the decoder by the applications

o Application may not know the output format of the decoder.

o Therefore, application should allocate Image Buffer based on maxWidth and
maxHeight

 The extra region beyond the (maxWidth x maxHeight) requirements may
be allocated by application due to alignment, pitch or some other
constraints

 Application needs to ensure following conditions regarding imagePitch

o imagePitch shall be greater or equal to the maxWidth.

o imagePitch shall be multiple of 128 bytes (if the buffer is not in TILED region).

o imagePitch shall actually be the tiler space width (i.e. depends on how many bit
per pixel, for 8bpp 16bpp and 32bpp respectively 16Kbyte, 32Kbyte and 32Kbyte).
(if the buffer is in TILED region).

o Application may set imagePitch greater than maxWidth as per display
constraints. However this value must be a multiple of 128 bytes (if the buffer is
not in TILED region).

 picLumaBufferAddr and picChromaBufferAddr shall be 16-byte aligned address. (if the
buffer is not in TILED region).

 ActiveRegion.topLeft and ActiveRegion.bottomRight are decoder outputs

o Application should calculate actual display width and display height based on
these parameters

o ActiveRegion.topLeft and ActiveRegion.bottomRight shall be identical for both
fields in case of interlaced format

 Maximum and Minimum Resolution is defined as below

o Progressive

 Minimum frameWidth = 64

 Minimum frameHeight = 64

 Maximum frameWidth = 2048

 Maximum frameHeight = 2048

o Interlaced

 Minimum frameWidth = 64

 Minimum (frameHeight / 2) = 32

 Maximum frameWidth = 2048

 Maximum (frameHeight / 2) = 1024

 Typically picture buffer allocation requirements for decoder, after buffer addresses meet
alignment constraints and other requirements, for both progressive and interlaced are as
given below.

6-7

o Luma buffer size = maxWidth x maxHeight and

Chroma buffer size = maxWidth x maxHeight/2 where

 maxWidth = frameWidth + 2 (additional 2 columns for reference buffer
fetch optimization)

 maxHeight = frameHeight + 2 (additional 2 rows for reference buffer fetch
optimization)

6-8

This page is intentionally left blank

7-1

Chapter 7

Debug Trace Usage

This section describes the debug trace feature supported by codec and its
usage.

7.1 Introduction

This section explains the approach and overall design that will be adopted for
enabling a trace from a video codec.

The primary uses of Debug Trace are:

1) Make the codec implementation capable of producing a trace containing
details about the history of executing a particular instance of the codec

2) Enable the application to dump certain debug parameters from the codec
in case of a failure. A failure might even be a hang or crash but in general
can be defined as any unacceptable or erroneous behavior

Such a feature is targeted at providing more visibility into the operation of the
codec and thus easing and potentially accelerating the process of debug.

7.2 Enabling and using debug information

To enable debug information, following two parameters are added to the
create time parameters

1) debugTraceLevel

2) lastNFramesToLog

Hence the MPEG-2 decoder create time parameters are modified as

typedef struct IMPEG2VDEC_Params{

 IVIDDEC3_Params viddecParams;

 XDAS_Int32 ErrorConcealmentON;

 XDAS_UInt32 outloopDeBlocking;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 } IMPEG2VDEC_Params;

7-2

7.2.1 debugTracelevel

This parameter configures the codec to dump a debug trace log

 0: Disables dumping of debug trace parameters

 >0: Enables the dumping of debug trace parameters. Value
specifies the level of debug trace information

7.2.2 lastNFramesToLog

This parameter configures the codec to maintain history of debug trace
parameters for last N frames.

 0: No history will be maintained by the codec

 >0 : History of past specified number of frames will be maintained

In order to avoid book-keeping by the application to know whether the codec
has been configured to dump debug trace and where the debug information is
available, the following changes are done in the Status structure.

typedef struct IMPEG2VDEC_Status{

 IVIDDEC3_Status viddecStatus;

 XDAS_UInt32 extendedErrorCode0;

 XDAS_UInt32 extendedErrorCode1;

 XDAS_UInt32 extendedErrorCode2;

 XDAS_UInt32 extendedErrorCode3;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 * extMemoryDebugTraceAddr;

 XDAS_UInt32 extMemoryDebugTraceSize;

} IMPEG2VDEC_Status

debugTraceLevel: Debug trace level configured for the codec - 0, 1, 2,3,4

lastNFramesToLog: Number of frames for which history information is
maintained by the codec

extMemoryDebugTraceAddr: External memory address (as seen by Media
Controller) where debug trace information is being dumped – last memory
buffer requested by the codec

extMemoryDebugTraceSize: External memory buffer size (in bytes) where
debug trace information is being dumped - the size of last memory buffer

7-3

Now the application can retrieve this information from the codec at any time by
the existing GETSTATUS query through the codec’s Control API.

7.3 Debug Trace Levels

Debug Debug trace has been (in this implementation) organized into 4
different levels arranged in a hierarchical fashion.

 Level 1 – Frame level information and profile data

 Level 2 – Slice and MB level information

 Level 3 – Logs function call stack for with entry hook

 Level 4 – Logs function call stack for with exit hook

At each higher level, the previous lower levels are also enabled

7.4 Requirements On The Application

The following are the requirements on the application side:

1. The application should be capable of configuring debugTraceLevel and
lastNFrameToLog which are part of the Initialization Parameters of the
codec

2. The application should be capable of querying the codec for its debug
parameter memory regions and size

3. The application should be capable of retrieving these memory regions
(In external memory or SL2) for the specified size and preserving
these memory dumps in case of any erroneous behavior including a
hang/crash.

4. The application, at any time (in case of hang, crash or any unexpected
behavior) is expected to be also capable of retrieving the SL2 memory
region as returned by the codec in Control-GETSTATUS specified by
the SL2 memory debug trace address and size and provide it to the
codec developer. The codec developer will have a PC based tool to
parse and interpret this dump and produce a readable log of the debug
trace parameters.

7-4

This page is intentionally left blank

8-1

Chapter 8

Error Concealment Usage

This section describes the error concealment feature supported by codec
and its usage.

8.1 Introduction

When a corrupted input stream is provided to video codec, the codec will
decode the stream until the error occurs and comes out of process call
gracefully. In this case, the output might have visual artifacts. The amount of
artifacts depends on the error type and the amount of valid data before the
error occurrence.

Error concealment feature, when enabled will apply concealment algorithms on
the improper output and will reduce the amount of distortion in output.

8.2 Enabling and using Error concealment

To enable error concealment, following parameter is added to the create
time parameters.

 ErrorConcealmentON

Hence the MPEG-2 decoder create time parameters are modified as

typedef struct IMPEG2VDEC_Params{

 IVIDDEC3_Params viddecParams;

 XDAS_Int32 ErrorConcealmentON;

 XDAS_UInt32 outloopDeBlocking;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 } IMPEG2VDEC_Params;

Apart from setting the ErrorConcealmentON parameter, user has to enable
TRANSCODE mode of operation, set the metadataType and provide an
additional metadata buffer for using error concealment feature of MPEG-2
decoder. The same is explained in the following sections.

8-2

8.2.1 ErrorConcealmentON

This parameter configures the codec to enabled/disable error concealment.

 0: Disables concealment

 1: Enables concealment

8.2.2 Transcode Mode

User has to enable transcode mode of operation to use the concealment

feature. This can be achieved by setting the ‘operatingMode’ parameter of

IVIDDEC3_Params to ‘IVIDEO_TRANSCODE_FRAMELEVEL’.

8.2.3 MetaData Type

User has to provide the Metadata type to codec to use concealment feature.

This can be achieved by setting the ‘metadataType’ parameter of

IVIDDEC3_Params to IVIDEO_METADATAPLANE_MBINFO.

8.3 MetaData Buffer Requirement

Once the user sets the codec to work in TRANSCODE mode of operation

and metadataType during create time, the codec will request for an

additional buffer when the application queries for buffer requirement through
GETBUFINFO.

The following table compares the codec buffer requirements with and w/o
error concealment.

Buffer Properties w/o Error
concealment

With Error
concealment

Number of Input
buffers required

 1 1

Inputbuffer Bit stream Yes Yes

Number of output
buffers required

 2 3

Outputbuffer[0] Luma buffer Yes Yes

Outputbuffer[1] Chroma buffer Yes Yes

Outputbuffer[2] Meta data
buffer

No Yes

Please note that ‘Yes’ indicates that the corresponding buffer is required
and ‘No’ indicates that the buffer is not required for decoding to work
properly.

The required size of the metadata buffer can be calculated from below
equation.

8-3

frameSize = (ROUND_TO_NEXT_MULT16(maxWidth) *

 ROUND_TO_NEXT_MULT16(maxHeight))

No of MBs in frame = (frameSize) >> 8;

Size of the buffer = No of MBs in frame * 112 + frameSize

The metadata buffer should be a non-TILED buffer.

Following snippet of code explains the example buffer allocation (Refer to
sample test application provided).

 if((MetaDataType == IVIDEO_METADATAPLANE_MBINFO)||(ErrorConcealmentON))

 {

 outputBufDesc.numBufs = 3;

 outputBufDesc.descs[2].bufSize.bytes =

 (XDAS_Int32) buffEle->bufSize[2].bytes;

 outputBufDesc.descs[2].buf = (XDAS_Int8 *) buffEle->buf[2];

 outputBufDesc.descs[2].memType = XDM_MEMTYPE_ROW;

 outputBufDesc.descs[1].accessMask = XDM_ACCESSMODE_READ;

 }

Codec return the buffer through outArgs->decodebufs-
>metadataPlaneDesc[0].buf.

8.4 Requirements On The Application

The following are the requirements on the application side:

1. The application should be capable of configuring

ErrorconcealmentON, operatingMode and metadataType which

are part of the Initialization Parameters of the codec.

2. The application should be capable of querying the codec for its
memory regions and size using GETBUFINFO.

3. The application should be capable of providing the additional required
buffer to codec through process call through outBufsdesc.

8-4

This page is intentionally left blank

9-1

Chapter 9

Error Handling

This section explains the error handling by MPEG-2 Decoder.

9.1 Description

 This version of the decoder supports handling of erroneous situations while
 decoding. If decoder encounters any erroneous situations, it shall
 exit gracefully without any hang or crash. Also, decoder process call shall

 return IVIDDEC3_EFAIL and relevant error code will be populated in

 extendedError field of outArgs.

 Some of the erroneous situations will get reported as XDM_FATALERROR by

 the decoder. In certain fatal erroneous situations, the application might flush
 out the locked buffers, if need be.

Meanings of various error codes and the recommended application behavior
are provided in the following tables:

Table 9-1 Error Codes used to set the extendedError field in IVIDDEC3_OutArgs and
IVIDDEC3_Status

Bit Error Code Explanation Recommended App

Behaviour

0 IMPEG2VDEC_ERR_UNSUPPORTED_VIDD

EC3PARAMS
This error code has been
deprecated.

NA

1 IMPEG2VDEC_ERR_UNSUPPORTED_VIDD

EC3DYNAMICPARAMS
Base class Dynamic
params out of supported
range

Call GETSTATUS by passing
extended Status structure to get
more details about the error
through extendedErrorCode0
(/1/2/3) parameters

2 IMPEG2VDEC_ERR_UNSUPPORTED_MPEG

2DECDYNAMICPARAMS
Extended class Dynamic
params out of supported
range

Call GETSTATUS by passing
extended Status structure to get
more details about the error
through extendedErrorCode0
(/1/2/3) parameters

3 IMPEG2VDEC_ERR_IMPROPER_DATASYN

C_SETTING
This error code has been
deprecated.

NA

4 IMPEG2VDEC_ERR_NOSLICE Illegal start code search
error from ECD

The input stream might be
corrupted. Pass the next frame in
the stream.

5 IMPEG2VDEC_ERR_SLICEHDR Illegal Slice start/End
error from ECD

The input stream might be
corrupted. Pass the next frame in
the stream.

6 IMPEG2VDEC_ERR_MBDATA Data error detected by
ECD

The input stream might be
corrupted. Pass the next frame in
the stream.

7 IMPEG2VDEC_ERR_UNSUPPFEATURE Unsupported header
extensions and
profile/levels

Call GETSTATUS by passing
extended Status structure to get
more details about the error
through extendedErrorCode0

9-2

(/1/2/3) parameters. Refer Section
1.3 of this user guide for
supported services and features.

16 IMPEG2VDEC_ERR_STREAM_END End of stream Detected
while parsing

Pass the next frame in the
stream.

17 IMPEG2VDEC_ERR_UNSUPPRESOLUTION Stream resolution out of
create time range

Call delete and create again with
proper resolutions

18 IMPEG2VDEC_ERR_STANDBY HDVICP2 not in standby
on acquire

Do HDVICP_Reset, XDM
Reset and pass stream

19 IMPEG2VDEC_ERR_INVALID_MBOX_MES

SAGE
Message from iCont to
host not defined

Do HDVICP_Reset, XDM
Reset and pass stream

20 IMPEG2VDEC_ERR_HDVICP_RESET HDVICP2 reset API from
host to RMAN failed

Do XDM Reset and pass stream

21 IMPEG2VDEC_ERR_HDVICP_WAIT_NOT_

CLEAN_EXIT
Erroneous exit from the
wait API from host to
RMAN

Pass the next frame in the stream

22 IMPEG2VDEC_ERR_SEQHDR Invalid values of the
parameters in sequence
header

Pass the next frame in the
stream. Decoding will not be
proper till the next proper
sequence header is encountered.

23 IMPEG2VDEC_ERR_GOP_PICHDR Invalid values of the
parameters in GOP and
picture headers

Pass the next frame in the stream

24 IMPEG2VDEC_ERR_SEQLVL_EXTN Invalid values of the
parameters in sequence
level extension headers

Pass the next frame in the
stream. Decoding will not be
proper till the next proper
sequence header is encountered.

25 IMPEG2VDEC_ERR_PICLVL_EXTN Invalid values of the
parameters in picture
level extension headers

Pass the next frame in the stream

26 IMPEG2VDEC_ERR_TRICK_MODE Denotes frame skipped/
reference frame skipped
in Trick mode and
reference frames are
not available for P-
Frames and B-Frames .

Pass the next frame in the stream

27 IMPEG2VDEC_ERR_PICSIZECHANGE Change in frame
dimensions in repeat
sequence header

Pass the next frame in the stream

28 IMPEG2VDEC_ERR_SEMANTIC Semantic rules of a
MPEG-2 stream not
followed

Pass the next frame in the stream

29 IMPEG2VDEC_ERR_DECODE_EXIT Decoder failed to
consume all the input
bytes / All MBs not
decoded. This has been
added to detect the
corruption of dimension
parameters in header.

Pass the next frame in the stream

30 IMPEG2VDEC_ERR_IRES_RESHANDLE Invalid resource handle
in IRES interface

Call delete and create again with
proper handle

31 IMPEG2VDEC_ERR_IRES_RESDESC This error code has been
deprecated.

NA

9-3

Table 9-2 Error Codes used to set the extendedErrorCode0 ,extendedErrorCode1,
extendedErrorCode2 and extendedErrorCode3 fields in IMPEG2VDEC_Status

Bit Error Code Explanation Recommended App

Behaviour

0 MPEG2_ECD_ILLEGAL_EOM ECD3 cannot find EOM,
end of macroblock, at
the end of macroblock
when picture_type is D-
picture

The input stream might be
corrupted. Pass the next frame in
the stream.

1 MPEG2_ECD_ILLEGAL_EOB ECD3 cannot find EOB,
end of block, in a 64
coefficient block

The input stream might be
corrupted. Pass the next frame in
the stream.

2 MPEG2_ECD_ILLEGAL_MP1_ESCAPE_L

VL
Decoded level from
MPEG-2 ESCAPE code
is 0x000 or 0x800

The input stream might be
corrupted. Pass the next frame in
the stream.

3 MPEG2_ECD_ILLEGAL_MP2_ESCAPE_L

VL
Decoded level from
MPEG-1 ESCAPE code
is 0x0000 or 0x8000

The input stream might be
corrupted. Pass the next frame in
the stream.

4 MPEG2_ECD_ILLEGAL_MARKER_CONCE

AL
Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

5 MPEG2_ECD_ILLEGAL_MBTYPE_D_PIC Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

6 MPEG2_ECD_ILLEGAL_DCT_COEFF Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

7 MPEG2_ECD_ILLEGAL_CBP Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

8 MPEG2_ECD_ILLEGAL_MOTION_CODE Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

9 MPEG2_ECD_ILLEGAL_MB_TYPE Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

10 MPEG2_ECD_ILLEGAL_MB_ADDR_INCR Invalid parameter value
in data

The input stream might be
corrupted. Pass the next frame in
the stream.

11 MPEG2_ECD_ILLEGAL_EOS End of slice cannot be
found at the end of
picture

The input stream might be
corrupted. Pass the next frame in
the stream.

12 MPEG2_ECD_ILLEGAL_QUANT_SCALE_

CODE
Decoded
quantizer_scale_code is
zero

The input stream might be
corrupted. Pass the next frame in
the stream.

13 MPEG2_ECD_ILLEGAL_SLICE_START_

POS
Showing that two data is
mismatched. ECD3 uses
macroblock position in
ECD3 ON registers and
continue processing.

The input stream might be
corrupted. Pass the next frame in
the stream.

14 MPEG2_ECD_ILLEGAL_START_CODE_S

EARCH
Showing next start code
searching infinite error

The input stream might be
corrupted. Pass the next frame in
the stream.

9-4

16 MPEG2_ECD_ILLEGAL_DC_COEFF_OVF

L

Result of DC prediction is
overflow or underflow

The input stream might be
corrupted. Pass the next frame in
the stream.

17 MPEG2_DYNAMIC_PARAMS_HANDLE_ER

ROR

Dynamic parameters handle
NULL

Call SETPARAMS with proper
dynamicParams

18 MPEG2_STATUS_HANDLE_ERROR This error code has been
deprecated.

NA

19 MPEG2_DYNAMIC_PARAMS_SIZE_ERRO

R

Dynamic params size neither
base class or extended class size

Call SETPARAMS with proper
values

20 MPEG2_STATUS_SIZE_ERROR This error code has been
deprecated.

NA

21 MPEG2_DECODE_HEADER_ERROR DynamicParams.decodeHeader
value out of supported range

Call SETPARAMS with proper
values

22 MPEG2_DISPLAY_WIDTH_ERROR DynamicParams.displayWidth
value out of supported range

Call SETPARAMS with proper
values

23 MPEG2_FRAME_SKIP_MODE_ERROR DynamicParams.frameSkipMode
value out of supported range

Call SETPARAMS with proper
values

24 MPEG2_NEW_FRAME_FLAG_ERROR DynamicParams.newFrameFlag
value out of supported range

Call SETPARAMS with proper
values

25 MPEG2_GOTO_IFRAME_ERROR Extended Dynamic param
gotoNextIFrame out of supported
range

Call SETPARAMS with proper
values

26 MPEG2_SKIP_BFRAME_ERROR Extended Dynamic param
skipBFrame out of supported
range

Call SETPARAMS with proper
values

27 MPEG2_SKIP_CURRENTFRAME_ERROR Extended Dynamic param
skipCurrFrame out of supported
range

Call SETPARAMS with proper
values

28 MPEG2_SEEK_FRAMEEND_ERROR Extended Dynamic param
seekFrameEnd out of supported
range

Call SETPARAMS with proper
values

29 MPEG2_NULL_STATUS_DATA_BUF Data Buffer pointer in status
structure NULL in GETVERSION
control call

Call GETVERSION with proper
data buffer pointer in status
structure

30 MPEG2_INSUFFICIENT_STATUS_DATA

_BUF

Data buffers within status
structure less than 96 bytes
during getversion control call

Call GETVERSION with proper
data buffer size

31 MPEG2_NULL_INARGS_POINTER_ERRO

R

InArgs pointer in process call
NULL

Call process call with valid inArgs
pointer to process call

32 MPEG2_INARGS_SIZE_ERROR InArgs size in process call neither
base class size nor extended
class size

Call process call with valid size
for inArgs during process call

33 MPEG2_INVALID_INPUT_BYTES_ERRO

R

Non-positive value of the input
bytes(pInArgs->numBytes) to
process call

Call process call with a valid input
buffer size

34 MPEG2_INVALID_INPUT_ID_ERROR The input ID of output buffer is 0 Call process call with a valid input
ID

35 MPEG2_DECODER_NOT_INITIALIZED_

ERROR

This error code has been
deprecated.

NA

36 MPEG2_NULL_INPUT_BUF_DESC_ERRO

R

Pointer to the Input Buffer
descriptor is NULL

Call process call with valid input
buffer descriptor pointer to
process call

37 MPEG2_NULL_INPUT_BUFFER_POINTE

R_ERROR

Input buffer pointer is NULL Call process call with valid input
buffer pointer to process call

38 MPEG2_INVALID_INPUT_BUFFER_SIZ

E_ERROR

Invalid Input buffer size: when
non-positive values for bytes in
raw and dimensions in tiler

Call process call with valid input
buffer size to process call

39 MPEG2_INVALID_NUM_OF_INPUT_BUF

FERS_ERROR

Insufficient buffers (when number
of Input Buffers less than 1)

Call process call with sufficient
number of input buffers to
process call

40 MPEG2_EXCESS_NUM_OF_INPUT_BUFF

ERS_ERROR

Redundant input buffers (greater
than 1)

Pass the next frame in the stream
with appropriate number of input
buffers

41 MPEG2_INVALID_INPUT_BUFFER_MEM

TYPE_ERROR

Input stream buffer memory type
other than RAW/Page mode

Call process call with valid input
buffer memory type to process
call

42 MPEG2_NULL_OUTARGS_POINTER_ERR

OR

OutArgs pointer is NULL Call process call with valid
outArgs pointer to process call

43 MPEG2_INVALID_OUTARGS_SIZE OutArgs size set to value other
than base class or extended class

Call process call with valid size
for outArgs during process call

9-5

size

44 MPEG2_NULL_OUTPUT_BUF_DESC_POI

NTER_ERROR

The Display buffer descriptor
pointer in OutArgs is NULL

Call process call with valid input
buffer descriptor pointer to
process call

45 MPEG2_NULL_OUTPUT_BUF_DESC_ERR

OR

The Output buffer descriptor
pointer provided in process call is
NULL

Call process call with valid output
buffer descriptor pointer to
process call

46 MPEG2_INVALID_OUTPUT_BUFFER0_P

OINTER_ERROR

Luma output buffer pointer is
NULL

Call process call with valid luma
output buffer pointer to process
call

47 MPEG2_INVALID_OUTPUT_BUFFER0_S

IZE_ERROR

Luma output buffer
size/dimensions being non-
positive

Call process call with valid luma
output buffer size to process call

48 MPEG2_INVALID_NUM_OF_OUTPUT_BU

FFERS_ERROR

Number of output buffers other
than 2 (3 in metadataType
Mbinfo)

Call process call with appropriate
number of output buffers to
process call

49 MPEG2_INVALID_OUTPUT_BUFFER0_M

EMTYPE_ERROR

Luma buffer memory other than
Raw, tiled8, and tiledpage mode

Call process call with valid luma
output buffer memory type to
process call

50 MPEG2_INVALID_OUTPUT_BUFFER0_A

LIGNMENT_ERROR

Luma buffer base address not
128-bit aligned

Call process call with properly
aligned luma output buffer to
process call

51 MPEG2_INVALID_OUTPUT_BUFFER1_P

OINTER_ERROR

Chroma output buffer pointer is
NULL

Call process call with valid
chroma output buffer pointer to
process call

52 MPEG2_INVALID_OUTPUT_BUFFER1_S

IZE_ERROR

Chroma output buffer
size/dimensions being non-
positive

Call process call with valid
chroma output buffer size to
process call

53 MPEG2_INVALID_OUTPUT_BUFFER1_M

EMTYPE_ERROR

Chroma buffer memory other than
Raw, tiled 8, tiled16 and page
mode

Call process call with valid
chroma output buffer memory
type to process call

54 MPEG2_INVALID_OUTPUT_BUFFER1_A

LIGNMENT_ERROR

Chroma buffer base address not
128-bit aligned

Call process call with properly
aligned chroma output buffer to
process call

55 MPEG2_INVALID_OUTPUT_BUFFER2_P

OINTER_ERROR

MBinfo output buffer pointer is
NULL in metadataType Mbinfo
mode

Call process call with valid MBInfo
output buffer pointer to process
call

56 MPEG2_INVALID_OUTPUT_BUFFER2_S

IZE_ERROR

MBinfo output buffer size is non-
positive in metadataType Mbinfo
mode

Call process call with valid MBInfo
output buffer size to process call

57 MPEG2_INVALID_OUTPUT_BUFFER2_M

EMTYPE_ERROR

MBinfo output buffer memory type
other than RAW in metadataType
Mbinfo mode

Call process call with valid MBInfo
output buffer memory type to
process call

58 MPEG2_INVALID_BUFFER_USAGE_MOD

E

This error code has been
deprecated.

NA

59 MPEG2_SEQ_HDR_INVALID_FRAME_WI

DTH

Frame width from header being 0
or greater than max width
provided at create time

Pass the next frame in the stream

60 MPEG2_SEQ_HDR_INVALID_FRAME_HE

IGHT

Frame height from header being
0 or greater than max height
provided at create time

Pass the next frame in the stream

61 MPEG2_SEQ_HDR_INVALID_ASPECT_R

ATIO

Aspect ratio from sequence
header is not standard compliant

Pass the next frame in the stream

62 MPEG2_SEQ_HDR_INVALID_FRAME_RA

TE_CODE

Frame rate code from sequence
header not standard compliant

Pass the next frame in the stream

63 MPEG2_INVALID_INTRA_QUANT_MAT Intra quantization matrix in
sequence header or quantization
matrix extension is not standard
compliant

Pass the next frame in the stream

64 MPEG2_INVALID_NON_INTRA_QUANT_

MAT

Non-Intra quantization matrix in
sequence header or quantization
matrix extension is not standard
compliant

Pass the next frame in the stream

65 MPEG2_SEQ_HDR_INVALID_INTRA_ES

CAPE_BIT

Escape bit in ProfileandLevel
indication of sequence extension
is not standard compliant

Pass the next frame in the stream

66 MPEG2_SEQ_HDR_INVALID_PROFILE Unsupported Profile, other than
simple and main

Pass the next frame in the stream

67 MPEG2_SEQ_HDR_INVALID_LEVEL Invalid level indication in
sequence extension

Pass the next frame in the stream

68 MPEG2_SEQ_HDR_INVALID_RESOLUTI

ON_FORLVL

Level based resolution
constraints violated

Pass the next frame in the stream

9-6

69 MPEG2_SEQ_HDR_INVALID_CHROMA_F

ORMAT

Chroma format in sequence
extension other than 4:2:0

Pass the next frame in the stream

70 MPEG2_SEQ_HDR_INVALID_LOW_DELA

Y

Low-delay flag set to '1' in
sequence extension not
supported

Pass the next frame in the stream

71 MPEG2_SEQ_DSP_INVALID_VIDEO_FO

RMAT

Video format parameter in
sequence display extension not
standard compliant

Pass the next frame in the stream

72 MPEG2_SEQ_DSP_INVALID_COLOUR_P

RIM

Colour primaries parameter in
sequence display extension not
standard compliant

Pass the next frame in the stream

73 MPEG2_SEQ_DSP_INVALID_TRF_CHAR

S

Transfer characteristics
parameter in sequence display
extension not standard compliant

Pass the next frame in the stream

74 MPEG2_SEQ_DSP_INVALID_MAT_COEF

FS

Matrix coefficients for colour
conversion in sequence display
extension not standard compliant

Pass the next frame in the stream

75 MPEG2_GOP_HDR_INVALID_DROP_FLA

G

The drop flag in GOP header set
when frame rate is not 29.97 Hz

Pass the next frame in the stream

76 MPEG2_GOP_HDR_INVALID_HOUR Invalid 'hour' parameter in GOP
header

Pass the next frame in the stream

77 MPEG2_GOP_HDR_INVALID_MIN Invalid 'minute' parameter in GOP
header

Pass the next frame in the stream

78 MPEG2_GOP_HDR_INVALID_SEC Invalid 'second' parameter in
GOP header

Pass the next frame in the stream

79 MPEG2_GOP_HDR_INVALID_TIME_COD

E_PICTURES

Invalid 'frame' parameter in GOP
header

Pass the next frame in the stream

80 MPEG2_GOP_HDR_INVALID_BROKEN_L

INK

Broken link in GOP header for a
closed GOP

Pass the next frame in the stream

81 MPEG2_PIC_HDR_INVALID_TEMP_REF This error code has been
deprecated.

Pass the next frame in the stream

82 MPEG2_PIC_HDR_INVALID_PIC_TYPE Invalid picture type code: D-
picture in MPEG2 and B-picture
in MPEG1 simple profile.

Pass the next frame in the stream

83 MPEG2_PIC_HDR_INVALID_VBV_DELA

Y

This error code has been
deprecated.

Pass the next frame in the stream

84 MPEG1_PIC_HDR_INVALID_FWD_FCOD

E

Forward f-code in picture header
for B/P pictures is '0'

Pass the next frame in the stream

85 MPEG1_PIC_HDR_INVALID_BWD_FCOD

E

Backward f-code in picture
header for B pictures is '0'

Pass the next frame in the stream

86 MPEG2_PIC_HDR_INVALID_FCODE Invalid fcode values in picture
extension

Pass the next frame in the stream

87 MPEG2_PIC_HDR_INVALID_PIC_STRU

CTURE

Invalid picture_structure value in
picture extension. Also,
progressive sequence has to
contain 'frame' pictures.

Pass the next frame in the stream

88 MPEG2_PIC_HDR_INVALID_FIELD_CO

MB

Picture type combinations for filed
pictures not standard compliant.
Valid types: II, IP, PP, BB

Pass the next frame in the stream

89 MPEG2_PIC_HDR_INVALID_TFF Top_field_first flag in picture
coding extension not standard
compliant

Pass the next frame in the stream

90 MPEG2_PIC_HDR_INVALID_FPFD framePredFrameDct flag in
picture coding extension not
standard compliant: has to be '1'
for progressive sequence; has to
be '0' for field pictures

Pass the next frame in the stream

91 MPEG2_PIC_HDR_INVALID_RFF RepeatFirstField flag in picture
coding extension had to be '0' for
a progressive sequence

Pass the next frame in the stream

92 MPEG2_PIC_HDR_INVALID_PROG_FLA

G

Picture structure has to be 'frame'
in a progressive frame

Pass the next frame in the stream

93 MPEG2_QUANT_EXT_INVALID_LOAD_C

HROMA_INTRA_FLAG

load_chroma_intra_quantizer_ma
trix shall be '0' for 4:2:0 format

Pass the next frame in the stream

94 MPEG2_QUANT_EXT_INVALID_LOAD_C

HROMA_NON_INTRA_FLAG

load_chroma_non_intra_quantize
r_matrix shall be '0' for 4:2:0
format

Pass the next frame in the stream

95 MPEG2_INVALID_EXTN_CODE Undefined header extension code Refer Section 1.3 of this user
guide for supported services and
features.

9-7

96 MPEG2_SEQ_HDR_MISSING Picture header is encountered
before sequence header

Pass the next frame in the stream

97 MPEG2_NO_PICTURE_ENCODED_ERROR This error code has been
deprecated.

NA

98 MPEG2_SEQ_EXT_MISSING Occurrence of picture coding
extension without sequence
extension

Pass the next frame in the stream

99 MPEG2_PIC_CODING_EXT_MISSING This error code has been
deprecated.

NA

100 MPEG2_SEQ_DISP_EXT_MISSING This error code has been
deprecated.

NA

101 MPEG2_GOP_FIRST_FRAME_NOT_I First picture of a GOP not an I
picture

Pass the next frame in the stream

102 MPEG2_SCALABILITY_NOT_SUPPORTE

D

Scalable extensions not
supported, hence just parsed

Pass the next frame in the stream

103 MPEG2_END_OF_SEQ_DETECTED Sequence end code detected on
parsing

End of sequence has been
reached

104 MPEG2_PIC_HDR_RFF_FRAME_RATE_M

ISMATCH

Standard defined dependency of
repeatFirstField flag on frame rate
violated

Pass the next frame in the stream

105 MPEG2_PIC_HDR_INVALID_DC_PRECI

SION

intraDcPrecision decides the
scaling factor in the inverse
quantization process for the DC
coefficient of an intra block. This
has an invalid value.

Pass the next frame in the stream

106 MPEG2_INVALID_FRAME_RATE Frame rate from header is '0' or
greater than the max value set
during create time

Pass the next frame in the stream

107 MPEG2_INVALID_BIT_RATE Bit-rate from header is '0' or
greater than the max value set
during create time

Pass the next frame in the stream

108 MPEG2_FRAME_SKIPPED Indicates that the current picture
has been skipped from decoding
in trick mode

Pass the next frame in the stream

109 MPEG2_REF_FRAME_SKIPPED Indicates that the reference
picture for P/B piture has been
skipped under trick mode

Pass the next frame in the stream

110 MPEG2_NO_REF_TO_FLUSH No more reference pictures held
by the codec to provide in the
flush call

All reference pictures have been
given out by the codec

111 MPEG2_EXCESS_INPUT_BYTES Entire input bytes have not been
consumed by the codec

Pass the next frame in the stream

112 MPEG2_ALL_MBS_NOT_DECODED Number of decoded MBs is lesser
than the expected number of MBs
in the picture

Pass the next frame in the stream

