

MPEG4/H263 Decoder on HDVICP2 and
Media Controller Based Platform

User’s Guide

Literature Number: SPRUGQ8
May 2018

 IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and
other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per
JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s
terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems
necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their
products and applications using TI components. To minimize the risks associated with Buyers’ products and applications,
Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work
right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.
Information published by TI regarding third-party products or services does not constitute a license to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such
altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or
support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement
safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of
failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any
damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal
is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards
and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the
parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for
use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI
components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with
all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of
use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers

 amplifier.ti.com Communications and Telecom www.ti.com/communications Data

Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks

and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical Logic

 logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

 Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://www.ti.com/omap
http://e2e.ti.com/
http://www.ti.com/wirelessconnectivity

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) MPEG4 Advanced Simple Profile Decoder implementation on the
HDVICP2 . It also provides a detailed Application Programming Interface
(API) reference and information on the sample application that
accompanies this component.

TI’s codec implementations based on the eXpress-DSP Digital Media
(XDM) standard and IRES interface. XDM is an extension of the
eXpress-DSP Algorithm Interface Standard (XDAIS). IRES are the
universal resource manager to handle different types of resource
requests by algorithms (codec). IRES keep the framework independent
and agnostic of different resource requests by different algorithms

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the HDVICP2 and Ducati Functional Simulator.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, introduces the XDAIS and XDM
standards. It also provides an overview of the codec and lists its
supported features.

 Chapter 2 - Installation Overview, Describes how to install, build,
and run the codec.

 Chapter 3 - Sample Usage, Describes the sample usage of the
codec.

 Chapter 4 - API Reference, Describes the data structures and
interface functions used in the codec.

 Chapter 5 – Frequently Asked Questions, Provides answers to
few frequently asked questions related to using this decoder.

Read This First

iv

 Chapter 6 - Debug Trace Usage, Provides information on enabling
decoder dump debug trace and collection procedure by application.

 Appendix A- Picture Format, Provides information on format of
YUV buffers provide to Decoder.

 Appendix B- Meta Data Support, Provides information on writing
the MB info data into application provided buffers.

 Appendix C- Error Handling, Provides information on handling the
erroneous conditions while decoding.

 Appendix D- Parse Header Support, Provides information on parse
header support for MPEG4 streams.

 Appendix E- Support for display delay, Provides information on
configuration of decoder to achieve desired display delay.

 Appendix F- Support for padding Type, Provides information on
configuration of decoder to support padding type for non standard
resolution video clips (non multiple of 16 resolution)

 Appendix G- Support for Dynamic change of resolution,
Provides information when given test stream is having dynamic
change in resolution

 Appendix H- Support for drop of frame , Provides info, when first
frame of stream is missing from the sequence

Related Documentation from Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Interoperability Standard (also known as XDAIS)
specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard

http://www.ti.com/

Read This First

v

(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY2 library.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

The following documents describe TMS320 devices and related support
tools:

 Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

 TMS320c64x+ Megamodule (literature number SPRAA68) describes
the enhancements made to the internal memory and describes the
new features have been added to support the internal memory
architecture's performance and protection.

 TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

 TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

 TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools
such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

 The Future of Digital Video White Paper (literature number
SPRY066)

Related Documentation

You can use the following documents to supplement this user guide:

 ISO/IEC 14496-10:2005 (E) Rec.- Information technology – Coding
of audio-visual objects – H.264 (E) ITU-T Recommendation

Abbreviations

The following abbreviations used in this document.

Table 1-1. List of Abbreviations

Abbreviation Description

BIOS TI’s simple RTOS for DSPs

CPB Coded Picture Buffer

Read This First

vi

Abbreviation Description

CSL Chip Support Library

D1 720x576 resolutions in progressive scan

DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN DMA Manager

DPB Decoded Picture Buffer

EVM Evaluation Module

GMC Global Motion Compensation

HDTV High Definition Television

IPCM Intra-frame Pulse Code Modulation

IRES Interface standard to request and receive
handles to resources

IVA Image Video Accelerator

IEC

ISO

International Electro technical Commission

International standard organization

MB Macro Block

MMCO Memory Management Control Operation

MPEG Moving Pictures Experts Group

MV Motion Vector

NTSC National Television Standards Committee

RMAN Resource Manager

RTOS Real Time Operating System

UUID Unregistered Unique Identifier

VGA Video Graphics Array (640 x 480
resolution)

VOP Video Object Plane

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

YUV Color space in luminance and
chrominance form

Read This First

vii

Text Conventions

The following conventions used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and

command line commands shown in a mono-spaced font.

Read This First

viii

Product Support

When contacting TI for support on this codec, quote the product name
(MPEG4 Advanced Simple Profile Decoder on HDVICP2) and version
number. The version number of the codec is included in the Title of the
Release Notes that accompanies this codec.

Trademarks

Code Composer Studio, DSP/BIOS, eXpressDSP, TMS320,
TMS320C64x, TMS320C6000, TMS320DM644x, and TMS320C64x+ are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

ix

Contents

Read This First .. iii
About This Manual ... iii
Intended Audience ... iii
How to Use This Manual .. iii
Related Documentation from Texas Instruments ... iv
Related Documentation .. v
Text Conventions .. vii
Product Support.. viii
Trademarks .. viii

Contents .. ix
Figures ... xi
Tables... xiii
Introduction ... 1-1

1.1 Overview of XDAIS, XDM and IRES .. 1-2
1.1.1 XDAIS Overview .. 1-2
1.1.2 XDM Overview ... 1-2
1.1.3 IRES Overview ... 1-3

1.2 Overview of MPEG4 Advanced Simple Profile Decoder 1-5
1.3 Supported Services and Features .. 1-7

Installation Overview .. 2-9
2.1 System Requirements .. 2-10

2.1.1 Hardware .. 2-10
2.1.2 Software ... 2-10

2.2 Installing the Component ... 2-10
2.3 Before Building the Sample Test Application ... 2-15

2.3.1 Installing Framework Component (FC) .. 2-15
Also, ensure that the environment variable XDCROOT is set to the XDC installation

directory. ... 2-16
2.3.3 Installing HDVICP2 and CSP library .. 2-16

2.4 Building and Running the Sample Test Application .. 2-16
2.4.1 Building the Sample Test Application .. 2-16
2.4.2 Running the Sample Test Application on OMAP4 ES1.0 2-17
2.4.3 Running the Sample Test Application on DM816x DDR2 EVM REV-B........... 2-18

2.5 Configuration Files ... 2-19
2.5.1 Generic Configuration File ... 2-19
2.5.2 Decoder Configuration File .. 2-19

2.6 Standards Conformance and User-Defined Inputs ... 2-21
2.7 Uninstalling the Component ... 2-21

Sample Usage .. 3-1
3.1 Overview of the Test Application .. 3-2

3.1.1 Parameter Setup .. 3-3
3.1.2 Algorithm Instance Creation and Initialization .. 3-3
3.1.3 Process Call ... 3-4
3.1.4 Algorithm Instance Deletion ... 3-6

x

3.2 Frame Buffer Management by Application ... 3-6
3.2.1 Frame Buffer Input and Output ... 3-6
3.2.2 Frame Buffer Format .. 3-7
3.2.3 Frame Buffer Management by Application ... 3-7

3.3 Handshaking between Application and Algorithm .. 3-8
3.4 Address Translations ... 3-9
3.5 Sample Test Application .. 3-10

API Reference .. 4-1
4.1 Symbolic Constants and Enumerated Data Types ... 4-2
4.2 Data Structures .. 4-12

4.2.1 Common XDM Data Structures .. 4-12
4.2.2 MPEG4 Decoder Data Structures .. 4-26

4.3 Interface Functions .. 4-30
4.3.1 Creation APIs ... 4-31
4.3.2 Initialization API .. 4-33
4.3.3 Control API ... 4-34
4.3.4 Data Processing API .. 4-36
4.3.5 Termination API.. 4-40

Frequently Asked Questions .. 5-41
5.1 Code Build and Execution .. 5-41
5.2 Issues with Tools Version .. 5-41
5.3 Algorithm Related .. 5-41

Debug Trace Usage ... 5-43
6.1 Introduction .. 5-43
6.2 Enabling and using debug information ... 5-43

6.2.1 debugTracelevel ... 5-44
6.2.2 lastNFramesToLog ... 5-44

6.3 Debug Trace Levels ... 5-45
6.4 Requirements On The Application ... 5-45

Picture Format ... 5-47
Meta Data Support... 5-55
Error Handling ... 5-59
Parse Header Support ... 5-1
Support for Display Delay ... 5-1
Support for Padding type ... 5-3
Support for Dynamic Change in Resolution .. 5-7
Support for Drop of frame .. 5-9
Support for Decoding only Intra frames using less memory 5-11

xi

Figures

Figure 1-1. IRES Interface Definition and Function Calling Sequence. 1-4
Figure 1-2. Flow diagram of the MPEG4 Advanced Simple Profile Decoder. 1-6
Figure 2- 1.Component Directory Structure .. 2-11
Figure 3-1. Test Application Sample Implementation ... 3-2
Figure 3-2. Process call with Host release. ... 3-5
Figure 3-3. Interaction of Frame Buffers Between Application and Framework 3-7
Figure 3-4. Interaction between Application and Codec. .. 3-8

xii

This page is intentionally left blank

xiii

Tables

Table 1-1. List of Abbreviations .. v
Table 2-1. Component Directories ... 2-11
Table 4-1. List of Enumerated Data Types ... 4-2
Table 6-2. Error Codes Information .. 5-59

xiv

This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter introduces XDAIS and XDM. It also provides an overview of
TI’s implementation of the MPEG4 Advanced Simple Profile Decoder on
the HDVICP2 and Media Controller Based platform and its supported
features.

Topic Page

1.1 Overview of XDAIS, XDM and IRES 1-2

1.2 Overview of MPEG4 Advanced Simple Profile Decoder 1-5

1.3 Supported Services and Features 1-7

Introduction

1-2

1.1 Overview of XDAIS, XDM and IRES

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the

algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be

freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process

data in real-time. The algActivate() API provides a notification to the

algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods

have been run, the client application calls the algDeactivate() API prior

to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),

algNumAlloc(), and algMoved(). For more details on these APIs, see

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codec’s with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codec’s

Introduction

1-3

(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm

instance and receive status information from the algorithm in real-time. The

control() API replaces the algControl() API defined as part of the

IALG interface. The process() API does the basic processing

(encode/decode) of data.

Apart from defining standardized APIs for multimedia codec’s, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements, and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES define standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that
requested. The framework calls the IRES interface functions, in addition to
the IALG functions, to perform IRES resource initialization, activation, and
deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

RMAN - Generic IRES-based resource manager, which manages and
grants concrete IRES resources to algorithms and applications. RMAN
uses a new standard interface, the IRESMAN, to support run-time
registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by
the concrete IRES resource interface.

IRES interface definition and function-calling sequence depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Figure 1-1. IRES Interface Definition and Function Calling Sequence.

Introduction

1-5

1.2 Overview of MPEG4 Advanced Simple Profile Decoder

MPEG4 is a popular video coding algorithm enabling high quality
multimedia services on a limited bandwidth network. MPEG4 standard
defines several profiles and levels that specify restrictions on the bit-stream
and hence limits the capabilities needed to decode the bit-streams. Each
profile specifies a subset of algorithmic features that limits all decoders
conforming to that profile may support. Each level specifies a set of limits
on the values that may taken by the syntax elements in that profile. There
are 19 profiles defined for MPEG4 video coding standard.

Some important MPEG4 profiles and their special features:

 Simple Profile:

o I-VOP (Intra-coded rectangular VOP, progressive video format)

o P-VOP (Inter-coded rectangular VOP, progressive video format)

o Short header (mode for compatibility with H.263 Codec’s)

o Compression efficiency tools (four motion vectors per macro block,
unrestricted motion vectors, Intra prediction).

o Transmission efficiency tools(video packets, Data Partitioning,
Reversible Variable Length Codes)

 Advanced Simple Profile:

o I-VOP (Intra-coded rectangular VOP, progressive video format)

o P-VOP (Inter-coded rectangular VOP, progressive video format)

o B-VOP (bi-directionally predicted Inter-coded VOP)

o Quarter-pixel motion compensation.

o Global motion compensation.

o Two quantization modes

o Interlace (tools for coding interlaced video sequences).

o Short header (mode for compatibility with H.263 Codec’s)

o Compression efficiency tools (four motion vectors per macro block,
unrestricted motion vectors, Intra prediction).

o Transmission efficiency tools(video packets, Data Partitioning,
Reversible Variable Length Codes)

The input to the decoder can be MPEG-4, short header specific encoded
bit-stream in the byte-stream syntax. Each byte-stream contains sequence
of syntax structure like, VOS (Video object sequence), VO (Visual object),
VOL (Video Object layer), VO(Video object),GOV(Group of VOP) and
VOP(Video object plane. All the above syntax structures have their own
length defined by the standard and also some of them may or may not be
present in encoded streams. Each VOP will be containing Intra, Inter, MV
data for decoding and reconstructing the frame.

 Intra coded data: - Spatial prediction mode (AC DC Co-efficient
prediction from neighboring intra MB/BLOCKS) and prediction error
data that subjected to DCT and later quantized.

Introduction

1-6

 Inter coded data: - Motion information (Motion vector) and residual
error data (differential data between two frames) that is subjected to
DCT and later quantized.

The decoder re-constructs an Intra frame by spatial intra-prediction
specified by the mode and by adding the prediction error. In case of inter
coding, the decoder reconstructs the frame by adding the residual error
data to the previously decoded picture, at the location specified by the
motion information (Motion vector). The output of the decoder is a YUV
sequence, which is of 4:2:0 semi planar format(Y is a single plane and the
Chroma data – Cb and Cr are interleaved to form the other plane).

Figure 1-2. Flow diagram of the MPEG4 Advanced Simple Profile Decoder.

From this point onwards, all references to MPEG4 Decoder means MPEG4
Advanced Simple Profile Decoder only.

Inverse
Quantization

Inverse DC &
AC prediction

Variable
Length

Decoding

Inverse
Scan

Inverse DCT

Coded Data
(Texture) M

P
E

G
4

 B
IT

-S
T

R
E

A
M

Coded Data
(Motion) Motion

Decoding
Motion

Compensation

Used only in P-Block decoding

Used only in I-Block decoding

QFS[n] PQF[v] [u]

 QF[v] [u]
F[v] [u] F[y] [x] D[y] [x]

P[y][x]

+
+

MEMORY
(previous VOP)

 MEMORY
(neighbor
blocks)

Introduction

1-7

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of MPEG4 Decoder on
the HDVICP2 and Media Controller Based platform.

This version of the codec has the following supported features:

 MPEG4 Simple profile levels 0,1,2,3,4A,5 and 6 are supported

 MPEG4 Advanced Simple Profile levels 0,1,2,3,4,5 and 6 are
supported

 Support for H.263 profile 0 and 3

 Supports H.263 Annexs I,J,K and T only

 Supports Progressive, Interlace picture type decoding

 Supports intra-prediction and inter-prediction modes

 Supports frame based decoding

 Frame with minimum resolution of 64x64 to maximum 2048x2048 pixel
supported

 Frame with width/height non-multiple of two decoding is supported.

 Supports YUV420 semi-planar Chroma format

 Support for graceful exit under error conditions

 Error concelement for errorneuos streams is supported

 Parse header functionality supported

 Codec to provide MB info to application as part of Meta data
infomation is supported when transecode mode is on and this is
optional

 Performance measured for 1920x1080 picture resolution for
progressive as well interlace format in normal conditions (without error
scenario)

 Configurable display delay in case of low delay application supported

 eXpressDSP Digital Media (XDM IVIDDEC3) compliance

 Supports booting of HDVICP2 and power optimization techniques

 Integrated with codec engine using FC version 3.20.00.22

 Integrated with HDVICP2.0 library version 01.00.00.23

 Provides library that can be used with RTSC as well as non-RTSC
environment for system integration

 Ability to plug in any multimedia frameworks (e.g. Codec engine,
OpenMax, GStreamer etc)

 Independent of any OS (DSP/BIOS, Linux, windowCE, syybian etc.)

Introduction

1-8

 Supports multi-channel functionality

 Supports optional loop filter post-processing

This version of the decoder does not support the following features as per
the Advanced Simple Profile feature set:

 Support for Global Motion Compensation

 Support for Sub-frame level data synchronization API’s at both Input
and Output

Installation Overview

2-9

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-10

2.2 Installing the Component 2-10

2.3 Before Building the Sample Test Application 2-15

2.4 Building and Running the Sample Test Application 2-16

2.5 Configuration Files 2-19

2.6 Standards Conformance and User-Defined Inputs 2-21

2.7 Uninstalling the Component 2-21

Installation Overview

2-10

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec is been tested on the HDVICP2 and Media Controller based
OMAP4 and DM816x DDR2 EVM REV-B hardware platforms.

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Development Environment: This codec is developed using Code
Composer Studio (Code Composer Studio v4) version 4.2.0.09000.

http://softwaredl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/
Prereleases/setup_CCS_4.2.0.09000.zip

 Code Generation Tools: This codec is compiled, assembled,
archived, and linked using the code generation tools version 4.5.1

All though CG tools are part of Code Composer Studio v4 installation, it
is recommended that you re-install CG tools by downloading from the
following link.

https://www-
a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Platform Simulator: This codec is developed using Netra/OMAP4
simulator with CSP version 0.7.1.This release can be obtained by
software updates on code composer studio v4. Make sure that
following site is listed as part of updates sites to visit.

http://softwaredl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Upd
ates/NETRA/site.xml

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a directory called
500.V.MPEG4.D.ASP.IVAHD.01.00 under which under which the directory
named IVAHD_001 is created:

The sub directory structures for IVAHD_001 are depicted in Figure 2- 1

http://softwaredl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://softwaredl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://softwaredl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml
http://softwaredl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/NETRA/site.xml

Installation Overview

2-11

Figure 2- 1.Component Directory Structure

Table 2-1 provides a description of the sub-directories created in
IVAHD_001directory.

Table 2-1. Component Directories

Sub-Directory Description

Installation Overview

2-12

Sub-Directory Description

\algsrc\build\vM3\Obj

Contains intermediate Object files generated for Media Controller
(host) project

\algsrc\docs Contains documents specific to the Media Controller (host) project

\algsrc\inc Contains header files needed by the Media Controller (host) project
and some interface files which are shared between HDVICP2 and
Media Controller

\algsrc\src\asm Contains assembly files needed by Media Controller (host) project

\algsrc\src\c Contains source files needed by Media Controller (host) project

\Client\Build\ TestAppDeviceName Contains the CCSv4 project files. The name of this directory will not
be same as exactly mentioned here. Instead of Device Name string,
actual name of Device will be present

\Client \Build\ TestAppDeviceName
\Map

Contains the memory map file, generated on compilation of the code.

\Client \Build\ TestAppDeviceName
\Obj

Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\Client \Build\ TestAppDeviceName
\Out

Contains the final application executable (.out) file generated by the
sample test application.

\ Client \Test\Src Contains application source files

\ Client \Test\Inc Contains application header files

\ Client \Test\TestVecs\Config Contains sample configuration files for mpeg4 decoder

\ Client \Test\TestVecs\Input Contains input test vectors

\ Client \Test\TestVecs\Output Contains output generated by the codec. It is empty directory as part
of release

\ Client \Test\TestVecs\Reference Contains read-only reference output to be used for cross-checking
against codec output

Installation Overview

2-13

Sub-Directory Description

\docs Contains user guide, and data sheet.

\icont\build\icont1\Map Contains the generated map file related to icont1 project

\icont\build\icont1\Obj Contains the generated object files related to icont1 project

\icont\build\icont1\Out Contains the generated executable files related to icont1 project

\icont\build\icont2\Map Contains the generated map file related to icont2 project

\icont\build\icont2\Obj Contains the generated object files related to icont2 project

\icont\build\icont2\Out Contains the generated executable files related to icont2 project

\icont\docs

Contains the iCONT module specific documents

\icont\inc Contains the iCONT module specific header files

\icont\src\asm Contains assembly files needed by the iCONT1 and 2 projects

\icont\src\c

Contains source files needed by the iCONT1 and 2 projects

\icont\errorconceal\algsrc\ build
\Map

Contains the generated map file related to errorconcealment

\icont\errorconceal\algsrc\build\Obj Contains the generated object files related to errorconcealment

\icont\errorconceal\algsrc\build\Out Contains the generated executable files related to errorconcealment

\icont\errorconceal\algsrc\build\mak
e

Contains the generated executable files related errorconcealment

\icont\errorconceal\algsrc\docs

Contains the errorconcealment module specific documents

\icont\errorconceal\algsrc\inc Contains the errorconcealment module specific header files

\icont\errorconceal\algsrc\src Contains source files needed by the errorconcealment.

\icont\errorconceal\eclib\ build \Map Contains the generated map file related to errorconcealment eclib

\icont\errorconceal\eclib\build\Obj Contains the generated object files related to errorconcealment eclib

\icont\errorconceal\eclib\build\Out Contains the generated executable files related to errorconcealment
eclib

\icont\errorconceal\eclib\build\make Contains the generated executable files related errorconcealment
eclib

Installation Overview

2-14

Sub-Directory Description

\icont\errorconceal\eclib\docs

Contains the errorconcealment eclib module specific documents

\icont\errorconceal\eclib\inc Contains the errorconcealment eclib module specific header files

\icont\errorconceal\eclib\src Contains source files needed by the errorconcealment eclib.

\icont\errorconceal\eclib\lib Contains library generated by the errorconcealment eclib.

\icont\errorconceal\inc Contains header files.

\Inc Contains XDM related header files, which allow interface to the codec
library.

\Lib\ Contains the library file named as mpeg4vdec_ti_host.lib for
decoding the compressed video data

\utils Contains the utility file(s) required by mpeg4 decoder

\utils\debugTrace Contains visual c project to generate debug trace along with
executable to generate the debug trace for decoder.

\utils\fileio Contains makefile based project and required source and header files
to support various file read and write lib options along with this also
present common lib fileio.lib.

\utils\statictablegen Contains the project and source files to generate the static
tables/commands offline.

\utils\statictablegen\build Contains the project to generate the static tables/commands offline.

\utils\statictablegen\build\Map Contains the generated map file related to static tables/commands
Preparation project.

\utils\statictablegen\build\Obj Contains the generated obj file related to static tables/commands
preparation
project.

\utils\statictablegen\build\Out Contains the generated executable file related to static
tables/commands
Preparation project.

\utils\statictablegen\src Contains the source file to generate the static tables/commands
offline.

\utils\Hextoc Contains the source file to generate executable for hex to c
conversion.

\utils\tiler Contains makefile based project and required source and header files
to support generation of common tiler memory related lib.

Installation Overview

2-15

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need TI Framework Components (FC) and HDVICP2
library.

This version of the codec has been validated Framework Component (FC)
version 3.20.00.22.

This version of the codec has been validated HDVICP2 library version
01.00.00.23 and HDVICP2.0 CSP Version 00.05.02.00

Set the system environment variable TI_DIR to the CCSv4 installation
path. Example: TI_DIR = <CCSv4 Installation Dir>\ccsv4.

Add gmake (GNU Make version 3.78.1) utility folder path (for example,
“C:\CCStudioV4.0\ccsv4\utils\gmake”) at the beginning of the PATH
environment variable.

Install CG Tools version 4.5.1 for ARM (TMS470) at the following location
in your system: <CCSv4.2_InstallFolder>\ccsv4\tools\compiler\tms470.
CGTools 4.5.1 can be downloaded from

 https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Please note that CG Tools 4.5.1 is installed at the location mentioned
above along with the CCS v4.2 installation by default. However, as some
problems have been reported about this, we recommend that you install
CG Tools 4.5.1 again with the installer obtained from the above link.

Set environment variable CG_TOOL_DIR to <cgtools4.5.1_install_dir>\

The version of the XDC tools required is 3.20.04.68.

2.3.1 Installing Framework Component (FC)

You can download FC from the following website:

http://softwaredl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20
_00_22/index_FDS.html

Extract the FC zip file to the same location where you have installed Code
Composer Studio. For example:

<Install directory>\CCStudio4.0

Set a system environment variable named FC_INSTALL_DIR pointing to
<install directory>\CCStudio4.0\<fc_directory>

The test application uses the following IRES and XDM files:

 HDVICP related ires header files, these are available in the
<install directory>\CCStudio4.0\<fc_directory>\packages
\ti\sdo\fc\ires\hdvicp directory.

 Tiled memory related header file, these are available in the
<install directory>\CStudio4.0\<fc_directory>\fctools\packages
\ti\sdo\fc\ires\tiledmemory directory.

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://softwaredl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://softwaredl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html

Installation Overview

2-16

 XDM related header files, these are available in the
<install directory>\CCStudio4.0\<fc_directory>\fctools\packages
\ti\xdais directory.

 Memutils file for memory address translation, these are available in the
<install directory>\CStudio4.0\<fc_directory>\
packages\ti\sdo\fc\memutils directory

2.3.2 Installing XDC Tools

XDC Tools is required to build the test application. The test application uses
the standard files like <std.h> from XDC tools. This decoder has been
validated with XDC version 3.20.04.68. The XDC tools can be downloaded
and installed from the following URL:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index
_FDS.html

 Also, ensure that the environment variable XDCROOT is set to the XDC
installation directory.

2.3.3 Installing HDVICP2 and CSP library

The HDVICP2 library should be available in the same place as the codec
package.

Set a system environment variable named HDVICP2_INSTALL_DIR
pointing to <hdvicp2_directory>\hdvicp20

The test application uses the HDVICP20 library file (ivahd_ti_api_vM3.lib)
from <hdvicp2_directory>\hdvicp20\lib directory

Set a system environment variable named CSP_INSTALL_DIR pointing to
<csp_directory>\csp

2.4 Building and Running the Sample Test Application

2.4.1 Building the Sample Test Application

MPEG4 decoder on HDVICP2 and Media Controller based platform has
below projects

Project Make file Path Output files

Icont 1 \icont\build\icont1\make\ \icont\build\icont1\out\

mpeg4vdec_ti_icont1.out

\algsrc\inc\ mpeg4vdec_ti_icont1_code.h

\algsrc\inc\

mpeg4vdec_ti_icont1_code_debugtracelevel1.h

\algsrc\inc\
mpeg4vdec_ti_icont1_code_debugtracelevel2.h

Icont 2 \icont\build\icont2\make\ \icont\build\icont2\out\

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_20_04_68/index_FDS.html

Installation Overview

2-17

mpeg4vdec_ti_icont2.out

\algsrc\inc\ mpeg4vdec_ti_icont2_code.h

\algsrc\inc\
mpeg4vdec_ti_icont2_code_debugtracelevel1.h

\algsrc\inc\
mpeg4vdec_ti_icont2_code_debugtracelevel2.h

vM3 \algsrc\build\vM3\make\ \lib\ mpeg4vdec_ti_host.lib

Test

Application
\client\build\<TestAppDeviceNam

e>\make\

\client\build\TestApp<DeviceName>\out

\ mpeg4vdec_ti_hosttestapp.out

Run the <release_package>\make.bat with “all’ as an argument to build all
the projects.

Ex: make.bat all

This batch file will build all the projects in the above mentioned order and
generate the output files as given in the table.

Below command can be used for cleaning all the projects

make.bat clean

Individual make files for each project can be built using the below
commands

gmake –k –s clean

gmake –k –s deps

gmake –k –s all

Note: To build sample test application to run on OMAP4 simulator, macro
“HOSTCORTEXM3_SIMULATOR” need to be defined in the test application
make file placed at \client\build\<TestAppDeviceName>\make\

2.4.2 Running the Sample Test Application on OMAP4 ES1.0

The sample test application that accompanies this codec component will
run in TI’s Code Composer Studio development environment. To run the
sample test application on OMAP4 ES1.0, follow these steps:

1) Start Code Composer Studio v4 and set up the target configuration for
OMAP4 ES1.0 Emulator.

2) Select the Debug perspective in the workbench. Launch OMAP4 ES1.0
Emulator in CCSv4 (View > Target Configurations > %OMAP4
Emulator%).

3) Select CortexA9_0 device, right click and choose “Connect Target” and
wait for emulator to connect to CortexA9 and execute the GEL file
(omap4430 startup sequence).

4) Select Cortex_M3_0 device, right click and choose “Connect Target” and
wait for emulator to connect to CortexM3.

5) Select Cortex_M3_0 device and Target > Load Program, browse to the
\client\build\TestApp<DeviceName>\out\ sub-directory, select the codec

Installation Overview

2-18

executable “mpeg4vdec_ti_hosttestapp.out” and load it in preparation for
execution.

6) Select Target > Run to execute the application for Cortex_M3_0 device.

7) Test application will take input streams from \client\test\testvecs\input\
directory and generates outputs in \client\test\testvecs\output\ directory.

Note:

Order of connecting to the devices is important and it should be as
mentioned in above steps.

2.4.3 Running the Sample Test Application on DM816x DDR2 EVM REV-B

To run the sample test application on DM816x DDR2 EVM, follow these
steps:

1) Select the Debug perspective in the workbench. Launch DM816x DDR2
EVM Emulator configuration in CCSv4.

2) Select CortxA8 device, right click and choose “Connect Target” and wait for
emulator to connect to CortexA8.

3) Select Tools > GEL Files. This opens up the GEL Files window. Right click
and select “Load GEL…”. Load the GEL file named
DM816x_Rev_A_DDR2_EVM.gel.

4) Select Scripts > NETRA Omx Init > OmxInit. The script runs. Wait till you
see “Omx Initialization completed”.

5) Select Cortex_M3_RTOS_0 device, right click and choose “Connect Target”
and wait for emulator to connect to CortexM3.

6) Select Cortex_M3_RTOS_0 device and Target > Load Program, browse to
\client\build\TestAppDM816x\out\ sub-directory, select the codec executable
“mpeg4vdec_ti_hosttestapp.out” and load it in preparation for execution.

7) Select Target > Run to execute the application for Cortex_M3_RTOS_0
device.

8) Test application will take input streams from \client\test\testvecs\input\
directory and generates outputs in \client\test\testvecs\output\ directory.

Note:

Order of connecting to the devices is important and it should be as
mentioned in above steps.

Installation Overview

2-19

2.5 Configuration Files

This codec is shipped along with:

 Generic configuration file (Testvecs.cfg) – specifies input configuration
file.

 Decoder configuration file (airshow_p176x144_nv12.cfg) – specifies
the configuration parameters used by the test application to configure
the Decoder for given test stream.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The Testvecs.cfg file is
available in the \Client\Test\TestVecs\Config sub-directory.

A sample Testvecs.cfg file is as shown:

..\..\..\Test\TestVecs\Config\airshow_p176x144_nv12.cfg

Above is describing the input test stream configuration file path. Input test
stream configuration file will be having all information related to configuring
the decoder to decode given test stream.

2.5.2 Decoder Configuration File

The decoder configuration file, airshow_p176x144_nv12.cfg contains

the configuration parameters required for the decoder for the mpeg4
stream. Configuration file is available in the \Client\Test\TestVecs\Config
sub-directory.

A sample airshow_p176x144_nv12.cfg file is as shown:

Input and Output

inputBitStream =

"..\..\..\Test\TestVecs\Input\airshow_p176x144_nv12.m4v"

outputYUV =

"..\..\..\Test\TestVecs\Output\airshow_p176x144_nv12.yuv"

referenceYUV =

"..\..\..\Test\TestVecs\Reference\airshow_p176x144_nv12.yuv"

frameSizeFile =

"..\..\..\Test\TestVecs\Input\airshow_p176x144_nv12.txt"

TestCompliance = 0 # 0->Dump Mode ,1->[Compare Mode Not

supported]

Create Time Parameters

maxHeight = 144 # Max Image height in Pels

maxWidth = 176 # Max Image width in Pels

maxFrameRate = 30 # 30 -> Frame rate in fps

maxBitRate = 10485760 # Maximum Bit rate in Bytes

dataEndianness = 1 # 1 -> 8-bit Big Endian stream.

forceChromaFormat = 9 # 9 -> XDM_YUV_420SP

operatingMode = 0 # 0 -> Decode Mode, 2->Transcode

displayDelay = -1 # 0 -> No delay (Decode order)

Installation Overview

2-20

inputDataMode = 3 # 3->Frame Mode, 0,1 -> Sub-Frame (DataSync)

Mode

outputDataMode = 3 # 3->Frame Mode, 2 -> Sub-Frame (DataSync)

Mode

numInputDataUnits = 0 # 0 -> Non-DS mode. Non-Zero positive for DS

mode

numOutputDataUnits = 0 # 0 -> Non-DS mode. Non-Zero positive for DS

mode

errorInfoMode = 0 # 0 -> Error Info off

displayBufsMode = 2 # 1 -> Embedded, 2 - Pointer to struct

metadataType_0 = -1 # -1->No Metadata, 0- MB Info

metadataType_1 = -1 # -1->No Metadata

metadataType_2 = -1 # -1->No Metadata

outloopDeBlocking = 0 # 0 -> Disable optional filtring, 1-> enable

 2->Enhanced Deblocking

enhancedDeBlockingQp = 31 # Range 1 to 31

errorConcealmentEnable = 1 # 0 -> Disable EC, 1-> enable EC

sorensonSparkStream = 0 # 0 -> Disable Sorenson spark decoding,1->

enable

debugTraceLevel = 0 # 0 -> Disable debug trace, 1,2-> Enable

lastNFramesToLog = 0 # 0 -> Default, 1-9 supported

paddingType = 0 # 0 -> Default(divx type of padding), 1->

mpeg4 padding

decodeOnlyIntraFrames = 0 # 0 -> Disable decoding of only I frames

feature, 1-> Enable the feature

Rsvd2 = 0 # 0 -> Default, reserved one for future use

Dynamic Parameters

decodeHeader = 0 # 0 -> Disable decode Header mode

displayWidth = 0 # 0->Default, otherwise Positive value

newFrameFlag = 1 # 1 -> True, 0-> false

lateAcquireArg = 0 # 0->Default

DynRsvd0 = 0 # 0 -> Default, reserved one for future use

DynRsvd1 = 0 # 0 -> Default, reserved one for future use

DynRsvd2 = 0 # 0 -> Default, reserved one for future use

Application Control Parameters

MbInfoWriteMode = 0 # 0->disable mbinfo dump 1->Enable mbinfo

dump

TilerEnable = 0 # 0 -> Disable, 1->Enable TILER

ChromaTilerMode = 0 # 0 -> 16-Bit mode, 1->8-Bit Mode

BitStreamMode = 0 # 0 -> Buffer Mode, 1->Frame size Mode

ReadHeaderData = 0 # 0 -> default, 1->Header data given

separatly then residual

NumFramesToDecode = 8000 # 8000 -> Default

parBoundCheck = 0 # Parameter Boundary check: 0 -> Disable,

1-> Enable

parExpectedStatus = 0 # Expected Status during Param Boundary

check. 0->Pass, -1 -> Fail

exitLevel = 0 # 1->Create Time, 2->XDM control time

xdmReset = 0 # 0->Disable XDM reset use, 1->Enable XDM

reset use

DumpFrom = 0 # 0 -> Default, frame number to dump from

CRCEnable = 0 # CRC check: 0 -> Disable, 1->Enable

ProfileEnable = 0 # Frame level Profiling: 0 -> Disable, 1-

>Enable

BaseClassOnly = 0 # 0 -> Use Extended classes, 1->Use Base

classes Only

ivahdID = 0 # 0-> Default. Supports 1 & 2 for Netra

AppRsvd0 = 0 # 0 -> Default, reserved one for future use

AppRsvd1 = 0 # 0 -> Default, reserved one for future use

Installation Overview

2-21

AppRsvd2 = 0 # 0 -> Default, reserved one for future use

Note:

Chroma Format supported in this codec is 420 semi-planar. That is, the chroma planes (Cb
and Cr) are Interleaved.

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4. To
check the conformance of the codec for other input files of your choice,
follow these steps:

 Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory

 Copy the reference files to the \Client\Test\TestVecs\Reference
subdirectory.

 Edit the configuration file, TestVecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the TestVecs.cfg file, see Section 2.5.1.

 Prepare the *.cfg with given test stream to configured the decoder to
decode the given stream.For details on the format of the decoder
configuration file, see Section 2.5.12. or refer the file

airshow_p176x144_nv12.cfg present in

\Client\Test\TestVecs\Config directory.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

Installation Overview

2-22

This page is intentionally left blank

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-2

3.2 Frame Buffer Management by Application 3-6

3.3 Handshaking between Application and Algorithm 3-8

3.4 Address Translations 3-9

3.5 Sample Test Application 3-10

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDDEC3 base class of the MPEG4

Decoder library. The main test application files are
mpeg4vdec_ti_hosttestapp.c and mpeg4vdec_rman_config.c. These files
are available in the \Client\Test\Src directory.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application. Currently, the test application does not use RMAN resource
manager. However, all the resource allocations happen through IRES
interfaces.

Figure 3-1. Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, Decoder configuration file name
(Testparams.cfg), input file name, and output/reference file name.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.5.

3) Sets the IVIDDEC3_Params structure based on the values it reads

from the Testparams.cfg file.

4) Initializes the various DMAN3 parameters.

5) Reads the input bit-stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory

records it requires.

2) algAlloc() - To query the algorithm about the memory requirement

to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures

provided by the application.

A sample implementation of the create function that calls

algNumAlloc(), algAlloc(), and algInit() in sequence is provided

in the ALG_create() function implemented in the alg_create.c file.

Sample Usage

3-4

Note:

 Decoder requests only one memory buffer through algNumAlloc.
This buffer is for the algorithm handle.

 Other memory buffer requirements are done through IRES
interfaces.

After successful creation of the algorithm instance, the test application
does HDVICP Resource and memory buffer allocation for the algorithm.
Currently, RMAN resource manager is not used. However, all the resource
allocations happen through IRES interfaces:

 numResourceDescriptors() - To understand the number of

resources (HDVICP and buffers) needed by algorithm.

 getResourceDescriptors() - To get the attributes of the resources.

 initResources() - After resources are created, application gives the

resources to algorithm through this API.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Set the dynamic parameters (if they change during run-time) by calling

the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the

process() function call. The input and output buffer descriptors are

obtained by calling the control() function with the XDM_GETBUFINFO

command.

3) Implements the process call based on the non-blocking mode of
operation explained in step 4. The behavior of the algorithm can
controlled using various dynamic parameters (see Section 4.2.1.8).

The inputs to the process()functions are input and output buffer

descriptors, pointer to the IVIDDEC3_InArgs and IVIDDEC3_OutArgs

structures.

4) On the call to the process() function for encoding/decoding a single

frame of data, the software triggers the start of encode/decode. After
triggering the start of the encode/decode frame, the video task can be
put to SEM-pend state using semaphores. On receipt of interrupt signal
at the end of frame encode/decode, the application releases the
semaphore and resume the video task, which does any bookkeeping
operations by the codec and updates the output parameter of
IVIDDEC3_OutArgs structure.

Sample Usage

3-5

Figure 3-2. Process call with Host release.

The control() and process() functions should be called only within the

scope of the algActivate() and algDeactivate() XDAIS functions

which activate and deactivate the algorithm instance respectively. Once an

algorithm is activated, there could be any ordering of control() and

process() functions. The following APIs are called in a sequence:

 algActivate() - To activate the algorithm instance.

 control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control
commands.

 process() - To call the Decoder with appropriate input/output buffer

and arguments information.

 control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control
commands.

 algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates picture level process() call and updates

the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer

exhausts. It also protects the process() call from file operations by

placing appropriate calls for cache operations. The test application does a

cache invalidate for the valid input buffers before process() and a cache

write back invalidate for output buffers after a control() call with

GET_STATUS command.

In the sample test application, after calling algDeactivate(), the output

data is either dumped to a file or compared with a reference file.

Host
System

application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

Transfer of
tasks at Host

MB level tasks for

frame n+1

Process call frame n+1

Host system
tasks

HDVICP Busy

Sample Usage

3-6

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application frees the
memory resources and deletes the current algorithm instance. The
following APIs called in sequence:

1) numResourceDescriptors() - Get the number of resources and free

them. If the application needs handles to the resources, it can call

getResourceDescriptors().

2) algNumAlloc() - To query the algorithm about the number of

memory records it used.

3) algFree() - To query the algorithm for memory, to free when

removing an instance.

A sample implementation of the delete function that calls algNumAlloc()

and algFree() in sequence is provided in the ALG_delete() function

implemented in the alg_create.c file.

3.2 Frame Buffer Management by Application

3.2.1 Frame Buffer Input and Output

With the new XDM, decoder does not ask for frame buffer at the time of

alg_create(). It uses buffer from XDM2_BufDesc *OutBufs, which it

reads during each decode process call. Hence, there is no distinction
between DPB and display buffers. The framework needs to ensure that it
does not overwrite the buffers that are locked by the codec.
mp4VDEC_create();

mp4VDEC_control(XDM_GETBUFINFO); /* Returns default 1080p

HD size */

do{

mp4VDEC_decode(); //call the decode API

mp4VDEC_control(XDM_GETBUFINFO); /* updates the memory

required as per the size parsed in stream header */

}

while(all frames)

Note:

 Application can take the information retured by the control function

with the XDM_GETBUFINFO command and change the size of the

buffer passed in the next process call.

 Application can re-use the extra buffer space of the 1st frame, if
the control call returns buffer that is of small size than that was
provided.

The frame pointer given by the application and that returned by the

algorithm may be different. BufferID (InputID/outputID) provides the

unique ID to keep a record of the buffer given to the algorithm and released
by the algorithm.

Sample Usage

3-7

As explained above, buffer pointer cannot used as a unique identifier to
keep a record of frame buffers. Any buffer given to algorithm should
consider locked by algorithm, unless the buffer is returned to the

application through IVIDDEC3_OutArgs->freeBufID[].

Note:

BufferID returned in IVIDDEC3_OutArgs ->outputID[] is only for

display purpose. Application should not consider it free unless it is a part

of IVIDDEC3_OutArgs->freeBufID[].

3.2.2 Frame Buffer Format

The frame buffer format to use for both progressive and interlaced pictures
is as explained in the appendix on Picture Format.

3.2.3 Frame Buffer Management by Application

The application framework can efficiently manage frame buffers by keeping
a pool of free frames from which it gives the decoder empty frames on
request.

Figure 3-3. Interaction of Frame Buffers Between Application and Framework

The sample application also provides a prototype for managing frame
buffers. It implements the following functions. These functions are present
in buffermanager.c provided along with test application.

 BUFFMGR_Init() - BUFFMGR_Init function is called by the test

application to initialize the global buffer element array to default and to
allocate the required number of memory data for reference and output
buffers. The maximum required DPB size will set by the supported
profile and level.

Video Decode
 Thread Free

Frame
Buffers

Post
Processing or
Display

Subsystem

Video Decoder

XDM API

GetFreeBuffer()

ReleaseBuffer()

Framework Algorithm

Sample Usage

3-8

 BUFFMGR_ReInit() - BUFFMGR_ReInit function allocates global luma

and chroma buffers and allocates entire space to the first element. This
element will be used in the first frame decode. After the picture, height,
width, and its luma and chroma buffer requirements will get. The global
luma and chroma buffers will re-initialized to other elements in the
buffer array.

 BUFFMGR_GetFreeBuffer() - BUFFMGR_GetFreeBuffer function

searches for a free buffer in the global buffer array and returns the
address of that element. If none of the elements is free, it will return
NULL.

 BUFFMGR_ReleaseBuffer() - BUFFMGR_ReleaseBuffer function

takes an array of buffer-IDs which are released by the test application.
0 is not a valid buffer ID, hence this function moves until it encounters

a buffer ID as zero or it hits the MAX_BUFF_ELEMENTS.

 BUFFMGR_DeInit()- BUFFMGR_DeInit function releases all memory

allocated by buffer manager.

3.3 Handshaking between Application and Algorithm

Application provides the algorithm with its implementation of functions for

the video task to move to SEM-pend state, when the execution happens in

the co-processor. The algorithm calls these application functions to move
the video task to SEM-pend state.

Figure 3-4. Interaction between Application and Codec.

Framework Provided
HDVICP Callback APIs

process()

Application Side

Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDDEC3::process() {

 :

 …. set up for frame decode

 HDVICP_configure(mp4VDEC,

mp4VDEC->hdvicpHandle,

MPEG4VDEC_TI_CallBack_ISR);

 HDVICP_wait(mp4VDEC, mp4VDEC-

>hdvicpHandle);

 // Release of HOST

 …. End of frame processing

}

void MPEG4VDEC_TI_CallBack_ISR

(IALG_Handle handle)

{mp4VDEC_TII_Obj *mp4VDEC =

(mp4VDEC_TII_Obj *)ialg_handle;

 HDVICP_done(mp4VDEC,

mp4VDEC->hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

HDVICP_wait(handle,

hdVicpHandle){

SEM_pend(_doneSemaphore);

}

HDVICP_done(handle,

hdVicpHandle) {

 SEM_post(_doneSemaphore)

}

Sample Usage

3-9

Note:

 Process call architecture to share Host resource among multiple
threads.

 ISR ownership is with the Host layer resource manager – outside the
codec.

 The actual codec routine to be executed during ISR is provided by
the codec.

 OS/System related calls (SEM_pend, SEM_post) also outside the

codec.

 Codec implementation is OS independent.

The functions to implement by the application are:

 HDVICP_configure(IALG_Handle handle, void

*hdvicpHandle, void (*ISRfunctionptr)(IALG_Handle

handle))

The algorithm to register its ISR function, which the application needs
to call when it receives interrupts pertaining to the video task calls this
function.

 HDVICP_wait (void *hdvicpHandle)

The algorithm to move the video task to SEM-pend state calls this
function.

 HDVICP_done (void *hdvicpHandle)

The algorithm to release the video task from SEM-pend state calls this
function. In the sample test application, these functions defined in
hdvicp_framework.c file. The application can implement it in a way
considering the underlying system.

3.4 Address Translations

The buffer addresses (DDR addresses) as seen by Media controller and
HDVICP2 (VDMA) will be different. Hence, address translations needed to
convert from one address view to another. The application needs to
implement a MEMUTILS function for this address translation (which will
later implemented by the framework components). An example of the
address translation function is as shown. The codec will make a call to this
function from the host (Media Controller) library. Therefore, the function
name and arguments should follow the example provided below. For a
given input address, this function returns the VDMA view of the buffer (that
is, address as seen by HDVICP2).

Void *MEMUTILS_getPhysicalAddr(Ptr Addr)

{

 return ((void *)((unsigned int)Addr &

VDMAVIEW_EXTMEM));

}

Sample Usage

3-10

Sample settings for the macro VDMAVIEW_EXTMEM is as shown

#if defined(HOST_ARM9)

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#elif defined(HOST_M3)

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#else

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#endif

3.5 Sample Test Application

The test application exercises the IVIDDEC3 base class of the MPEG4

Decoder.

/*Main Function acting as a client for Video Decode Call*/

 BUFFMGR_Init();

 TestApp_SetInitParams(¶ms.viddecParams);

 /*---------------- Decoder creation -----------------*/

 handle = (IALG_Handle) mp4VDEC_create();

 /* Get Buffer information */

 mp4VDEC_control(handle, XDM_GETBUFINFO);

 /* Do-While Loop for Decode Call for a given stream */

 do

 {

 /* Read the bitstream in the Application Input Buffer */

 validBytes = ReadByteStream(inFile);

 /* Get free buffer from buffer pool */

 buffEle = BUFFMGR_GetFreeBuffer();

/* Optional: Set Run-time parameters in the Algorithm via

control() */

 mp4VDEC_control(handle, XDM_SETPARAMS);

/*--*/

/* Start the process : To start decoding a frame */

/*--*/

 retVal = mp4VDEC_decode(

 handle,(XDM1_BufDesc *)&inputBufDesc,

 (XDM_BufDesc *)&outputBufDesc,

 (IVIDDEC3_InArgs *)&inArgs,

 (IVIDDEC3_OutArgs *)&outArgs);

 /* Get the statatus of the decoder using comtrol */

 mp4VDEC_control(handle, XDM_GETSTATUS);

 /* Get Buffer information : */

 mp4VDEC_control(handle, XDM_GETBUFINFO);

 /* Optional: Reinit the buffer manager in case the

 /* frame size is different */

 BUFFMGR_ReInit();

Sample Usage

3-11

 /* Always release buffers - which are released from

 /* the algorithm side -back to the buffer manager

*/

 BUFFMGR_ReleaseBuffer((XDAS_UInt32

*)outArgs.freeBufID);

} while(1);

/* end of Do-While loop - which decodes frames */

ALG_delete (handle);

BUFFMGR_DeInit();

Note:

This sample test application does not depict the actual function
parameter or control code. It shows the basic flow of the code.

Sample Usage

3-12

This page intentionally left blank

 -1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-12

4.3 Interface Functions 4-30

 -2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

Table 4-1. List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FrameType IVIDEO_NA_FRAME Frame type not available

IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame

IVIDEO_IDR_FRAME Intra coded frame that can be used
for refreshing video content

IVIDEO_II_FRAME Interlaced Frame, both fields are I
frames

IVIDEO_IP_FRAME Interlaced Frame, first field is an I
frame, second field is a P frame

IVIDEO_IB_FRAME Interlaced Frame, first field is an I
frame, second field is a B frame

IVIDEO_PI_FRAME Interlaced Frame, first field is a P
frame, second field is a I frame

IVIDEO_PP_FRAME Interlaced Frame, both fields are P
frames

IVIDEO_PB_FRAME Interlaced Frame, first field is a P
frame, second field is a B frame

IVIDEO_BI_FRAME Interlaced Frame, first field is a B
frame, second field is an I frame.

IVIDEO_BP_FRAME Interlaced Frame, first field is a B
frame, second field is a P frame

IVIDEO_BB_FRAME Interlaced Frame, both fields are B
frames

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame

IVIDEO_MBAFF_P_FRAME

Forward inter coded MBAFF frame

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame

 -3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that used
for refreshing video content.

IVIDEO_FRAMETYPE_DEFAUL

T

Default set to IVIDEO_I_FRAME

IVIDEO_ContentType IVIDEO_CONTENTTYPE_NA Content type is not applicable

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE_FRAM

E

Progressive video content

IVIDEO_INTERLACED

IVIDEO_INTERLACED_FRAME

Interlaced video content

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Top field

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Bottom
field

IVIDEO_CONTENTTYPE_DEFA

ULT

Default set to
IVIDEO_PROGRESSIVE

IVIDEO_FrameSkip IVIDEO_NO_SKIP Do not skip the current frame.
Default Value

IVIDEO_SKIP_P Skip forward inter coded frame.
Not supported in current version of
decoder.

IVIDEO_SKIP_B Skip bi-directional inter coded frame.
Not supported in current version of
decoder.

IVIDEO_SKIP_I Skip Intra coded frame.
Not supported in current version of
decoder.

IVIDEO_SKIP_IP Skip I and P frame/field(s)
Not supported with current decoder
version.

IVIDEO_SKIP_IB Skip I and B frame/field(s).
Not supported with current decoder
version.

IVIDEO_SKIP_PB Skip P and B frame/field(s).
Not supported with current decoder
version.

IVIDEO_SKIP_IPB Skip I/P/B/BI frames
Not supported with current decoder
version.

 -4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_SKIP_IDR Skip IDR Frame
Not supported with current decoder
version.

IVIDEO_SKIP_NONREFERENC

E

Skip non reference frame
Not supported with current decoder
version..

IVIDEO_SKIP_DEFAULT Default set to IVIDEO_NO_SKIP

IVIDEO_VideoLayout IVIDEO_FIELD_INTERLEAVE

D

Buffer layout is interleaved.

IVIDEO_FIELD_SEPARATED Buffer layout is field separated.

IVIDEO_TOP_ONLY Buffer contains only top field.

IVIDEO_BOTTOM_ONLY Buffer contains only bottom field

IVIDEO_OutputFrameStatus IVIDEO_FRAME_NOERROR Output buffer is available.

IVIDEO_FRAME_NOTAVAILAB

LE

Codec does not have any output
buffers.

IVIDEO_FRAME_ERROR Output buffer is available and
corrupted.

IVIDEO_OUTPUTFRAMESTATU

S_DEFAULT

Default set to
IVIDEO_FRAME_NOERROR

IVIDEO_PictureType IVIDEO_NA_PICTURE Frame type not available

IVIDEO_I_PICTURE Intra coded picture

IVIDEO_P_PICTURE Forward inter coded picture

IVIDEO_B_PICTURE Bi-directional inter coded picture

IVIDEO_DataMode IVIDEO_FIXEDLENGTH Input to the decoder is in multiples of
a fixed length (example, 4K) (input
side for decoder), Not supported
with current decoder version.

IVIDEO_SLICEMODE Slice mode of operation (Input side
for decoder). Not supported with
current decoder version.

IVIDEO_NUMROWS Number of rows, each row is 16
lines of video (output side for
decoder). Not supported with current
decoder version.

IVIDEO_ENTIREFRAME Processing of entire frame data

IVIDEO_DataMode IVIDEO_DECODE_ONLY Decoding mode.

 -5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_ENCODE_ONLY Encoding mode.

IVIDEO_TRANSCODE_FRAME

LEVEL

Transcode mode of operation
encode/decode) which
consumes/generates transcode
information at the frame level. Not
supported with current decoder
version.

IVIDEO_TRANSRATE_FRAME

LEVEL

Transcode mode of operation
encode/decode) which
consumes/generates transcode
information at the MB level.
Not supported with current decoder
version.

IVIDEO_TRANSRATE_MBLEV

EL

Transrate mode of operation
encode/decode) which
consumes/generates transcode
information at the Frame level. Not
supported with current decoder
version.

IVIDEO_TRANSCODE_MBLEV

EL

Transrate mode of operation
encode/decode) which
consumes/generates transcode
information at the MB level. Not
supported with current decoder
version.

IVIDDEC3_displayDelay IVIDDEC3_DISPLAY_DELAY_

AUTO

Decoder decides the display delay

IVIDDEC3_DECODE_ORDER Display frames are in decoded order
without delay

IVIDDEC3_DISPLAY_DELAY_

1

Display the frames with 1 frame
delay

IVIDDEC3_DISPLAY_DELAY_

2

Display the frames with 2 frame
delay

IVIDDEC3_DISPLAY_DELAY_

3

Display the frames with 3 frame
delay

IVIDDEC3_DISPLAY_DELAY_

4

Display the frames with 4 frame
delay

IVIDDEC3_DISPLAY_DELAY_

5

Display the frames with 5 frame
delay

IVIDDEC3_DISPLAY_DELAY_

6

Display the frames with 6 frame
delay

IVIDDEC3_DISPLAY_DELAY_

7

Display the frames with 7 frame
delay

 -6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDDEC3_DISPLAY_DELAY_

8

Display the frames with 8 frame
delay

IVIDDEC3_DISPLAY_DELAY_

9

Display the frames with 9 frame
delay

IVIDDEC3_DISPLAY_DELAY_

10

Display the frames with 10 frame
delay

IVIDDEC3_DISPLAY_DELAY_

11

Display the frames with 11 frame
delay

IVIDDEC3_DISPLAY_DELAY_

12

Display the frames with 12 frame
delay

IVIDDEC3_DISPLAY_DELAY_

13

Display the frames with 13 frame
delay

IVIDDEC3_DISPLAY_DELAY_

14

Display the frames with 14 frame
delay

IVIDDEC3_DISPLAY_DELAY_

15

Display the frames with 15 frame
delay

IVIDDEC3_DISPLAY_DELAY_

16

Display the frames with 16 frame
delay

IVIDDEC3_DISPLAYDELAY_D

EFAULT

Same as
IVIDDEC3_DISPLAY_DELAY_AU

TO

XDM_DataFormat XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.
Not supported with current decoder
version.

XDM_LE_32 32-bit little endian stream.
Not supported with current decoder
version.

XDM_LE_64 64-bit little endian stream.
Not supported with current decoder
version..

XDM_BE_16 16-bit big endian stream.
Not supported with current decoder
version.

XDM_BE_32 32-bit big endian stream.
Not supported with current decoder
version.

XDM_BE_64 64-bit big endian stream.
Not supported with current decoder
version.

 -7

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_ChromaFormat XDM_YUV_420P YUV 4:2:0 planar. Not supported
with current decoder version.

XDM_YUV_422P YUV 4:2:2 planar. Not supported
with current decoder version.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).
Not supported with current decoder
version.

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian)
(default value). Not supported with
current decoder version.

XDM_YUV_444P YUV 4:4:4 planar Not supported with
current decoder version..

XDM_YUV_411P YUV 4:1:1 planar. Not supported
with current decoder version..

XDM_GRAY Gray format. Not supported with
current decoder version.

XDM_RGB RGB color format. Not supported
with current decoder version.

XDM_YUV_420SP YUV 4:2:0 chroma semi-planar.
Supported, used as default and
supported with current decoder
version.

XDM_ARGB8888 ARGB8888 color format. Not
supported with current decoder
version.

XDM_RGB555 RGB555 color format. Not supported
with current decoder version.

XDM_RGB565 RGB565 color format. Not supported
with current decoder version.

XDM_YUV_444ILE YUV 4:4:4 interleaved (little endian)
color format. Not supported with
current decoder version.

XDM_MemoryType XDM_MEMTYPE_ROW Raw Memory Type. Used as default.

XDM_MEMTYPE_TILED8 2D memory in 8-bit container of tiled
memory space ..

XDM_MEMTYPE_TILED16 2D memory in 16-bit container of
tiled memory space.

XDM_MEMTYPE_TILED32 2D memory in 32-bit container of
tiled memory space.

 -8

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_MEMTYPE_TILEDPAGE 2D memory in page container of
tiled memory space.

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill

Status structure

XDM_SETPARAMS Set run-time dynamic parameters

via the DynamicParams structure

XDM_RESET Reset the algorithm.

XDM_SETDEFAULT Initialize all fields in Params

structure to default values specified
in the library.

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

XDM_GETVERSION Query the algorithm’s version. The
result will returned in the @c data

field of the respective

_Status structure.

XDM_GETDYNPARAMSDEFAULT Query algorithm instance regarding
the dynamic parameters default
values

XDM_AccessMode XDM_ACCESSMODE_READ The algorithm read from the buffer
using the CPU. Used as default.

XDM_ACCESSMODE_WRITE The algorithm wrote from the buffer
using the CPU

XDM_ErrorBit XDM_PARAMSCHANGE Bit 8
 1 - This error is applicable for

transcoders. some key
parameter of the input
sequence changes

 0 - Ignore

XDM_APPLIEDCONCEALMENT Bit 9
 1 - applied concealment
 0 - Ignore

XDM_INSUFFICIENTDATA Bit 10
 1 - Insufficient data
 0 - Ignore

 -9

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_CORRUPTEDDATA Bit 11
 1 - Data problem/corruption
 0 - Ignore

XDM_CORRUPTEDHEADER Bit 12
 1 - Header problem/corruption
 0 - Ignore

XDM_UNSUPPORTEDINPUT Bit 13
 1 - Unsupported

feature/parameter in input
 0 - Ignore

XDM_UNSUPPORTEDPARAM Bit 14
 1 - Unsupported input

parameter or configuration
 0 - Ignore

XDM_FATALERROR Bit 15
 1 - Fatal error
 0 - Recoverable error

IMPEG4VDEC_ErrorBit IMPEG4D_ERR_VOS Bit 0
 1 - No Video Object Sequence

detected in the frame
 0 - Ignore

IMPEG4D_ERR_VO Bit 1
 1 - Incorrect Video Object type
 0 - Ignore

IMPEG4D_ERR_VOL Bit 2
 1 - Error in Video Object Layer

detected
 0 - Ignore

IMPEG4D_ERR_GOV Bit 3
 1 - Error in Group of Video

parsing
 0 - Ignore

IMPEG4D_ERR_VOP Bit 4
 1 - Error in Video Object Plane

parsing
 0 - Ignore

IMPEG4D_ERR_SHORTHEADER Bit 5
 1 - Error in short header parsing
 0 - Ignore

IMPEG4D_ERR_GOB Bit 6
 1 - Error in GOB parsing
 0 - Ignore

 -10

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IMPEG4D_ERR_VIDEOPACKET Bit 7
 1 - Error in Video Packet

parsing
 0 - Ignore

IMPEG4D_ERR_MBDATA Bit 16
 1 - Error in MB data parsing
 0 - Ignore

 IMPEG4D_ERR_INVALIDPARA

M_IGNORE

Bit 17
 1 - Invalid Parameter
 0 - Ignore

IMPEG4D_ERR_UNSUPPFEATU

RE

Bit 18
 1 - Unsupported feature
 0 - Ignore

IMPEG4D_ERR_STREAM_END Bit 19
 1 - End of stream reached
 0 - Ignore

IMPEG4D_ERR_VALID_HEADE

R_NOT_FOUND

Bit 20
 1 – Valid header not found
 0 – Ignore

IMPEG4D_ERR_UNSUPPRESOL

UTION

Bit 21
 1 - nsupported resolution by the

decoder
 0 - Ignore

IMPEG4D_ERR_BITSBUF_UND

ERFLOW

Bit 22
 1 - The stream buffer has

underflowed
 0 - Ignore

IMPEG4D_ERR_INVALID_MBO

X_MESSAGE

Bit 23
 1 - Invalid (unexpected) mail

boX message recieved by
HDVICP2

 0 - Ignore

IMPEG4D_ERR_NO_FRAME_FO

R_FLUSH

Bit 24
 1 - Codec does not have any

frame for flushing out to
application

 0 - ignore

IMPEG4D_ERR_VOP_NOT_COD

ED

Bit 25
 1 - Given vop is not codec
 0 - ignore

 -11

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IMPEG4D_ERR_START_CODE_

NOT_PRESENT

Bit 26
 1 - Start code for given stream

is not present in case of Parse
Header mode

 0 - ignore

IMPEG4D_ERR_VOP_TIME_IN

CREMENT_RES_ZERO

Bit 27
 1 - Vop time increment

resolution is zero
 0 - ignore

IMPEG4D_ERR_PICSIZECHA

NGE

Bit 28
 1 – resolution of the streams

chanaged dynemically
0 - ignore

IMPEG4D_ERR_UNSUPPORTE

D_H263_ANNEXS

Bit 29
 1 – decoder found unsupported

annexs of h263 stream
0 - ignore

IMPEG4D_ERR_HDVICP2_IM

PROPER_STATE

Bit 30
 1 – status of HDVICP2 is not in

stand by state
0 - ignore

IMPEG4D_ERR_FRAME_DROP

PED

Bit 31
 1 – In sequence first frame is

not I frame.
0 - ignore

IMPEG4VDEC_OptionalDeBlkM

ode
IMPEG4VDEC_DEBLOCK_DIS

ABLE

This disables the out loop
Deblocking filter

IMPEG4VDEC_DEBLOCK_ENA

BLE

This enables the out loop
Deblocking filter

IMPEG4VDEC_ENHANCED_DE

BLOCK_ENABLE

This enables enahanced out loop
Deblocking filter

IMPEG4VDEC_DecodeOnlyIntr

aFrames

IMPEG4VDEC_DECODE_ONLY

_I_FRAMES_DISABLE

This enables decoding of all
 frame types

This enables decoding of only
 Intra frames and skipping P/B
frames

IMPEG4VDEC_DECODE_ONLY

_I_FRAMES_ENABLE

 -12

4.2 Data Structures

This section describes the XDM defined data structures, that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM2_SingleBufDesc

 XDM2_BufDesc

 XDM1_AlgBufInfo

 IVIDEO2_BufDesc

 IVIDDEC3_Fxns

 IVIDDEC3_Params

 IVIDDEC3_DynamicParams

 IVIDDEC3_InArgs

 IVIDDEC3_Status

 IVIDDEC3_OutArgs

4.2.1.1 XDM2_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Datatype Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

memType XDAS_Int32 Input Type of memory. See XDM_MemoryType

enumeration for more details.

usageMode XDAS_Int16 Output Memory uses descriptor , set by
application and used by algorithm

bufSize XDM2_BufSize Input Size of the buffer(for tile memory/row
memory)

accessMask XDAS_Int32 input If the buffer was not accessed by the
algorithm processor (for example, it was

 -13

filled by DMA or other hardware
accelerator that does not write through the
algorithm CPU), then bits in this mask
should not be set.

4.2.1.2 XDM2_BufSize

║ Description

This defines the union describing a buffer size.
║ Fields

Field Datatype Input/
Output

Description

width XDAS_Int32 Input Width of buffer in 8-bit bytes.
Required only for tile memory.

height XDAS_Int32 Input Height of buffer in 8-bit bytes.
Required only for tile memory.

Bytes XDM2_BufSi

ze

Input Size of the buffer in bytes, when tiled memory is not
present then need to fill this by algorithm for buffer
requirement in raw memory. If tiled memory is present
then width and height should be filled instead of buffer
requirement, By default Algorithm will fill width and
height in Tiled memory, application will decide which
kind of memory he is able to provide to codec.

4.2.1.3 XDM2_BufDesc

║ Description

This structure defines the buffer descriptor for output buffers.
║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX

_IO_BUFFERS]

XDM2_Singl

eBufDesc

Input Array of buffer descriptors

4.2.1.4 XDM1_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output

buffers. This structure is filled when you invoke the control() function

with the XDM_GETBUFINFO command.

║ Fields

 -14

Field Datatype Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_

MAX_IO_BUFFERS]

XDM2_BufSi

ze

Output Size required for each input buffer

minOutBufSize[XDM

_MAX_IO_BUFFERS]

XDM2_BufSi

ze

Output Size required for each output buffer

inBufMemoryType[X

DM_MAX_IO_BUFFERS

]

XDAS_Int32 Output Memory type for each input buffer

outBufMemoryType[

XDM_MAX_IO_BUFFER

S]

XDAS_Int32 Output Memory type for each output buffer

minNumBufSets XDAS_Int32 Output Minimum number of buffer sets for buffer
management

Note:

For MPEG4 Advanced Simple Profile Decoder, the buffer details are:

 Number of input buffer required is 1.

 Number of output buffer required is 2 for YUV420 interleaved.

 If metadata is requested by the application, then see the Appendix B
for buffer details.

 For frame mode of operation, there is no restriction on input buffer
size except that it should contain atleast one frame of encoded data.

 The output buffer sizes (in bytes) for worst case 2048x2048 format
are:

 For YUV 420 interleaved:

 Y buffer = ((2048 + 32 + 127) & ~127) * (2048 + 32)
 UV buffer (((2048 + 32 + 127) & ~127) * (2048 + 32) >>1)

These are the maximum buffer sizes but you can reconfigure depending
on the format of the bit-stream.

 The memory types supported for input buffers are XDM_MEMTYPE_RAW

and XDM_MEMTYPE_TILEDPAGE.

 The memory types supported for luma output buffers are

XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILEDPAGE and
XDM_MEMTYPE_RAW

 The memory types supported for chroma output buffers are

XDM_MEMTYPE_TILED8, XDM_MEMTYPE_TILED16,

 -15

XDM_MEMTYPE_TILEDPAGE and XDM_MEMTYPE_RAW.

4.2.1.5 IVIDEO2_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.

║ Fields

Field Datatype Input/
Output

Description

numPlanes XDAS_Int32 Input/O
utput

Number of buffers for video planes

numMetaPlanes XDAS_Int32

Input/O
utput Number of buffers for Metadata

dataLayout XDAS_Int32 Input/O
utput

Video buffer layout. See
IVIDEO_VideoLayout

enumeration for more details

planeDesc

[IVIDEO_MAX_NUM_PLANES]

XDM1_Singl

eBufDesc

Input/O
utput

Description for video planes

metadataPlaneDesc

[IVIDEO_MAX_NUM_METADATA_PLA

NES]

XDM1_Singl

eBufDesc

Input/O
utput

Description for metadata planes

secondFieldOffsetWidth[IVIDE

O_MAX_NUM_PLANES] XDAS_Int32

Input/O
utput

Off set value for second field in

planeDesc buffer (width in pixels)

secondFieldOffsetHeight[IVID

EO_MAX_NUM_PLANES]

XDAS_Int32 Input/O
utput

Off set value for second field in

planeDesc buffer (height in lines)

imagePitch XDAS_Int32
Input/O
utput Image pitch, common for all planes

imageRegion XDM_Rect Input/O
utput

Decoded image region including
padding /encoder input image

activeFrameRegion XDM_Rect

Input/O
utput Actual display region/capture region

extendedError XDAS_Int32 Input/O
utput

Provision for informing the error type
if any

frameType XDAS_Int32 Input/O
utput

Video frame types. See enumeration

IVIDEO_FrameType.

Not applicable for encoders

topFieldFirstFlag XDAS_Int32 Input/O
utput

Indicates when the application
(should display)/(had captured) the
top field first.
Not applicable for progressive
content.

repeatFirstFieldFlag XDAS_Int32 Input/O Indicates when the first field should

 -16

Field Datatype Input/
Output

Description

utput be repeated.
Not applicable for encoders.

frameStatus XDAS_Int32 Input/O
utput

Video in/out buffer status.
Not applicable for encoders.

repeatFrame XDAS_Int32 Input/O
utput

Number of times to repeat the
displayed frame.
Not applicable for encoders.

contentType XDAS_Int32 Input/O
utput

Video content type. See
IVIDEO_ContentType

chromaFormat XDAS_Int32 Input/O
utput

Chroma format for encoder input
data/decoded output buffer. See

XDM_ChromaFormat enumeration

for details.

scalingWidth XDAS_Int32 Input/O
utput

Scaled image width for post
processing for decoder.
Not applicable for encoders.

scalingHeight XDAS_Int32 Input/O
utput

Scaled image height for post
processing for decoder.
Not applicable for encoders.

rangeMappingLuma XDAS_Int32 Input/O
utput

Applicable for VC1, set to -1 as
default for other codecs

rangeMappingChroma XDAS_Int32 Input/O
utput

Applicable for VC1, set to -1 as
default for other codecs

enableRangeReductionFlag XDAS_Int32 Input/O
utput

ON/OFF, default is OFF.
Applicable only for VC1.

Note:

 IVIDEO_MAX_NUM_PLANES:

 Max YUV buffers - one for Y, and 1 for U and V interleaved.

The following parameters are not supported/updated in this version of
the decoder

 repeatFirstFieldFlag

 repeatFrame

 scalingWidth

 scalingHeight

 rangeMappingLuma

 rangeMappingChroma

 enableRangeReductionFlag

 -17

4.2.1.6 IVIDDEC3_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Datatype Input/
Output

Description

Ialg IALG_Fxns Input Structure containing pointers for XDAIS interface
functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.7 IVIDDEC3_Params

║ Description

This structure defines the creation parameters for an algorithm instance

object. Set this data structure to NULL, if you are not sure of the values to

be specified for these parameters.
║ Fields

Field Datatype Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

maxHeight XDAS_Int32 Input Maximum video height to be supported in pixels.
Supported range is [64 to 2048]
Default is 1088

maxWidth XDAS_Int32 Input Maximum video width to be supported in pixels.
Supported range is [64 to 2048]
Default is 1920

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported. Default is 30000

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second. For example, if bit-rate is 10 Mbps, set
this field to 10485760. Default is 10000000

dataEndianness XDAS_Int32 Input Endianness of input data. See

XDM_DataFormat enumeration for details.

 -18

Field Datatype Input/
Output

Description

Default is XDM_BYTE

forceChromaFormat XDAS_Int32 Input Sets the output to the specified format. Only 420
semi-planar format supported currently. For
example, if the output should be in YUV 4:2:2
interleaved (little endian) format, set this field to

XDM_YUV_422ILE.

Default is XDM_YUV_420SP

See XDM_ChromaFormat and

eChromaFormat_t enumerations for details.

operatingMode XDAS_Int32 Input Video coding mode of operation
(encode/decode/transcode/transrate).
Only decode and transcode modes are
supported in this version.

Default value is IVIDEO_DECODE_ONLY

Supported values are IVIDEO_DECODE_ONLY
and IVIDEO_TRANSCODE_FRAMELEVEL

displayDelay XDAS_Int32 Input Display delay to start display.
Default value is 1
(IVIDDEC3_DISPLAY_DELAY_1).

Supported values are
IVIDDEC3_DECODE_ORDER,

IVIDDEC3_DISPLAY_DELAY_1 and

IVIDDEC3_DISPLAY_DELAY_AUTO

inputDataMode XDAS_Int32 Input Input mode of operation.
For decoder, it is fixed length/slice mode/entire
frame.
This version of the decoder supports only the

entire frame mode - IVIDEO_ENTIREFRAME.

outputDataMode XDAS_Int32 Input Output mode of operation.
For decoder, it is row mode/entire frame.
This version of the decoder supports only the

entire frame mode - IVIDEO_ENTIREFRAME

numInputDataUnits XDAS_Int32 Input Number of input slices/rows.
For decoder, it is the number of slices or
number of fixed length units.

Default value is 0

Not supported in this version of the decoder.
Value should be set to 0.

numOutputDataUnit

s

XDAS_Int32 Input Number of output slices/rows.
For decoder, it is the number of rows of output.

Default value is 0

 -19

Field Datatype Input/
Output

Description

Not supported in this version of the decoder.
Value should be set to 0

errorInfoMode XDAS_Int32 Input Enable/disable packet error information for
input/output. Supports only one value -
IVIDEO_ERRORINFO_OFF

displayBufsMode XDAS_Int32 Input Indicates the displayBufs mode. This field

can be set either as
IVIDDEC3_DISPLAYBUFS_EMBEDDED

or IVIDDEC3_DISPLAYBUFS_PTRS.

metadataType XDAS_Int32 Input Array of Metadata type.
This field can be set either as
IVIDEO_METADATAPLANE_NONE

or IVIDEO_METADATAPLANE_MBINFO

Default value is
IVIDEO_METADATAPLANE_NONE

Note:

 MPEG4 Decoder does not use the maxFrameRate and maxBitRate

fields for creating the algorithm instance. In the current

implementation, maxFrameRate is set to 1000 * 30, and

maxBitRate is set to 10000000.

 Maximum video height and width supported are 2048x2048

 dataEndianness field should be set to XDM_BYTE.

 The default value of displayDelay is 1.

 DataSync is not implemented so inputDataMode set as

IVIDEO_ENTIREFRAME.

 Data Sync is not implemented so outputDataMode set as
IVIDEO_ENTIREFRAME

4.2.1.8 IVIDDEC3_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to

be specified for these parameters.
║ Fields

Field Datatype Input/
Output

Description

 -20

Field Datatype Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

decodeHeader XDAS_Int32 Input Number of access units to decode, supported values
are:

 0 (XDM_DECODE_AU) - Decode entire frame

including all the headers

 1 (XDM_PARSE_HEADER) - Decode only one

NAL unit (NA)

Default value - 0 (XDM_DECODE_AU)

displayWidth XDAS_Int32 Input If the field is set to:
0 - Uses decoded image width as pitch
If any other value greater than the decoded image
width is given, then this value in pixels is used as
pitch. Should be multiple of 128 bytes.

Supported values – 0 & any value between 0 and
maxwidth

Default value is 0

frameSkipMode XDAS_Int32 Input Frame skip mode. See IVIDEO_FrameSkip

enumeration for details.

Default value is IVIDEO_NO_SKIP.

No other value are supported.

newFrameFlag XDAS_Int32 Input Flag to indicate that the algorithm should start a new

frame. Only value supported is XDAS_TRUE. This is

useful for error recovery, for example, when the end of
frame cannot be detected by the codec but is known
to the application.

Default value is XDAS_TRUE.

*putDataFxn XDM_DataSy

ncPutFxn

Input Function pointer to produce data at sub-frame level

(DataSync call back function pointer for putData)

Not supported in this version of the decoder. Default
value is NULL.

putDataHandle XDM_DataSy

ncHandle

Input Handle that identifies the data sync FIFO and is

passed as argument to putData calls

Not supported in this version of the decoder. Default
value is NULL.

*getDataFxn XDM_DataSy

ncGetFxn

Input Function pointer to receive data at sub-frame level

(DataSync call back function pointer for getData)

Not supported in this version of the decoder. Default
value is NULL.

 -21

Field Datatype Input/
Output

Description

getDataHandle XDM_DataSy

ncHandle

Input Handle that identifies the data sync FIFO and is

passed as argument to getData calls

Not supported in this version of the decoder. Default
value is NULL.

putBufferFxn XDM_DataSy

ncPutBuffe

rFxn

Input Function pointer to receive buffer at sub-frame level

Not supported in this version of the decoder. Default
value is NULL.

putBufferHand

le

XDM_DataSy

ncHandle

Input Handle that identifies the data sync FIFO and is

passed as argument to getBufferFxn calls.

Not supported in this version of the decoder. Default
value is NULL.

lateAcquireAr

g

XDAS_Int32 Input Argument used during late acquire mode of the
HDVICP2
If the codec supports late acquisition of resources,and

the application has supplied a lateAcquireArg

value (via #XDM_SETLATEACQUIREARG), then the

codec must also provide this lateAcquireArg

value when requesting resources (i.e. during their call

to acquire() when requesting the resource)

Any value other than default value is ignored.

Default value is
IRES_HDVICP2_UNKNOWNLATEACQUIREARG

Note:

 Frame skip is not supported. Set the frameSkipMode field to

IVIDEO_SKIP_DEFAULT.

 MPEG4 Decoder does not support newFrameFlag. It’s value should
be set as zero.

4.2.1.9 IVIDDEC3_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used) data

 -22

structure in bytes.

numBytes XDAS_Int32 Input Size of input data (in bytes) provided to the algorithm for
decoding

inputID XDAS_Int32 Input Application passes this ID to algorithm and decoder will
attach this ID to the corresponding output frames. This is
useful in case of re-ordering (for example, B frames). If

there is no re-ordering, outputID field in the

VIDDEC3_OutArgs data structure will be same as

inputID field.

Note:

MPEG4 Decoder copies the inputID value to the outputID value of

IVIDDEC3_OutArgs structure after factoring in the display delay.

4.2.1.10 IVIDDEC3_Status

║ Description

This structure defines parameters that describe the status of the decoder.
║ Fields

Field Datatype Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit

enumeration for details. The value of this
parameter will be same as the value present

in the extendedError parameter of the

OutArgs

data XDM1_SingleBuf

Desc

Output Buffer information structure for information
passing buffer.

maxNumDisplayBufs XDAS_Int32 Output Maximum number of buffers required by the
codec.

maxOutArgsDisplayB

ufs

XDAS_Int32 Output The maximum number of display
buffers that can be returned through

IVIDDEC3_OutArgs.displayBufs.

outputHeight XDAS_Int32 Output Output height in pixels

outputWidth XDAS_Int32 Output Output width in pixels

frameRate XDAS_Int32 Output Output frame rate

 -23

Field Datatype Input/
Output

Description

bitRate XDAS_Int32 Output Average bit-rate in bits per second

contentType XDAS_Int32 Output Video content. See

IVIDEO_ContentType enumeration for

details.

sampleAspectRatioH

eight

XDAS_Int32 Output Sample aspect ratio for height

sampleAspectRatioW

idth

XDAS_Int32 Output Sample aspect ratio for width

bitRange XDAS_Int32 Output Bit range. It is set to

IVIDEO_YUVRANGE_FULL.

forceChromaFormat XDAS_Int32 Output Output chroma format. See

XDM_ChromaFormat and

eChromaFormat_t enumeration for

details.

operatingMode XDAS_Int32 Output Mode of operation:
Encoder/Decoder/Transcode/Transrate. It is

set to IVIDEO_DECODE_ONLY.

frameOrder XDAS_Int32 Output Indicates the output frame order. This field is
set to actual display delay value used by the
decoder. Please see displayDelay in sec

4.2.1.7 for supported values.

inputDataMode XDAS_Int32 Output Input mode of operation.
For decoder, it is fixed length/slice
mode/entire frame.
This version of the decoder supports only the
fixed length and entire frame mode.

outputDataMode XDAS_Int32 Output Output mode of operation.
For decoder, it is the row mode/entire frame.
This version of the decoder supports only the
entire frame mode.

bufInfo XDM1_AlgBufInf

o

Output Input and output buffer information. See

XDM1_AlgBufInfo data structure for

details.

numInputDataUnits XDAS_Int32 Input Number of input data units i.e row/slice,
ignored if entire frame has given as unit

numOutputDataUnits XDAS_Int32 input Number of input data units i.e row/slice,
ignored if entire frame has given as unit

configurationID XDAS_Int32 input Configuration ID of given codec

metadataType XDAS_Int32 input Array of Metadata type plane

 -24

Field Datatype Input/
Output

Description

decDynamicParams IVIDDEC3_Dynam

icParams

Output Current values of the decoder's dynamic
parameters.

Note:

 Algorithm sets the bit-Rate field to a default value 10485760.

 The algorithm can set multiple bits of extendedError to 1,

depending on the error condition

4.2.1.11 IVIDDEC3_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output extendedError Field. The value of this

parameter will be same as the value present in

the extendedError parameter of the Status

structure

bytesConsumed XDAS_Int32 Output Bytes consumed per decode call

outputID[IVIDEO2_M

AX_IO_BUFFERS]

XDAS_Int32 Output Output ID corresponding to displayBufs

A value of zero (0) indicates an invalid ID. The
first zero entry in array will indicate end of valid

outputIDs within the array. Hence, the

application can stop reading the array when it
encounters the first zero entry.

decodedBufs IVIDEO2_Buf

Desc

Output The decoder fills this structure with buffer
pointers to the decoded frame. Related
information fields for the
Decoded frame are also populated.
When frame decoding is not complete, as

indicated by outBufsInUseFlag, the frame

data in this structure will be incomplete.
However, the algorithm will provide incomplete
decoded frame data in case application may
choose to use it for error recovery purposes.

freeBufID[IVIDEO2_

MAX_IO_BUFFERS]

XDAS_Int32 Output This is an array of inputIDs corresponding to

the frames that have been unlocked in the

 -25

Field Datatype Input/
Output

Description

current process call.

outBufsInUseFlag XDAS_Int32 Output Flag to indicate that the outBufs provided with

the process () call are in use. No outBufs

are required to be supplied with the next

process () call.

displayBufsMode XDAS_Int32 Output Indicates the mode for
#IVIDDEC3_OutArgs.displayBufs.

bufDesc [1] IVIDEO2_Buf

Desc

Output Array containing display frames corresponding

to valid ID entries in the outputID array.

 See IVIDEO2_BufDesc data structure for

more details.

*pBufDesc[IVIDEO2_

MAX_IO_BUFFERS]

IVIDEO2_Buf

Desc *

Output Array containing pointers to display frames

corresponding to valid ID entries in the @c

outputID[]

Note:

 IVIDEO2_MAX_IO_BUFFERS - Maximum number of I/O buffers set to

20.The display buffer mode can be set as either
IVIDDEC3_DISPLAYBUFS_EMBEDDED or

IVIDDEC3_DISPLAYBUFS_PTRS.

 The current implementation of the decoder will always return a
maximum of one display buffer per process call. If the mode is
IVIDDEC3_DISPLAYBUFS_EMBEDDED, then the instance of the

display buffer structure will be present in OutArgs. If the mode is

IVIDDEC3_DISPLAYBUFS_PTRS, then a pointer to the instance will

be present in OutArgs,

 The algorithm can set multiple bits of extendedError to 1,

depending on the error condition [The extendedError of status

structure will be in sync with the OutArgs structure’s

extendedError parameter].

 -26

4.2.2 MPEG4 Decoder Data Structures

This section describes the MPEG4 Decoder defined data structures, which
are specific to MPEG4 Decoder. The MPEG4 Decoder structures can
extend to define any specific parameters for supporting tools of MPEG4
Decoder. Below are the different data structure used by MPEG4 Decoder:-

 IMPEG4VDEC_Params

 IMPEG4VDEC_DynamicParams

 IMPEG4VDEC_InArgs

 IMPEG4VDEC_Status

 IMPEG4VDEC_OutArgs

4.2.2.1 IMPEG4VDEC _Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for an MPEG4 Decoder instance
object. The creation parameters defined in the XDM data structure,

IVIDDEC3_Params.

║ Fields

Field Data Type Input/
Output

Description

viddec3Params IVIDDEC3_Params Input See IVIDDEC3_Params data structure

for details.

outloopDeBlocki

ng

XDAS_Int32 input Flag to set by application for de-block
filtering need be done by codec or not ,
default set to be zero.
Supported Range:

IMPEG4VDEC_DEBLOCK_DISABLE=0,

IMPEG4VDEC_DEBLOCK_ENABLE=1 &

IMPEG4VDEC_ENHANCED_DEBLOCK_EN

ABLE = 2.

Default Value: 0

errorConcealmen

tEnable

XDAS_Int32 input Flag to set by application if concealment
need to be done by codec in case of
erroneous scenario
Supported Range: 0 and 1.
Default Value: 0

sorensonSparkSt

ream

XDAS_Int32 Input Reserved for future use
Not used in this version of the decoder.

Default value : 0

 -27

Field Data Type Input/
Output

Description

debugTraceLevel XDAS_UInt32 Input Specifies debug trace level.
Supported Range: 0 to 2.
Default Value: 0

lastNFramesToLo

g

XDAS_UInt32 Input Specifies the number of most recent
frames to log in debug trace.
Supported Range: 0 to10.

Default Value: 0

paddingMode XDAS_UInt32 Input Specify different methods of padding the
for the reference frame when resolution of
frame when dimension is non-multiple of
16.
Supported values
PAD_METHOD_DIVX = 0,

PAD_METHOD_MPEG4 = 1.

Default value is : PAD_METHOD_DIVX

enhancedDeBlock

ingQp

XDAS_UInt32 Input Specifies the value of Qp used for
enhanced out loop Deblocking filter. Will

be valid if outloopDeBlocking ==

IMPEG4VDEC_ENHANCED_DEBLOCK_

ENABLE only. The valid values are from 1

to 31 only.

decodeOnlyIntra

Frames

XDAS_UInt32 Input Flag to be set by application to request
codec to decode only Intra frames and skip
P/B frames.
Supported Range: 0 & 1
Default Value: 0

Reserved XDAS_UInt32 Input Reserved for future use.

4.2.2.2 IMPEG4VDEC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for an MPEG4 Decoder instance
object. The run-time parameters defined in the XDM data structure,

IVIDDEC3_DynamicParams.

║ Fields

Field Data Type Input/
Output

Description

viddec3DynamicParam

s

IVIDDEC3_DynamicPara

ms
Input See

IVIDDEC3_DynamicParams

data structure for details.

 -28

Field Data Type Input/
Output

Description

Reserved[3] XDAS_UInt32 Input Reserved for future use.

4.2.2.3 IMPEG4VDEC_InArgs

║ Description

This structure defines the run-time input arguments for an MPEG4 Decoder
instance object.

║ Fields

Field Data Type Input/
Output

Description

viddec3InArgs IVIDDEC3_InArgs Input See IVIDDEC3_InArgs data structure for

details.

4.2.2.4 IMPEG4VDEC_Status

║ Description

This structure defines parameters that describe the status of the MPEG4

Decoder and any other implementation specific parameters. The status

parameters defined in the XDM data structure, IVIDDEC3_Status.

║ Fields

Field Data Type Input/
Output

Description

viddec3Status IVIDDEC3_Status Output See IVIDDEC3_Status data structure for details

debugTraceLev

el

XDAS_UInt32 Output

Specifies the debug trace level. MPEG-4 Decoder
supports till level 2.

lastNFramesTo

Log

XDAS_UInt32 Output

Specifies the number of most recent frames to log in
debug trace.

extMemoryDebu

gTraceAddr

XDAS_UInt32* Output

Address of the structure in external memory
containing debug trace information

extMemoryDebu

gTraceSize
XDAS_UInt32 Output

Size of the structure containing the debug trace
information

 -29

Field Data Type Input/
Output

Description

Reserved[3] XDAS_UInt32 Output Reserved for future use

4.2.2.5 IMPEG4VDEC_OutArgs

║ Description

This structure defines the run-time output arguments for the MPEG4
Decoder instance object.

║ Fields

Field Data Type Input/
Output

Description

viddec3OutArgs IVIDDEC3_OutArgs Output See IVIDDEC3_OutArgs data structure for

details.

vopTimeIncreme

ntResolution

XDAS_Int32 Output vopTimeIncrementResolution indicates

the number of evenly spaced subintervals, called
ticks

vopTimeIncreme

nt

XDAS_Int32 Output vopTimeIncrement value represents the

absolute vop_time_increment from the
synchronization point marked by the
modulo_time_base measured in the number of
clock ticks.

mp4ClosedGov XDAS_Int32 Output mp4ClosedGov indicates the nature of the

predictions used in the first consecutive B-VOPs
(if any) immediately following the first coded I-
VOP after the group of studio VOP header

mp4BrokenLink XDAS_Int32 Output mp4BrokenLink to indicate that the first

consecutive B-VOPs (if any) immediately
following the first coded I-frame following the
group of studio VOP header may not be correctly
decoded because the reference frame which is
used for prediction is not available (because of
the action of editing). A decoder may use this
flag to avoid displaying frames that cannot be
correctly decoded.

 -30

4.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the MPEG4 Decoder.The APIs are logically grouped into the following
categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),

algDeactivate(), and algFree() are standard XDAIS APIs. This

document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

 -31

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc()

method requires. This operation allows you to allocate sufficient space to

call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference

(literature number SPRU360).
║ See Also

algAlloc()

 -32

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm

functions */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines

the creation parameters. This pointer may be NULL; however, in this case,

algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.

algAlloc() may return a pointer to its parent’s IALG functions. If an

algorithm does not require a parent object to be created, this pointer must

be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory

requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference

(literature number SPRU360).
║ See Also

algNumAlloc(), algFree()

 -33

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The

initialization parameters are defined in the Params structure (see Data

Structures section for details).
║ Name

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run-time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no

parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

 -34

4.3.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the decoder during run-time. These controllable parameters

are defined in the Status data structure (see Data Structures section for

details).

║ Name

control() – change run-time parameters and query the status

║ Synopsis

XDAS_Int32 (*control) (IVIDDEC3_Handle handle,

IVIDDEC3_Cmd id, IVIDDEC3_DynamicParams *params,

IVIDDEC3_Status *status);

║ Arguments

IVIDDEC3_Handle handle; /* algorithm instance handle */

IVIDDEC3_Cmd id; /* algorithm specific control commands*/

IVIDDEC3_DynamicParams *params /* algorithm run-time

parameters */

IVIDDEC3_Status *status /* algorithm instance status

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run-time parameters of an algorithm instance

and queries the algorithm’s status. control() must only be called after a

successful call to algInit() and must never be called after a call to
algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See

XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the

IVIDDEC3_DynamicParams and IVIDDEC3_Status data structures

respectively.
║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from

algInit() and algActivate().

 If algorithm uses DMA resources, control() can only be called after

a successful return from DMAN3_init().

 -35

 Handle must be a valid handle for the algorithm’s instance object.

║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this

operation is equal to IALG_EOK; otherwise it is equal to either

IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this

operation is not equal to IALG_EOK.

║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algActivate(), process()

 -36

4.3.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

algActivate() – initialize scratch memory buffers prior to processing.

║ Synopsis

Void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance’s scratch buffers using the

persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing
methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

 -37

║ Name

process() – basic encoding/decoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDDEC3_Handle handle, XDM1_BufDesc

*inBufs, XDM_BufDesc *outBufs, IVIDDEC3_InArgs *inargs,

IVIDDEC3_OutArgs *outargs);

║ Arguments

IVIDDEC3_Handle handle; /* algorithm instance handle */

XDM1_BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM1_BufDesc *outBufs; /* algorithm output buffer
descriptor */

IVIDDEC3_InArgs *inargs /* algorithm runtime input
arguments */

IVIDDEC3_OutArgs *outargs /* algorithm runtime output

arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function does the basic decoding/encoding. The first argument to

process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM_BufDesc data structure

for details).

The fourth argument is a pointer to the IVIDDEC3_InArgs data structure

that defines the runtime input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDDEC3_OutArgs data structure

that defines the runtime output arguments for an algorithm instance object.
║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 process() can only be called after a successful return from

algInit() and algActivate().

 If algorithm uses DMA resources, process() can only be called after

a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm’s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.

 -38

║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the process operation is successful, the return value from this

operation is equal to IALG_EOK; otherwise it is equal to either

IALG_EFAIL or an algorithm specific return value.

 After successful return from process() function, algDeavtivate()

can be called.
║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algDeActivate(), control()

Note:

A video encoder or decoder cannot be pre-empted by any other video
encoder or decoder instance. That is, you cannot perform task switching
while encode/decode of a particular frame is in progress.

 -39

║ Name

algDeactivate()– save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm

instance handle. This handle is used by the algorithm to identify various

buffers that must be saved prior to next cycle of algActivate() and

processing.

For more details, see TMS320 DSP Algorithm Standard API Reference
(SPRU360).

║ See Also

algActivate()

 -40

4.3.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree()determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(SPRU360).

║ See Also

algAlloc()

 -41

Chapter 5

Frequently Asked Questions

This chapter provides answers to few frequently asked questions related to
using this decoder.

5.1 Code Build and Execution

Question Answer

How I will be able to run the
codec library.

Please follow the instructions given in section
2.4 (Building and Running the Sample Test Application)

Build error saying that code
memory section is not sufficient

Make sure that project settings are not changed from the released
package settings such as making project setting as File -03 and no
debug information, which throws an error that code memory section is not
sufficient.

Application returns an error
saying “Couldn't open
parameter file ….. “while
running the host test app

Make sure that input file path is correct. If the application is accessing
input from network, ensure that the network connectivity is stable.

5.2 Issues with Tools Version

Question Answer

What tools are required to run
the standalone codec?

To run the codec on standalone setup, you need Famework components,
Code Composer Studio, ARM compiler tools (CG tools).
 If you are running on the simulator, then the correct version of the
HDVICP2 CSP is needed (See section 2.1 for more details.)

5.3 Algorithm Related

Question Answer

 What XDM interface does
codec support?

Codec supports XDM IVIDDEC3 interface

Which Profile and level
supported by this decoder?

This MPEG4 decoder support Advanced Simple Profile for levels
0,1,2,3,4,5 and 6 ; as well as it is also have support for simple profile for
levels 0,1,2,3,4a, 5 and 6

 -42

Question Answer

What kind of memory type
supported for output buffer of
the MPEG4 Decoder.

MPEG4 Decoder supports RAW(Luma-Chroma)/TILED8Bit(luma-
chroma)/TILED16bit(chroma) and TILEDPAGE (Luam -chroma) output
buffers, but MPEG4 Decoder does not support change in memory type
dynamically in between process call. Means if codec has been provided
RAW memory for process call 1, then codec expect Raw memory for the
next process call, it should not be other than RAW mem.

Is MPEG4 Decoder support
non-multiple of 16 frame height
and width?

Yes-current decoder support for non-multiple of 16 frame height and
width even for non-multiple 2 is also supported with this version.

Is this version of decoder
having support for error
concealment?

Yes current version of decoder having support for error concealment both
spatial and temporal.

Is this version of decoder will
support the display delay?

Only display delay of 1 or 0 frame supported in this release. Display
delay 0 means decoding order.

What is the Maximum bit rate
supported by this version of
MPEG4 decoder?

This version of decoder supports up to 30Mbps.

Is this version of Decoder
having support for Meta data
parsing and provides the same
to application?

Yes, current version of decoder is having Metadata support & provides to
the application as well.

Is this version of decoder is
having support for parse header
functionality

Yes, with assumption that there will be byte-aligned boundary between
header and residual data.

What are the resolutions
supported by decoder?

Current version of decoder support picture resolution of minimum 64x64
and maximum 2048x2048 pixels , and also support for non-multiple of 2
resolution onward 64x64 picture size.

How input and output buffer
provided by application are
getting used by codec, does
CPU directly operate on input
and output buffer.

No, CPU does not operate directly on input and output buffer provided by
application for reading the input data from input, it use VDMA to transfer
the input data to its internal allocated buffer called SL2 memory and for
writing/reading again it use VDMA.

 -43

Chapter 6

Debug Trace Usage

This section describes the debug trace feature supported by codec and its
usage.

6.1 Introduction

This section explains the approach and overall design that will be adopted
for enabling a trace from a video codec.

The primary use of Debug Trace Usage are:

1) Make the codec implementation capable of producing a trace containing
details about the history of executing a particular instance of the codec

2) Enable the application to dump certain debug parameters from the
codec in case of a failure. A failure might even be a hang or crash but in
general can be defined as any unacceptable or erroneous behavior

Such a feature is targeted at providing more visibility into the operation of
the codec and thus easing and potentially accelerating the process of
debug.

6.2 Enabling and using debug information

To enable debug information, following two parameters are added to the
create time parameters

1) debugTraceLevel

2) lastNFramesToLog

Hence the MPEG4 decoder create time parameters are modified as

typedef struct IMPEG4VDEC_Params

{

 IVIDDEC3_Params viddec3Params;

 XDAS_Int32 outloopDeBlocking;

 XDAS_Int32 errorConcealmentEnable;

 XDAS_Int32 sorensonSparkStream;

 XDAS_UInt32 debugTraceLevel;

XDAS_UInt32 lastNFramesToLog;

 -44

XDAS_UInt32 paddingMode;

XDAS_UInt32 enhancedDeBlockingQp

XDAS_UInt32 reserved[2];

} IMPEG4VDEC_Params;

6.2.1 debugTracelevel

This parameter configures the codec to dump a debug trace log

 0: Disables dumping of debug trace parameters

 >0: Enables the dumping of debug trace parameters. Value
specifies the level of debug trace information. MPEG-4 decoder
supports till level 2.

6.2.2 lastNFramesToLog

This parameter configures the codec to maintain history of debug trace
parameters for last N frames.

 0: No history will be maintained by the codec

 >0 : History of past specified number of frames will be maintained

In order to avoid book-keeping by the application to know whether the
codec has been configured to dump debug trace and where the debug
information is available, the following changes are done in the Status
structure.

typedef struct IMPEG4VDEC_Status

{

 IVIDDEC3_Status viddec3Status;

 XDAS_UInt32 debugTraceLevel;

 XDAS_UInt32 lastNFramesToLog;

 XDAS_UInt32 * extMemoryDebugTraceAddr;

XDAS_UInt32 extMemoryDebugTraceSize;

XDAS_UInt32 reserved [3];

} IMPEG4VDEC_Status;

debugTraceLevel: Debug trace level configured for the codec - 0, 1, 2

lastNFramesToLog: Number of frames for which history information is
maintained by the codec

 -45

extMemoryDebugTraceAddr: External memory address (as seen by
Media Controller) where debug trace information is being dumped – last
memory buffer requested by the codec

extMemoryDebugTraceSize: External memory buffer size (in bytes)
where debug trace information is being dumped - the size of last memory
buffer

Now the application can retrieve this information from the codec at any
time by the existing GETSTATUS query through the codec’s Control API.

6.3 Debug Trace Levels

Debug trace has been (in this implementation) organized into 4 different
levels arranged in a hierarchical fashion.

 Level 1 – Frame level information and profile data

 Level 2 – Slice and MB level information

 Level 3 – Logs function call stack for with entry hook

 Level 4 – Logs function call stack for with exit hook

At each higher level, the previous lower levels are also enabled. Please
note MPEG-4 decoder supports up to debug trace level 2.

6.4 Requirements On The Application

The following are the requirements on the application side:

1. The application should be capable of configuring debugTraceLevel
and lastNFrameToLog which are part of the Initialization Parameters
of the codec

2. The application should be capable of querying the codec for its
debug parameter memory regions and size

3. The application should be capable of retrieving these memory
regions (In external memory or SL2) for the specified size and
preserving these memory dumps in case of any erroneous behavior
including a hang/crash.

4. The application, at any time (in case of hang, crash or any
unexpected behavior) is expected to be also capable of retrieving
the SL2 memory region as returned by the codec in Control-
GETSTATUS specified by the SL2 memory debug trace address
and size and provide it to the codec developer. The codec
developer will have a PC based tool to parse and interpret this
dump and produce a readable log of the debug trace parameters.

 -46

This page is intentionally left blank

A-47

Appendix A

Picture Format

This Appendix explains picture format details for decoder. Decoder outputs
YUV frames in NV 12 format.

A.1 NV12 Chroma Format

NV12 is YUV 420 semi-planar with two separate planes, one for Y, one for
U and V interleaved.

Luma Plane

Y0,0 Y0,1

Y1,0 Y1,1

Chroma Plane

U0,0 V0,0

U1,0 V1,0

WIDTH

H
EIG

H
T

H
EIG

H
T/2

A-48

A.2 Progressive Picture Format

ActiveRegion and ImageRegion offsets for

chroma are derived from luma offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset>>1) & 0xfffffffe;

ACTIVE REGION (LUMA)

imagePitch

activeRegion.topLeft

activeRegion.bottomRight

fr
a

m
e

H
e
ig

h
t

m
a
x
H

e
ig

h
t

maxWidth

ACTIVE REGION (CHROMA)

picChromaBufferAddr

imagePitch

fr
a

m
e
H

e
ig

h
t/

2

m
a
x
H

e
ig

h
t/
2

maxWidth

imageRegion.topLeft
picLumaBufferAddr

imageRegion.bottomRight

U

0,0

V

0,0

U

0,1

V

0,1

U

1,0

V

1,0

U

1,1

V

1,1

frameWidth

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

1,0

Y

1,1

Y

1,2

Y

1,3

frameWidth

A-49

Note that for decoder in case of progressive sequence:

 Luma and chroma buffer addresses can be allocated independently

 Application shall provide this through separate buffer addresses

 The outermost yellow colored region is the minimum buffer that application should allocate for a
given maxWidth and maxHeight

 activeRegion

o The displayable region after cropping done by application.

 imageRegion

o Image data decoded by the decoder whose dimensions are always multiple of 16.

o Contains the active Region as a proper subset.

 Picture Buffer (pic(Luma/Chroma)BufferAddr)

o Contains padded regions and extra region due to alignment constraints.

o Contains the imageRegion as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer.

 Padding Amounts

o In vertical direction (top and bottom), padding amount is 16 pixels for Luma buffer and 8
pixels for chroma buffer.

o In horizontal direction (left and right), padding amount is 16 pixels for both Luma buffer
chroma buffer.

A-50

A.3 Interlaced Picture Format

ACTIVE REGION

TOP FIELD (Luma)

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

2,0

Y

2,1

Y

2,2

Y

2,3

ACTIVE REGION

BOTTOM FIELD (Luma)

Y

1,0

Y

1,1

Y

1,2

Y

1,3

Y

3,0

Y

3,1

Y

3,2

Y

3,3

ACTIVE REGION

TOP FIELD (Chroma)

U

0,0

V

0,0

U

0,1

V

0,1

U

2,0

V

2,0

U

2,1

V

2,1

ACTIVE REGION

BOTTOM FIELD (Chroma)

U

1,0

V

1,0

U

1,1

V

1,1

U

3,0

V

3,0

U

3,1

V

3,1

maxWidth

m
a

xH
e
ig

h
t

m
a

xH
e
ig

h
t/

2

maxWidth

imagePitch

frameWidth

frameWidth

frameWidth

fr
a

m
e
H

e
ig

h
t/

2
fr

a
m

e
H

e
ig

h
t/
4

fr
a
m

e
H

e
ig

h
t/
4

fr
a
m

e
H

e
ig

h
t/
2

imageRegion.topLeft activeRegion.topLeft

picLumaBufferAddr =

lumaTopFieldOutput

lumaBottomFieldOutput

imagePitch

picChromaBufferAddr =

chromaTopFieldOutput

chromaTopFieldOutput

frameWidth

 ActiveRegion and ImageRegion offsets for chroma are derived from luma

offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset >> 1) & 0xfffffffe;

 ActiveRegion and ImageRegion offsets are same for top and bottom field

 For top field, offsets should be calculated from lumaTopFieldOutput

 For bottom field, offsets should be calculated from lumaBottomFieldOutput

ActiveRegion and ImageRegion offsets are same for top and bottom field

For top field, offsets should be calculated from lumaTopFieldOutput

For bottom field, offsets should be calculated from lumaBottomFieldOutput

imageRegion.bottomRightactiveRegion.bottomRight

Padded region

Decoded region multiple of

16x16 macroblock

Display region of any integer

number of pixels in horizontal

and vertical direction

A-51

Note that for decoder in case of interlaced sequence:

 Luma and chroma buffers can be allocated independently

 Field buffer allocation cannot be independent

 For every pair of top and bottom field, decoder shall expect a single buffer address from the
application

 Decoder will not give separate decoded field as output, instead of this decoder will give
complete interleaved fields decoded output in one process call.

 The outermost yellow coloured region is the minimum buffer that application should allocate for
a given maxWidth and maxHeight

 activeRegion

o The displayable region after cropping done by application.

 imageRegion

o Image data decoded by the decoder.

o Contains the activeRegion as a proper subset.

 Picture Buffer (pic(Luma/Chroma)Buffered)

o Contains padded regions and extra region due to alignment constraints.

o Contains the image Region as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer.

 Padding Amounts

o In vertical direction (top and bottom), for each field, padding amount is 16 pixels for
Luma buffer and 8 pixels for chroma buffer.

o In horizontal direction (left and right), padding amount is 16 pixels for both Luma buffer
chroma buffer.

A-52

A.4 Constraints on Buffer Allocation for Decoder

 maxWidth and maxHeight are inputs given by the decoder to the applications

o Application may not know the output format of the decoder.

o Therefore, application should allocate Image Buffer based on maxWidth and
maxHeight

 The extra region beyond the (maxWidth x maxHeight) requirements may
be allocated by application due to alignment, pitch or some other
constraints

 Application needs to ensure following conditions regarding imagePitch

o imagePitch shall be greater or equal to the maxWidth.

o imagePitch shall be multiple of 128 bytes (if the buffer is not in TILED region).

o imagePitch shall actually be the tiler space width (i.e. depends on how many bit
per pixel, for 8bpp 16bpp and 32bpp respectively 16Kbyte, 32Kbyte and 32Kbyte).
(if the buffer is in TILED region).

o Application may set imagePitch greater than maxWidth as per display
constraints. However this value must be a multiple of 128 bytes (if the buffer is
not in TILED region).

 picLumaBufferAddr and picChromaBufferAddr shall be 16-byte aligned address. (if the
buffer is not in TILED region).

 ActiveRegion.topLeft and ActiveRegion.bottomRight are decoder outputs

o Application should calculate actual display width and display height based on
these parameters

o ActiveRegion.topLeft and ActiveRegion.bottomRight shall be identical for both
fields in case of interlaced format

 Maximum and Minimum Resolution is defined as below

o Progressive

 Minimum frameWidth = 64

 Minimum frameHeight = 64

 Maximum frameWidth = 2048

 Maximum frameHeight = 2048

o Interlaced

 Minimum frameWidth = 64

 Minimum (frameHeight / 2) = 32

 Maximum frameWidth = 2048

 Maximum (frameHeight / 2) = 1024

 Typically picture buffer allocation requirements for decoder, after buffer addresses meet
alignment constraints (depends on decoder’s padding requirements), for both progressive
and interlaced are as given below.

o Luma buffer size = maxWidth x maxHeight and

Chroma buffer size = maxWidth x maxHeight/2 where

 maxWidth = frameWidth + 32 (progressive/interlaced)

A-53

 maxHeight = frameHeight + 32 (progressive)

 maxHeight = frameHeight + 32 (interlaced)

A-54

This page intentionally left blank

B-55

Appendix B

Meta Data Support

This version of the decoder supports writing out the MB Info data into
application provided buffers.

This feature can be enabled/disabled through create time parameters
IVIDDEC3_Params::metadataType

[IVIDEO_MAX_NUM_METADATA_PLANES]. There can be maximum 3

(IVIDEO_MAX_NUM_METADATA_PLANES) meta data planes possible to be

supported with one instance of the decoder.

Each element of metadataType[] array can take following enumerated

values.

Enumeration Value

IVIDEO_METADATAPLANE_NONE -1

IVIDEO_METADATAPLANE_MBINFO 0

IVIDEO_METADATAPLANE_EINFO 1

IVIDEO_METADATAPLANE_ALPHA 2

This version of the decoder supports only following enumerated values:

1) IVIDEO_METADATAPLANE_NONE

2) IVIDEO_METADATAPLANE_MBINFO

If user does not want to use any meta data plane then all the entries of

IVIDDEC3_Params::metadataType[] should be set to

IVIDEO_METADATAPLANE_NONE. Note that the metadataType[] array

need to be filled contiguously (there cannot be

IVIDEO_METADATAPLANE_NONE between two metadata types.

The buffer requirements for metadata can be obtained using Control call
with XDM_GETBUFINFO:

The buffer pointers for the metadata need to be supplied as below during
process Call:

 OutBufs->numBufs = numBuffers forYUVPlanes + number of meta

data enabled (This is =3 if Mb-info metadata is enabled)

B-56

o outBufs->descs[0] -> Y plane

o outBufs->descs[1] -> Cb/Cr plane outBufs.

o outBufs->descs[2] -> Buffer allocated for MB info

 Also, the respective buffer pointer is copied back in the first meta-plane

pointer: outArgs->decodedBufs.metadataPl

aneDesc[0].buf , again the ordering of the metadata is as per the

order supplied by IVIDDEC3_Params::metadataType[] inpput
parameter.

Decoder parses metadata in the current process call and returns in the
same process call. This means, effectively Meta data will be given out in
decode order [Not in Display Order]. If application is interested in display
order, it should have logic to track based on input and output ID. In case of
interlaced pictures, Meta data buffers provided for each field (each process
call) is assumed to be independent.

3) Remainder of this Appendix gives more information about
IVIDEO_METADATAPLANE_MBINFO

Decoder shares two types of information at MB Level:

MB Error Map: It is an array of bytes - One byte per MB (Refer Enum
IH264VDEC_ mbErrStatus). The byte indicates whether the MB is in error
or not.

MB Info structure: It is a structure, which defines properties of a MB. Refer
structure IMPEG4VDEC_TI_MbInfo in impeg4vdec.h file. Size per MB =
112 bytes.

Case1: If the Application sets viddec3Params.metadataType[x] =
IVIDEO_METADATAPLANE_MBINFO and
IVIDDEC3_Params.operatingMode = IVIDEO_DECODE_ONLY, then
decoder will dump out MB Error Map and error concealment structure at
buffer location given for MB Info meta data.

Case2: If the Application sets viddec3Params.metadataType[x] =
IVIDEO_METADATAPLANE_MBINFO and
IVIDDEC3_Params.operatingMode =
IVIDEO_TRANSCODE_FRAMELEVEL, then decoder will dump out MB
Error Map at buffer location given for MB Info Meta data. Error Map will be
followed by MB Info structure for all MBs.

Note that if the Application does not set viddec3Params.metadataType[x] =
IVIDEO_METADATAPLANE_MBINFO, then no information will be
dumped, irrespective of the value of IVIDDEC3_Params.operatingMode. In
addition, as a minor Interface limitation, there is no provision to dump MB
Info structure alone w/o error map.

Format details for Case 1 (Dumping of Error map):

Case 1a, Progressive Frame:

Error Map, Size in Bytes = Number of MBs in Frame

Case 1b, Interlaced Frame:

B-57

Error Map, Size in Bytes = Number of MBs in Frame

Format details for Case 2 (Dumping of Error map and MB Info):

Case 2a, Progressive Frame:

Error Map, Size in Bytes = Number of MBs in Frame

MB Info structure for all MBs, Size in Bytes = 112 * Number of MBs in Frame

Case 2b, Interlaced Frame:

Error Map, Size in Bytes = Number of MBs in Frame

MB Info structure for all MBs, Size in Bytes = 112 * Number of MBs in Frame

How to configure codec to give MBInfo data?

Set the operatingMode of IVIDDEC3_Params to

IVIDEO_TRANSCODE_FRAMELEVEL.

Then populate the oubufs as mentioned above.

B-58

This page intentionally left blank

C-59

Appendix C

Error Handling

This version of the decoder supports handling of erroneous situations while
decoding. If decoder encounters errors in bit stream or any other erroneous
situations, decoder shall exit grace fully without any hang or crash. In

addition, decoder process call shall return IVIDDEC3_EFAIL and relevant

error code will be populated in extendedError field of outArgs. Different

error codes and their meanings are described below.

Definitions of bits numbered 8-15 are as per common XDM definition.
Definition of remaining bits are MPEG4 Decoder specific and as given in

below tabular column. Bit numbering in the 32 bit word extendedError is

from Least Significant Bit to Most Significant Bit.

Some of the erroneous situations will be reported as XDM_FATALERROR by

the decoder. In these cases, Application should perform XDM_RESET of

the decoder or re-create the decoder. After an XDM_RESET is performed or

re-created, the decoder will treat the bit stream provided freshly and it shall
use no information from previously parsed data.

 In certain fatal erroneous situations, the Application, might flush out the
locked buffers, if need be. See below table for more details on error
situations when flush can be performed.

In case of non-fatal errors, application need not perform XDM_RESET. It can

proceed with more decode calls, if bit stream is still not exhausted.

Meanings of various error codes and the recommended application
behavior are provided in the following table:

Table 6-2. Error Codes Information

Bit Error code Explanation
XDM Error Code
Mapping

Recommended App
Behavior

0

IMPEG4D_ERR_V

OS

Any syntax error
while parsing the
visual object
sequence of mpeg4
stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE, if bytes
are not available call Flush
operation.

1

IMPEG4D_ERR_V

O

Any syntax error
while parsing the
visual object of the
mpeg4 stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

C-60

Bit Error code Explanation
XDM Error Code
Mapping

Recommended App
Behavior

2

IMPEG4D_ERR_V

OL

Any syntax error
while parsing the
video object layer
of mpeg4 stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

3

IMPEG4D_ERR_G

OV

Any syntax error
while parsing the
group of vop of
mpeg4 stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

4

IMPEG4D_ERR_V

OP

Any syntax error
while parsing the
video object packet
of the mpeg4
stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

5

IMPEG4D_ERR_S

HORTHEADER

Any syntax error
while parsing the
H.263 stream
frame header.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

6

IMPEG4D_ERR_G

OB

Any syntax error
while parsing GOB
in case of H.263
stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

7

IMPEG4D_ERR_V

IDEOPACKET

Any syntax error
while parsing video
packet of the
stream.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

8

XDM_PARAMSCHA

NGE

Video object layer
gets changed

XDM_PARAMSCHANG

E

Refer codec specific error
which causes this

9

XDM_APPLIEDCO

NCEALMENT

Applied
concealment

XDM_APPLIEDCONC

EALMENT

Refer codec specific error
which causes this

C-61

Bit Error code Explanation
XDM Error Code
Mapping

Recommended App
Behavior

10

XDM_INSUFFICI

ENTDATA

Insufficient input
data

XDM_INSUFFICIEN

TDATA

Refer codec specific error
which causes this

11

XDM_CORRUPTED

DATA

Data
problem/corruption

XDM_CORRUPTEDDA

TA

Refer codec specific error
which causes this

12

XDM_CORRUPTED

HEADER

Header
problem/corruption

XDM_CORRUPTEDHE

ADER

Refer codec specific error
which causes this

13

XDM_UNSUPPORT

EDINPUT

Unsupported
feature/parameter

XDM_UNSUPPORTED

INPUT

Refer codec specific error
which causes this

14

XDM_UNSUPPORT

EDPARAM

Unsupported input
parameter

XDM_UNSUPPORTED

PARAM

Refer codec specific error
which causes this

15

XDM_FATALERRO

R Fatal error XDM_FATALERROR

Refer codec specific error,
which causes this, but in
this case application need
to do the XDM_RESET or
may re-create the decoder
and give fresh stream for
decoding.

16

IMPEG4D_ERR_M

BDATA

Any syntax error
while parsing the
Mb header or
coefficient data.

XDM_CORRUPTEDDA

TA

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

17

IMPEG4D_ERR_I

NVALIDPARAM_I

GNORE

Some error was
detected while slice
header decoding,
which the codec
corrected and
Continued.
Application should
Ignore this error.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

18

IMPEG4D_ERR_U

NSUPPFEATURE

Some unsupported
feature set reported
in stream while
parsing. Example
GMC/sprite coding

XDM_FATALERROR

/

XDM_UNSUPPORTED

INPUT

Can either continue with
the stream giving a fresh
pointer OR do XDM Reset
and give a fresh stream,
depending on other XDM

C-62

Bit Error code Explanation
XDM Error Code
Mapping

Recommended App
Behavior

etc… error bit set.

19

IMPEG4D_ERR_S

TREAM_END

End of Stream
was found in this
process call OR
codec is in flush
mode No XDM mapping

Normal Mode of Decoder -
Do XDM_FLUSH, Else -
XDM_RESET and Next
Stream

20

IMPEG4D_ERR_V

ALID_HEADER_N

OT_FOUND

In current process
call decoder could
not get any valid
header of mpeg4 or
H.263 stream

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

21

IMPEG4D_ERR_U

NSUPPRESOLUTI

ON

Width or height is
less than the
minimum supported
or more than the
maximum
supported

XDM_FATALERROR

/
XDM_UNSUPPORTED

INPUT

Can do a FLUSH, then
XDM Reset and pass a
fresh stream

22

IMPEG4D_ERR_B

ITSBUF_UNDERF

LOW

 In current process
call given are not
sufficient for
decoding the
current frame.

XDM_INSUFFICIEN

TDATA

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

23

IMPEG4D_ERR_I

NVALID_MBOX_M

ESSAGE

Invalid message
received on MB,
which causes
interrupt on Media
Controller or
HDVICP2,
depending on the
FIFO - Stray writes
into FIFO by some
one other than
codec XDM_FATALERROR

Should not do
XDM_FLUSH. Do
HDVICP_Reset, XDM
Reset and pass stream

24

IMPEG4D_ERR_N

O_FRAME_FOR_F

LUSH

Decoder does not
have any valid
decoded frame
data for flush.

XDM_UNSUPPORTED

INPUT

Do the XDM Reset and
pass a fresh stream, or
pass the same stream but
with valid input and output
buffer descriptors.

25

IMPEG4D_ERR_V

OP_NOT_CODED

Current process
call encounter the
scenario that
current frame is not
coded.

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

C-63

Bit Error code Explanation
XDM Error Code
Mapping

Recommended App
Behavior

26

IMPEG4D_ERR_S

TART_CODE_NOT

_PRESENT

No valid start code
present in the
stream, this error
code is mainly set
for parse header
mode

XDM_CORRUPTEDHE

ADER

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush
operation.

27

IMPEG4D_ERR_V

OP_TIME_INCRE

MENT_RES_ZERO

Decoder found vop
time increment
resolution is zero
while parsing the
VOL

XDM_UNSUPPORTED

PARAM /

XDM_FATALERROR

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush.

28

IMPEG4D_ERR_P

ICSIZECHANGE

Decoder found that
resolution of the
streams gets
changed
dynamically while
parsing the VOL

XDM_UNSUPPORTED

PARAM /

XDM_FATALERROR

If more bytes available in
bit stream, then pass it to
decoder. ELSE if bytes are
not available call Flush.

29

IMPEG4D_ERR_U

NSUPPORTED_H2

63_ANNEXS

Decoder found
unsupported
annexes while
parsing the VOP
header of the h263
stream.

XDM_UNSUPPORTED

PARAM /

XDM_FATALERROR

It is unsupported feature
by current decoder, so
reset/re-create the
decoder and run other
media file.

30

IMPEG4D_ERR_H

DVICP2_IMPROP

ER_STATE

HDVICP2 is not in
proper state XDM_FATALERROR

It is unexpected state of
the HDVICP2, so make
sure that HDVICP2 is in
stand by mode before
giving control to Decoder.
Codec needs to be re-
created.

31

IMPEG4D_ERR_I

FRAME_DROPPED

In sequence first
frame (I Frame) is
not present No XDM mapping

In case codec has found
this error, functionally
codec decoding will not
gets affected, only
decoded output may not
be correct.

C-64

 This page is intentionally left blank

D-1

Appendix D

Parse Header Support

This version of the decoder provides support to parse just header of the bit
stream. For decoder to operate in this mode Application needs to perform a

XDM_SETPARAMS control call with dynamicParams-> decodeHeader =
XDM_PARSE_HEADER

Typical usage of this feature by the application is to understand the
resolution of picture in bit stream and allocate frame buffer of size as
needed by that bit stream. Sequence of operations on the application side
typically is as follows:

1. Decoder_Create

2. Control call (XDM_SETPARAMS) to configure decoder in parse
header mode

3. Process call to decoder which shall decode VOS + VO + VOL +
VOP Header

4. Control call (XDM_GETBUFINFO) to understand buffer
requirements

5. Allocate buffers of size exactly needed to decode this particular bit
stream

6. Control call (XDM_SETPARAMS) to configure decoder in normal
mode (dynamicParams->decodeHeader = XDM_DECODE_AU)

7. Process calls to decode frames

Note:

Following aspects of decoder behavior when configured in

XDM_PARSE_HEADER mode:
 Decoder shall decode VOS/VO/VOL of the mpeg4 stream, if VOL is not

present in stream then first it will try to get the VOL or valid h.263 header
and if codec gets VOL ,it will treat up coming stream as mpeg else if it gets
h.263 header first then codec treat stream as h263 stream.

 After at least one VO/VOS/VOL is parsed, if application still performs

process calls with decoder in XDM_PARSE_HEADER mode, then decoder

behavior is as follows:
 If decoder encounters VO/VOS/VOL, it shall parse them until vop data is

encountered. After encountering vop data, it shall return from process call

 Output buffers for YUV data is don’t care for decoder, while in parse header

mode

D-2

This page is intentionally left blank

Appendix E

Support for Display Delay

This version of decoder supports configurability to achieve desired display
delay and low DDR memory footprint.

It is recommended to utilize this feature only when the application is well
aware of the nature of the bit stream in terms of the GOP structure.

Desired display delay can be achieved by the application by setting
IVIDDEC3_Params::displayDelay. Decoder shall start displaying of frames
not later than display Delay numbers of frames are decoded.

Note:
 MPEG4 Decoder supports only three mode of displayDelay parameter of

IVIDDEC3_Params

 IVIDDEC3_DISPLAY_DELAY_AUTO, decoder internally set display

delay as 1 frame delay, so that decoded data in current process call will get

displayed in next process call.

 IVIDDEC3_DISPLAY_DELAY_1, decoder get set by display delay as 1

frame delay, so that decoded data in current process call will get displayed
in next process call

 IVIDDEC3_DECODE_ORDER, decoder will not have any display delay,

decoded frame data will get be free to display in same process call

E-2

This page is intentionally left blank

F-3

Appendix F

Support for Padding type

This version of decoder supports configurability to achieve desired padding
process for non-multiple of 16 resolution video clips

It is recommended to utilize this feature only when the application is well
aware of the nature of the encode bit-stream, as there may be some
ambiguity can come for decoded YUV, below is explanation of the padding
types used for decoder.

Desired padding process can be achieved by the application by setting
IMPEG4VDEC_Params:: paddingMode.

Note:
 MPEG4 Decoder supports two mode of padding type as specified in api file

of the codec package

 PAD_METHOD_DIVX, decoder internally set padding type as Divx style of

padding process for clip having resoltuin non multiple of 16.

 PAD_METHOD_MPEG4, decoder internally set padding type as mpeg4 style

of padding process for clip having resoltuin non multiple of 16.

Below is the explanation of the both kind of padding process for non-
multiple of 16 video clips.

In MPEG4 Decoder, there is ambiguity to adopt the padding process
(algorithm) for non-multiple of 16 resolutions video clips, and this
ambiguity arise due to different interpretation of padding needs to be done
by various encoder/decoder in case of non multiple of 16 resolution
streams. There are two ways of interpretation of padding for non-multiple of
16 resolution streams.

o Interpretation 1

o Interpretation 2

Below pictorial view, will be more explanatory

F-4

First interpretation of the padding process defined in spec (also called as DIVX style

of padding)

Second interpretation of the padding process defined in spec (also called as MPEG4

style of padding)

F-5

As defined above padding processes both interpretations are correct way of doing the padding for
the non-multiple of 16-resolution stream, only concern comes when encoder follow one kind of
padding and decoder follow other kind of padding. So to get the perfect output, both encoder and
decoder shall follow identical interpretation of the standard, any mismatch in either side, may result
in visual artifacts

F-6

This page is intentionally left blank

G-7

Appendix G

Support for Dynamic Change in
Resolution

This version of decoder supports handling of change in resolution in as stream. Procedure to be as
follows:

When decoder detects that, a change in resolution has occurred:

o Decoder shall send out the error code of IMPEG4D_ERR_PICSIZECHANGE

o Byte consumed value returned by codec shall not be inclusive of the VOL (mpeg4 video
object layer) / VOP (H263 new frame sequence) beginning to new resolution.

When the application observes the error code of IMPEG4D_ERR_PICSIZECHANGE, it should take
following steps:

o Flush out all frames locked inside decoder [these frames will be of older resolution]

o Perform control call to with XDM_GETSTATUS command to know the new resolution.

o Perform control call to with XDM_GETBUFINFO command to know the buffer requirement
of the codec.

o Re-allocate the YUV buffers according to new resolution requirement

o Start performing process call again

Note:

o There is no need to perform XDM_RESET in the above flow.

o Above flow is same irrespective of whether the resolution increases or decreases.

G-8

This page is intentionally left blank

H-9

Appendix H

Support for Drop of frame

This version of decoder supports handling of drop of frame (I frame drop), meaning in case first
frame of sequence is dropped then codec will be through error.

When decoder detects that, there is drop is frame meaning first frame not I frame then codec report
error as follows:

o Decoder shall send out the error code of IMPEG4D_ERR_IFRAME_DROPPED

o Despite of reporting error as above codec will continue decoding of that frame data given to
codec in process.

When the application observes the error code of IMPEG4D_ERR_IFRAME_DROPPED, it can
take following steps, depend of application requirement:

o Application can ignore the decoded data and provide I frame data to decode to get correct
decoded data from codec.

o Application can take decoded data and keep performing process, in this case codec will be
giving visually wrong data unless it won’t get new I Frame(As first I frame was dropped so
codec will not be having correct reference data) .

Note:

o There is no need to perform XDM_RESET in the above flow.

H-10

This page is intentionally left blank

I-11

Appendix I

Support for Decoding only Intra
frames using less memory

This version of decoder also supports decoding of only Intra frames from the stream. This feature is
added to reduce the memory footprint requested by codec during create time. When decoder is
created with this feature enabled, it shall request lesser memory during create time compared when
this feature is disabled; and decode all the Intra frames from the streams. Please refer datasheet for
gain in memory obtained with this feature.

Important points regarding this feature –

 If this feature is enabled for a stream with P/B frames, the decoder searches for next
frame’s start code till it finds a Intra frame in the bytes given to decoder. It is advisable to
use this feature for streams with all Intra frames.

 The output buffer given for the decoder for a particular process call is displayed, if a Intra
frame is decoded, and freed for that process call only.

 Decoder does not give any output buffers when it encounters P/B frames.

 XDM_FLUSH shouldn’t be called when this feature is enabled. But if it is called then
decoder doesn’t give any output buffers.

Note:

MPEG4 Decoder supports two values for decodeOnlyIntraFrames
parameter in create time structure for this feature -

 IMPEG4VDEC_DECODE_ONLY_I_FRAMES_DISABLE, during
create time, decoder requests memory required to decode all frame
types.

 IMPEG4VDEC_DECODE_ONLY_I_FRAMES_ENABLE, decoder

requests lesser memory required just to decode only I frames

I-12

 This page is intentionally left blank

