1 // Copyright Yangqing Jia 2013
3 #include <map>
4 #include <set>
5 #include <string>
6 #include <vector>
8 #include "caffe/proto/caffe.pb.h"
9 #include "caffe/layer_factory.hpp"
10 #include "caffe/net.hpp"
12 using std::pair;
13 using std::map;
14 using std::set;
16 namespace caffe {
18 template <typename Dtype>
19 Net<Dtype>::Net(const NetParameter& param,
20 const vector<Blob<Dtype>* >& bottom) {
21 // Basically, build all the layers and set up its connections.
22 name_ = param.name();
23 map<string, int> blob_name_to_idx;
24 set<string> available_blobs;
25 int num_layers = param.layers_size();
26 CHECK_EQ(bottom.size(), param.bottom_size())
27 << "Incorrect bottom blob size.";
28 // set the input blobs
29 for (int i = 0; i < param.bottom_size(); ++i) {
30 const string& blob_name = param.bottom(i);
31 CHECK_GT(bottom[i]->count(), 0);
32 shared_ptr<Blob<Dtype> > blob_pointer(
33 new Blob<Dtype>(bottom[i]->num(), bottom[i]->channels(),
34 bottom[i]->height(), bottom[i]->width()));
35 blobs_.push_back(blob_pointer);
36 blob_names_.push_back(blob_name);
37 net_input_blob_indices_.push_back(i);
38 blob_name_to_idx[blob_name] = i;
39 available_blobs.insert(blob_name);
40 }
41 // For each layer, set up their input and output
42 bottom_vecs_.resize(param.layers_size());
43 top_vecs_.resize(param.layers_size());
44 for (int i = 0; i < param.layers_size(); ++i) {
45 const LayerConnection& layer_connection = param.layers(i);
46 const LayerParameter& layer_param = layer_connection.layer();
47 layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param)));
48 layer_names_.push_back(layer_param.name());
49 LOG(INFO) << "Creating Layer " << layer_param.name();
50 // Figure out this layer's input and output
51 for (int j = 0; j < layer_connection.bottom_size(); ++j) {
52 const string& blob_name = layer_connection.bottom(j);
53 if (available_blobs.find(blob_name) == available_blobs.end()) {
54 LOG(FATAL) << "Unknown blob input " << blob_name <<
55 " to layer" << j;
56 }
57 LOG(INFO) << layer_param.name() << " <- " << blob_name;
58 bottom_vecs_[i].push_back(
59 blobs_[blob_name_to_idx[blob_name]].get());
60 available_blobs.erase(blob_name);
61 }
62 for (int j = 0; j < layer_connection.top_size(); ++j) {
63 const string& blob_name = layer_connection.top(j);
64 if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) {
65 LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
66 }
67 LOG(INFO) << layer_param.name() << " -> " << blob_name;
68 shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
69 blobs_.push_back(blob_pointer);
70 blob_names_.push_back(blob_name);
71 blob_name_to_idx[blob_name] = blob_names_.size() - 1;
72 available_blobs.insert(blob_name);
73 top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get());
74 }
75 }
76 LOG(INFO) << "Checking top blobs.";
77 // In the end, check if all remaining available blobs are top blobs.
78 for (int i = 0; i < param.top_size(); ++i) {
79 const string& blob_name = param.top(i);
80 if (blob_name_to_idx.find(blob_name) == blob_name_to_idx.end()) {
81 LOG(FATAL) << "Unknown blob output " << blob_name;
82 }
83 net_output_blob_indices_.push_back(blob_name_to_idx[blob_name]);
84 available_blobs.erase(blob_name);
85 }
86 if (!available_blobs.empty()) {
87 LOG(WARNING) << "There are some internal blobs not used:";
88 for (set<string>::iterator it = available_blobs.begin();
89 it != available_blobs.end(); ++it) {
90 LOG(WARNING) << " " << *it;
91 }
92 }
94 LOG(INFO) << "Setting up the layers.";
95 for (int i = 0; i < layers_.size(); ++i) {
96 LOG(INFO) << "Setting up " << layer_names_[i];
97 layers_[i]->SetUp(bottom_vecs_[i], &top_vecs_[i]);
98 }
99 LOG(INFO) << "Network initialization done.";
100 }
102 template <typename Dtype>
103 void Net<Dtype>::Forward(const vector<Blob<Dtype>*> & bottom,
104 vector<Blob<Dtype>*>* top) {
105 // Copy bottom to internal bottom
106 for (int i = 0; i < bottom.size(); ++i) {
107 memcpy(blobs_[net_input_blob_indices_[i]]->mutable_cpu_data(),
108 bottom[i]->cpu_data(), sizeof(Dtype) * bottom[i]->count());
109 }
110 for (int i = 0; i < layers_.size(); ++i) {
111 layers_[i]->Forward(bottom_vecs_[i], &top_vecs_[i]);
112 }
113 // Copy internal top to top
114 for (int i = 0; i < (*top).size(); ++i) {
115 NOT_IMPLEMENTED;
116 }
117 }
119 template <typename Dtype>
120 Dtype Net<Dtype>::Backward() {
121 Dtype loss = 0;
122 // TODO(Yangqing): figure out those layers that do not need backward.
123 for (int i = layers_.size() - 1; i >= 0; --i) {
124 Dtype layer_loss = layers_[i]->Backward(
125 top_vecs_[i], true, &bottom_vecs_[i]);
126 loss += layer_loss;
127 }
128 return loss;
129 }
131 template <typename Dtype>
132 void Net<Dtype>::CopyTrainedLayersFrom(const NetParameter& param) {
133 int num_source_layers = param.layers_size();
134 for (int i = 0; i < num_source_layers; ++i) {
135 const LayerParameter& source_layer = param.layers(i).layer();
136 const string& source_layer_name = source_layer.name();
137 int target_layer_id = 0;
138 while (target_layer_id != layer_names_.size() &&
139 layer_names_[target_layer_id] != source_layer_name) {
140 ++target_layer_id;
141 }
142 if (target_layer_id == layer_names_.size()) {
143 LOG(INFO) << "Ignoring source layer " << source_layer_name;
144 continue;
145 }
146 LOG(INFO) << "Loading source layer " << source_layer_name;
147 vector<shared_ptr<Blob<Dtype> > >& target_blobs =
148 layers_[target_layer_id]->params();
149 CHECK_EQ(target_blobs.size(), source_layer.blobs_size())
150 << "Incompatible number of blobs for layer " << source_layer_name;
151 for (int j = 0; j < target_blobs.size(); ++j) {
152 target_blobs[j]->FromProto(source_layer.blobs(j));
153 }
154 }
155 }
157 template <typename Dtype>
158 void Net<Dtype>::ToProto(NetParameter* param, bool write_diff) {
159 param->Clear();
160 param->set_name(name_);
161 // Add bottom and top
162 for (int i = 0; i < net_input_blob_indices_.size(); ++i) {
163 param->add_bottom(blob_names_[net_input_blob_indices_[i]]);
164 }
165 for (int i = 0; i < net_input_blob_indices_.size(); ++i) {
166 param->add_bottom(blob_names_[net_input_blob_indices_[i]]);
167 }
168 for (int i = 0; i < layers_.size(); ++i) {
169 LayerConnection* layer_connection = param->add_layers();
170 }
171 }
173 INSTANTIATE_CLASS(Net);
175 } // namespace caffe