c3140708d93f84bd42ee91f3ad5968ff4274fc5f
1 // Copyright 2013 Yangqing Jia
3 package caffe;
5 message BlobProto {
6 optional int32 num = 1 [default = 0];
7 optional int32 channels = 2 [default = 0];
8 optional int32 height = 3 [default = 0];
9 optional int32 width = 4 [default = 0];
10 repeated float data = 5 [packed=true];
11 repeated float diff = 6 [packed=true];
12 }
14 message Datum {
15 optional int32 channels = 1;
16 optional int32 height = 2;
17 optional int32 width = 3;
18 // the actual image data, in bytes
19 optional bytes data = 4;
20 optional int32 label = 5;
21 // Optionally, the datum could also hold float data.
22 repeated float float_data = 6;
23 }
25 message FillerParameter {
26 // The filler type.
27 optional string type = 1 [default = 'constant'];
28 optional float value = 2 [default = 0]; // the value in constant filler
29 optional float min = 3 [default = 0]; // the min value in uniform filler
30 optional float max = 4 [default = 1]; // the max value in uniform filler
31 optional float mean = 5 [default = 0]; // the mean value in gaussian filler
32 optional float std = 6 [default = 1]; // the std value in gaussian filler
33 }
35 message LayerParameter {
36 optional string name = 1; // the layer name
37 optional string type = 2; // the string to specify the layer type
39 // Parameters to specify layers with inner products.
40 optional uint32 num_output = 3; // The number of outputs for the layer
41 optional bool biasterm = 4 [default = true]; // whether to have bias terms
42 optional FillerParameter weight_filler = 5; // The filler for the weight
43 optional FillerParameter bias_filler = 6; // The filler for the bias
45 optional uint32 pad = 7 [default = 0]; // The padding size
46 optional uint32 kernelsize = 8; // The kernel size
47 optional uint32 group = 9 [default = 1]; // The group size for group conv
48 optional uint32 stride = 10 [default = 1]; // The stride
49 enum PoolMethod {
50 MAX = 0;
51 AVE = 1;
52 STOCHASTIC = 2;
53 }
54 optional PoolMethod pool = 11 [default = MAX]; // The pooling method
55 optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio
57 optional uint32 local_size = 13 [default = 5]; // for local response norm
58 optional float alpha = 14 [default = 1.]; // for local response norm
59 optional float beta = 15 [default = 0.75]; // for local response norm
61 // For data layers, specify the data source
62 optional string source = 16;
63 // For data pre-processing, we can do simple scaling and subtracting the
64 // data mean, if provided. Note that the mean subtraction is always carried
65 // out before scaling.
66 optional float scale = 17 [ default = 1 ];
67 optional string meanfile = 18;
68 // For data layers, specify the batch size.
69 optional uint32 batchsize = 19;
70 // For data layers, specify if we would like to randomly crop an image.
71 optional uint32 cropsize = 20 [default = 0];
72 // For data layers, specify if we want to randomly mirror data.
73 optional bool mirror = 21 [default = false];
75 // The blobs containing the numeric parameters of the layer
76 repeated BlobProto blobs = 50;
77 // The ratio that is multiplied on the global learning rate. If you want to set
78 // the learning ratio for one blob, you need to set it for all blobs.
79 repeated float blobs_lr = 51;
80 // The weight decay that is multiplied on the global weight decay.
81 repeated float weight_decay = 52;
82 }
84 message LayerConnection {
85 optional LayerParameter layer = 1; // the layer parameter
86 repeated string bottom = 2; // the name of the bottom blobs
87 repeated string top = 3; // the name of the top blobs
88 }
90 message NetParameter {
91 optional string name = 1; // consider giving the network a name
92 repeated LayerConnection layers = 2; // a bunch of layers.
93 repeated string input = 3; // The input to the network
94 }
96 message SolverParameter {
97 optional string train_net = 1; // The proto file for the training net.
98 optional string test_net = 2; // The proto file for the testing net.
99 // The number of iterations for each testing phase.
100 optional int32 test_iter = 3 [ default = 0 ];
101 // The number of iterations between two testing phases.
102 optional int32 test_interval = 4 [ default = 0 ];
103 optional float base_lr = 5; // The base learning rate
104 // the number of iterations between displaying info. If display = 0, no info
105 // will be displayed.
106 optional int32 display = 6;
107 optional int32 max_iter = 7; // the maximum number of iterations
108 optional string lr_policy = 8; // The learning rate decay policy.
109 optional float gamma = 9; // The parameter to compute the learning rate.
110 optional float power = 10; // The parameter to compute the learning rate.
111 optional float momentum = 11; // The momentum value.
112 optional float weight_decay = 12; // The weight decay.
113 optional int32 stepsize = 13; // the stepsize for learning rate policy "step"
114 optional int32 snapshot = 14 [default = 0]; // The snapshot interval
115 optional string snapshot_prefix = 15; // The prefix for the snapshot.
116 // whether to snapshot diff in the results or not. Snapshotting diff will help
117 // debugging but the final protocol buffer size will be much larger.
118 optional bool snapshot_diff = 16 [ default = false];
119 }
121 // A message that stores the solver snapshots
122 message SolverState {
123 optional int32 iter = 1; // The current iteration
124 optional string learned_net = 2; // The file that stores the learned net.
125 repeated BlobProto history = 3; // The history for sgd solvers
126 }