// Copyright 2013 Yangqing Jia #include #include #include #include #include #include "caffe/layer.hpp" #include "caffe/util/io.hpp" #include "caffe/vision_layers.hpp" using std::string; namespace caffe { template void* DataLayerPrefetch(void* layer_pointer) { DataLayer* layer = reinterpret_cast*>(layer_pointer); Datum datum; Dtype* top_data = layer->prefetch_data_->mutable_cpu_data(); Dtype* top_label = layer->prefetch_label_->mutable_cpu_data(); const Dtype scale = layer->layer_param_.scale(); const int batchsize = layer->layer_param_.batchsize(); const int cropsize = layer->layer_param_.cropsize(); const bool mirror = layer->layer_param_.mirror(); if (mirror && cropsize == 0) { LOG(FATAL) << "Current implementation requires mirror and cropsize to be " << "set at the same time."; } // datum scales const int channels = layer->datum_channels_; const int height = layer->datum_height_; const int width = layer->datum_width_; const int size = layer->datum_size_; const Dtype* mean = layer->data_mean_.cpu_data(); for (int itemid = 0; itemid < batchsize; ++itemid) { // get a blob datum.ParseFromString(layer->iter_->value().ToString()); const string& data = datum.data(); if (cropsize) { CHECK(data.size()) << "Image cropping only support uint8 data"; int h_off, w_off; // We only do random crop when we do training. if (Caffe::phase() == Caffe::TRAIN) { h_off = rand() % (height - cropsize); w_off = rand() % (width - cropsize); } else { h_off = (height - cropsize) / 2; w_off = (width - cropsize) / 2; } if (mirror && rand() % 2) { // Copy mirrored version for (int c = 0; c < channels; ++c) { for (int h = 0; h < cropsize; ++h) { for (int w = 0; w < cropsize; ++w) { top_data[((itemid * channels + c) * cropsize + h) * cropsize + cropsize - 1 - w] = (static_cast( (uint8_t)data[(c * height + h + h_off) * width + w + w_off]) - mean[(c * height + h + h_off) * width + w + w_off]) * scale; } } } } else { // Normal copy for (int c = 0; c < channels; ++c) { for (int h = 0; h < cropsize; ++h) { for (int w = 0; w < cropsize; ++w) { top_data[((itemid * channels + c) * cropsize + h) * cropsize + w] = (static_cast( (uint8_t)data[(c * height + h + h_off) * width + w + w_off]) - mean[(c * height + h + h_off) * width + w + w_off]) * scale; } } } } } else { // we will prefer to use data() first, and then try float_data() if (data.size()) { for (int j = 0; j < size; ++j) { top_data[itemid * size + j] = (static_cast((uint8_t)data[j]) - mean[j]) * scale; } } else { for (int j = 0; j < size; ++j) { top_data[itemid * size + j] = (datum.float_data(j) - mean[j]) * scale; } } } top_label[itemid] = datum.label(); // go to the next iter layer->iter_->Next(); if (!layer->iter_->Valid()) { // We have reached the end. Restart from the first. LOG(INFO) << "Restarting data prefetching from start."; layer->iter_->SeekToFirst(); } } return (void*)NULL; } template void DataLayer::SetUp(const vector*>& bottom, vector*>* top) { CHECK_EQ(bottom.size(), 0) << "Neuron Layer takes no input blobs."; CHECK_EQ(top->size(), 2) << "Neuron Layer takes two blobs as output."; // Initialize the leveldb leveldb::DB* db_temp; leveldb::Options options; options.create_if_missing = false; LOG(INFO) << "Opening leveldb " << this->layer_param_.source(); leveldb::Status status = leveldb::DB::Open( options, this->layer_param_.source(), &db_temp); CHECK(status.ok()) << "Failed to open leveldb " << this->layer_param_.source(); db_.reset(db_temp); iter_.reset(db_->NewIterator(leveldb::ReadOptions())); iter_->SeekToFirst(); // Read a data point, and use it to initialize the top blob. Datum datum; datum.ParseFromString(iter_->value().ToString()); // image int cropsize = this->layer_param_.cropsize(); if (cropsize > 0) { (*top)[0]->Reshape( this->layer_param_.batchsize(), datum.channels(), cropsize, cropsize); prefetch_data_.reset(new Blob( this->layer_param_.batchsize(), datum.channels(), cropsize, cropsize)); } else { (*top)[0]->Reshape( this->layer_param_.batchsize(), datum.channels(), datum.height(), datum.width()); prefetch_data_.reset(new Blob( this->layer_param_.batchsize(), datum.channels(), datum.height(), datum.width())); } LOG(INFO) << "output data size: " << (*top)[0]->num() << "," << (*top)[0]->channels() << "," << (*top)[0]->height() << "," << (*top)[0]->width(); // label (*top)[1]->Reshape(this->layer_param_.batchsize(), 1, 1, 1); prefetch_label_.reset( new Blob(this->layer_param_.batchsize(), 1, 1, 1)); // datum size datum_channels_ = datum.channels(); datum_height_ = datum.height(); datum_width_ = datum.width(); datum_size_ = datum.channels() * datum.height() * datum.width(); CHECK_GT(datum_height_, cropsize); CHECK_GT(datum_width_, cropsize); // check if we want to have mean if (this->layer_param_.has_meanfile()) { BlobProto blob_proto; LOG(INFO) << "Loading mean file from" << this->layer_param_.meanfile(); ReadProtoFromBinaryFile(this->layer_param_.meanfile().c_str(), &blob_proto); data_mean_.FromProto(blob_proto); CHECK_EQ(data_mean_.num(), 1); CHECK_EQ(data_mean_.channels(), datum_channels_); CHECK_EQ(data_mean_.height(), datum_height_); CHECK_EQ(data_mean_.width(), datum_width_); } else { // Simply initialize an all-empty mean. data_mean_.Reshape(1, datum_channels_, datum_height_, datum_width_); } // Now, start the prefetch thread. Before calling prefetch, we make two // cpu_data calls so that the prefetch thread does not accidentally make // simultaneous cudaMalloc calls when the main thread is running. In some // GPUs this seems to cause failures if we do not so. prefetch_data_->mutable_cpu_data(); prefetch_label_->mutable_cpu_data(); data_mean_.cpu_data(); // LOG(INFO) << "Initializing prefetch"; CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch, reinterpret_cast(this))) << "Pthread execution failed."; // LOG(INFO) << "Prefetch initialized."; } template void DataLayer::Forward_cpu(const vector*>& bottom, vector*>* top) { // First, join the thread CHECK(!pthread_join(thread_, NULL)) << "Pthread joining failed."; // Copy the data memcpy((*top)[0]->mutable_cpu_data(), prefetch_data_->cpu_data(), sizeof(Dtype) * prefetch_data_->count()); memcpy((*top)[1]->mutable_cpu_data(), prefetch_label_->cpu_data(), sizeof(Dtype) * prefetch_label_->count()); // Start a new prefetch thread CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch, reinterpret_cast(this))) << "Pthread execution failed."; } template void DataLayer::Forward_gpu(const vector*>& bottom, vector*>* top) { // First, join the thread CHECK(!pthread_join(thread_, NULL)) << "Pthread joining failed."; // Copy the data CUDA_CHECK(cudaMemcpy((*top)[0]->mutable_gpu_data(), prefetch_data_->cpu_data(), sizeof(Dtype) * prefetch_data_->count(), cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMemcpy((*top)[1]->mutable_gpu_data(), prefetch_label_->cpu_data(), sizeof(Dtype) * prefetch_label_->count(), cudaMemcpyHostToDevice)); // Start a new prefetch thread CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch, reinterpret_cast(this))) << "Pthread execution failed."; } // The backward operations are dummy - they do not carry any computation. template Dtype DataLayer::Backward_cpu(const vector*>& top, const bool propagate_down, vector*>* bottom) { return Dtype(0.); } template Dtype DataLayer::Backward_gpu(const vector*>& top, const bool propagate_down, vector*>* bottom) { return Dtype(0.); } INSTANTIATE_CLASS(DataLayer); } // namespace caffe