X-Git-Url: https://git.ti.com/gitweb?p=jacinto-ai%2Fcaffe-jacinto.git;a=blobdiff_plain;f=data%2Flenet_solver.prototxt;h=d0edc0f0c874530d03ca36721c9026b254dc5b6f;hp=d58255b9e31368c87b0445722a51228e36f347db;hb=ca3e042863e59e9a8a8edd7e78ffe9b2431aea8f;hpb=524e0956ef58d0f1fac0bf302de341c9eff882e0;ds=sidebyside diff --git a/data/lenet_solver.prototxt b/data/lenet_solver.prototxt index d58255b9..d0edc0f0 100644 --- a/data/lenet_solver.prototxt +++ b/data/lenet_solver.prototxt @@ -1,12 +1,27 @@ -train_net: "data/lenet.prototxt" -test_net: "data/lenet_test.prototxt" +# The training protocol buffer definition +train_net: "lenet.prototxt" +# The testing protocol buffer definition +test_net: "lenet_test.prototxt" +# test_iter specifies how many forward passes the test should carry out. +# In the case of MNIST, we have test batch size 100 and 100 test iterations, +# covering the full 10,000 testing images. +test_iter: 100 +# Carry out testing every 500 training iterations. +test_interval: 500 +# The base learning rate, momentum and the weight decay of the network. base_lr: 0.01 +momentum: 0.9 +weight_decay: 0.0005 +# The learning rate policy lr_policy: "inv" gamma: 0.0001 power: 0.75 +# Display every 100 iterations display: 100 -max_iter: 5000 -momentum: 0.9 -weight_decay: 0.0005 -test_iter: 100 -test_interval: 500 \ No newline at end of file +# The maximum number of iterations +max_iter: 10000 +# snapshot intermediate results +snapshot: 5000 +snapshot_prefix: "lenet" +# solver mode: 0 for CPU and 1 for GPU +solver_mode: 1