Texas Instruments Incorporated

Software Design Specification
SDOCM # xxxxxxxx

Revision A

<Release Name & Version>

[image: image1.png]{
INSTRUMENTS

20450 Century Boulevard

Germantown, MD 20874

MCBSP LLD
Software Design Specification (SDS)
Revision A

	Revision Record

	Document Title: Software Design Specification

	Revision
	Description of Change

	A
	1. Initial Release – Code drop 1.0.0.0

	
	

	
	

Note:
Be sure the Revision of this document matches the Approval record Revision letter. The revision letter increments only upon approval via the Quality Record System.
TABLE OF CONTENTS

21
Scope

2
References
2
3
Definitions
2
4
Overview
3
4.1
Hardware Overview
3
4.2
Software Overview
4
4.3
Key Features
5
5
Design
5
5.1
MCBSP Driver Initialization
6
5.2
MCBSP Peripheral Configuration
6
5.3
MCBSP Driver External Interface (Public APIs)
8
5.3.1
Driver Instance Binding
9
5.3.2
Channel Creation
11
5.3.3
I/O Frame Processing
13
5.3.3.1 Asynchronous I/O Mechanism
13
5.3.4
Control Commands
14
5.3.5
Channel Deletion
16
5.3.6
Driver Instance Unbinding/Deletion
17
5.4
Data Structures
17
5.4.1
Constants and Enumerations
17
5.4.1.1 Mcbsp_TXEVENTQUE
17
5.4.1.2 Mcbsp_RXEVENTQUE
17
5.4.1.3 Mcbsp_OpMode
18
5.4.1.4 Mcbsp_DevMode
18
5.4.1.5 Mcbsp_BufferFormat
19
5.4.2
Internal Data Structures
19
5.4.2.1 Driver Instance Object
19
5.4.2.2 Channel Object
21
5.4.3
External Data Structures
24
5.4.3.1 Mcbsp_Params
24
5.4.3.2 Mcbsp_ChanParams
25
5.4.3.3 Mcbsp_srgConfig
27
5.4.3.4 Mcbsp_DataConfig
28
5.4.3.5 Mcbsp_ClkSetup
29
5.5
Supported Data Formats
30
5.5.1
1-Slot Data Format
30
5.5.2
Multi-Slot Non-Interleaved Data Format
30
5.5.3
Multi-Slot Interleaved Data Format
31
6
Integration
31
6.1
Pre-built approach
32
6.2
Rebuild library
32

LIST OF FIGURES

3Figure 1: MCBSP Hardware Block Diagram

4Figure 2: MCBSP LLD Software Overview

5Figure 3: MCBSP LLD Driver Architecture

8Figure 4: Device Initialization Sequence

10Figure 5: Driver Instance Binding

12Figure 6: Create Channel Flow Diagram

16Figure 7: Control Command Flow

1 Scope

This document describes the design of Multichannel Buffered Serial Port Low Level Driver (MCBSP LLD). Also, the data types, data structures and application programming interfaces (APIs) provided by the MCBSP driver are explained in this document.
2 References

The following references are related to the feature described in this document and shall be consulted as necessary.

	No
	Referenced Document
	Control Number
	Description

	1
	MCBSP User Guide
	SPRUHH0
	KeyStone Architecture MCBSP User Guide

	2
	MCBSP LLD Documentation
	
	The MCBSP LLD APIs are generated by DOXYGEN and is located in the MCBSP package under the “docs” directory in CHM format.

	3
	EDMA User Guide
	SPRUGS5A
	Enhanced Direct Memory Access (EDMA3) Controller User Guide

Table 1. Referenced Materials
3 Definitions

	Acronym
	Description

	API
	Application Programming Interface

	CSL
	Chip Support Library

	CPU
	Central Processing Unit

	DMA
	Direct Memory Access

	DSP
	Digital Signal Processor

	EDMA
	Enhanced Direct Memory Access Controller

	FIFO
	First In First Out

	IP
	Intellectual Property

	ISR
	Interrupt Service Routine

	LLD
	Low Level Driver

	MCBSP
	Multichannel Buffered Serial Port

	MMR
	Memory Mapped Register

	OSAL
	Operating System Abstraction Layer

	PARAM
	Parameter RAM

	SOC
	System On Chip

	SRGR
	Sample Rate Generator

Table 2. Definitions
4 Overview
The multichannel buffered serial port (MCBSP) peripheral allows direct interface to other TI DSPs, codecs, and other devices in a system. The primary use for the MCBSP is for audio interface purposes. The following sub sections explain the hardware (MCBSP peripheral) and software context of the MCBSP LLD.
4.1 Hardware Overview

[image: image2.png]DR [X—

DX [X¢—]

CLKX [X|¢—¥
CLKR X4
Fsx X
FSR [X|¢—»
cLks [X—

McBSP

BFIFO
Compand A~
RSR RBR Expand [P DRR | Cm
XSR Compress DXR RFIFO é‘
<
1 E
WFIFO e
| SPCR I|= >
RCR
Clock and FIFo
Frame Sync XCR 3
e T ||
and Control | SRGR ||= H DMA Events
o
[ecr S e
M —>» XEVT
MCR
Multichannel RCER
Selection
| XCER Ilﬂ
N
RINT T jniermupts
XINT ——f—% toCPU
REVT Synchronization

XEVT

Events to DMA

Figure 1: MCBSP Hardware Block Diagram
The Figure 1: MCBSP Hardware Block Diagram above shows the hardware overview of the MCBSP controller. The peripheral contains a main controller, a FIFO interface and also the EDMA controller interface. The MCBSP controller provides the hardware registers that allows the MCBSP to be configured for the serial data transfer. The MCBSP Buffer FIFO (BFIFO) provides additional data buffering for the MCBSP. The time it takes the CPU or DMA controller to respond to DMA requests from the MCBSP may vary. The additional buffering provided by the BFIFO allows greater tolerance to such variations.

The EDMA controller interface allows the EDMA to be programmed to move the serial data between the MCBSP and the DSP. There are dedicated EDMA channels available for the MCBSP to transfer and receive data. (The software also uses two additional spare EDMA PARAM sets for PING PONG operation for providing additional buffering required especially when transferring audio data as the tolerance to delays is very less during an audio data transfer).

4.2 Software Overview

[image: image3]
Figure 2: MCBSP LLD Software Overview
Figure 2: MCBSP LLD Software Overview depicts the various components involved in the transfer of data when the MCBSP driver runs on the DSP. Serial data is stored in the memory by DSP e.g. after decoding the audio data. The main function of MCBSP driver is to program the EDMA channels to move the data from memory to the MCBSP interface on every transfer event from the MCBSP (TX path). Similarly, the driver can configure EDMA channels to move data received on MCBSP interface to the memory for DSP use (RX path).
The EDMA3 channel controller services MCBSP peripheral in the background of DSP operation, without requiring any DSP intervention. Through proper initialization of the EDMA3 channels, they can be configured to continuously service the peripheral throughout the device operation. Each event available to the EDMA3 has its own dedicated channel, and all channels operate simultaneously. The only requirements are to use the proper channel for a particular transfer and to enable the channel event in the event enable register (EER). When programming an EDMA3 channel to service MCBSP peripheral, it is necessary to know how data is to be presented to the DSP. Data is always provided with some kind of synchronization event as either one element per event (non-bursting) or multiple elements per event (bursting).

4.3 Key Features

Following are the key features of MCBSP LLD software:
· Multi-instance support and re-entrant driver

· Each instance can operate as a receiver and or transmitter
· Supports multiple data formats
· Can be configured to operate in multi-slot TDM, DSP (used in audio data transfer)
· Mechanisms to transmit desired data (such as NULL tone) when idle

5 Design
This section explains the overall architecture of MCBSP device driver, including the device driver functional partitioning as well as run-time considerations. The MCBSP LLD driver provides well-defined API layers which allow applications to use the MCBSP peripheral to send and receive data.

[image: image4.emf]Application Code

MCBSP Device Driver

CSL Register Layer

O

S

A

L

Driver Exposed APIs

OS Abstraction Layer

OSAL APIs

X

D

C

K

e

r

n

e

l

/

X

D

C

R

u

n

t

i

m

e

/

B

I

O

S

O

t

h

e

r

O

S

Device

Specific

MCBSP

Figure 3: MCBSP LLD Driver Architecture
The Figure 3: MCBSP LLD Driver Architecture illustrates the following key components:

1.) MCBSP Device Driver
This is the core MCBSP device driver. The device driver exposes a set of well-defined APIs which are used by the application layer to send and receive data via the MCBSP peripheral. The driver also exposes a set of well-defined OS abstraction APIs which are used to ensure that the driver is OS independent and portable. The MCBSP driver uses the CSL MCBSP register layer for all MCBSP MMR access. The MCBSP driver also interfaces with the EDMA3 library to be able to transfer data to and from MCBSP peripheral and data memory.

2.) Device Specific MCBSP Layer

This layer implements a well defined interface which allows the core MCBSP driver to be ported on any device which has the same MCBSP IP block. This layer may change for every device.

3.) Application Code
This is the user of the driver and its interface with the driver is through the well-defined APIs set. Application users use the driver APIs to send and receive data via the MCBSP peripheral.

4.) Operating System Abstraction Layer (OSAL)
The MCBSP LLD is OS independent and exposes all the operating system callouts via this OSAL layer.
5.) CSL Register Layer
The CSL register layer is the IP block memory mapped registers which are generated by the IP owner. The MCBSP LLD driver directly accesses the MMR registers.
5.1 MCBSP Driver Initialization

The MCBSP Driver initialization API needs to be called only once and it initializes the internal driver data structures like device objects. Application developers need to ensure that they call the MCBSP Driver Init API before they call the MCBSP Device Initialization.
The following API is used to initialize the MCBSP Driver.

int32_t mcbspInit (void)

The function returns MCBSP_STATUS_COMPLETED on success indicating that the MCBSP driver internal data structures have been initialized correctly.

5.2 MCBSP Peripheral Configuration
The MCBSP driver provides a sample implementation sequence which initializes the MCBSP IP block. The MCBSP Device initialization API is implemented as a sample prototype:

void McbspDevice_init (void)

The function initializes all the instance specific information like base address of instance CFG registers, FIFO address for the instance, TX and RX CPU event numbers, TX and RX EDMA event numbers etc. The function also sets the inUse field of MCBSP instance module object to FALSE so that the instance can be used by an application which will create it. In loop job enabled mode the LOOP Job buffers and the mute buffers are initialized. The non-loop job mode doesn’t have any LOOP Job buffers so only mute buffers are initialized. Please refer to the figure below for the typical control flow during the device initialization.

[image: image5]
Figure 4: Device Initialization Sequence
The Figure 4: Device Initialization Sequence depicts the typical control flow during the initialization of the MCBSP device.

This implementation is sample only and application developers are recommended to modify it as deemed necessary. The initialization sequence is not a part of the MCBSP driver library. This was done because the MCBSP Device Initialization sequence has to be modified and customized by application developers. If the initialization sequence was a part of the MCBSP driver then it would require the driver to be rebuilt. Moving this API outside the driver realm solves this issue. The MCBSP Device Initialization API should only be called after calling the MCBSP Device Init API. Failure to do so will result in unpredictable behaviors.

5.3 MCBSP Driver External Interface (Public APIs)
The following table outlines the basic interfaces provided by MCBSP LLD.

	Function
	Description

	mcbspBindDev
	The mcbspBindDev function is called by the application after MCBSP device initialization. The mdBindDev performs following actions:
· Acquire the device handle for the specified instance of MCBSP on the SOC.

· Configure the MCBSP device instance with the specified parameters (or default parameters, if there is no external configuration).

	mcbspUnBindDev
	The mcbspUnBindDev function is called to delete an instance of the Mcbsp driver. It will unroll all the changes done during the bind operation and free all the resources allocated to the MCBSP.

	mcbspCreateChan
	The mcbspCreateChan function creates a TX or RX channel on the specified MCBSP instance. Application has to specify the mode in which the channel has to be created through the “mode” parameter. The MCBSP driver supports only two modes of channel creation (input and output mode) for every device instance. It performs following actions:
· The required EDMA channel and spare PARAM sets are acquired and configured.

· The required TX or RX sections (clocks, SRGR, frame sync etc.) are setup.

	mcbspDeleteChan
	The mcbspDeleteChan deletes a channel created on a MCBSP instance. It frees all the resources allocated during the creation of the channel.

	mcbspSubmitChan
	The mcbspSubmitChan is invoked with the appropriate channel handle and IOBuf (aka frame) containing the operation to be performed and required parameters needed for programming the EDMA channels.

	mcbspGblXmtIsr
	This function is the interrupt service routine for the MCBSP TX event.

	mcbspGblRcvIsr
	This function is the interrupt service routine for the MCBSP RX event.

	mcbspControlChan
	The mcbspControlChan function is used to issue a control command to the MCBSP driver. Please refer to the list of control commands supported by the MCBSP driver.

· Typical commands supported are PAUSE, RESUME, STOP, START etc.

5.3.1 Driver Instance Binding
The binding function (mcbspBindDev) of the MCBSP driver is called to allocate and configure a MCBSP instance as specified by devid. Each driver instance corresponds to one hardware instance of the MCBSP. The function performs following actions:

· Check if the instance being created is already in use by checking “inUse”.

· Update the instance object with the user supplied parameters.

· Initialize all the channel objects (TX and RX) with default parameters.

· Initialize queues to hold the pending frames and currently executing frames (floating queue).

· Configure the MCBSP to receive the Frame Sync and bit clocks either externally or internally for both receiver and transmitter depending on the user supplied parameters.

· Return the device handle.

The driver binding operation expects the following parameters:
1. Pointer to hold the function returned device handle.

2. Instance number of the MCBSP instance being created.

3. Pointer to the user provided device parameter structure required for the creation of device instance. The user provided device parameter structure will be of type “Mcbsp_Params”.

Please refer the Figure 5: Driver Instance Binding below for the control flow of driver Bind operation.

[image: image6]
Figure 5: Driver Instance Binding
5.3.2 Channel Creation

Once the application has created a device instance, it needs to create a communication channel for transactions with the underlying hardware. As such a channel is a logical communication interface between the driver and the application. The driver allows at most two channels per MCBSP instance to be created which are a transmit channel (TX path e.g. audio playback or data transmission) and a receive channel (RX path e.g. audio recording or data reception). The application can create a communication channel by calling mcbspCreateChan function. The application should call mcbspCreateChan with the appropriate “mode” (MCBSP_MODE_OUTPUT or MCBSP_MODE_INPUT) parameter for the type of the channel to be created.

The application needs to supply the parameters which will characterize the features of the channel e.g. number of slots, slot width etc. The application can use the “Mcbsp_ChanParams” structure to specify the parameters to configure the channel.

The mcbspCreateChan function performs the following actions:
· Validates the input parameters given by the application.
· Checks if the requested channel is already opened or not. If it is already opened then the driver will flag an error to the application else the requested channel will be allocated.
· Updates the appropriate channel object with the user supplied parameters.
· MCBSP is configured with the appropriate word width.

· EDMA parameters for the requested channel are setup.
· If the global error callback function registration is enabled, the appropriate user supplied function is registered to be called in case of an error.
· If the LOOPJOB configuration is enabled then the respective section (TX or RX) is enabled and the EDMA transfer is enabled.
· If the channel creation fails then it will perform a cleanup and also free all the resource allocated by it till now.
· If the complete process of channel creation is successful, then it will return a unique channel handle to the application. This handle should be used by the application for further transactions with the channel. This handle will be used by the driver to identify the channel on which the transactions are being requested.

[image: image7]
Figure 6: Create Channel Flow Diagram
5.3.3 I/O Frame Processing

MCBSP driver provides mcbspSubmitChan interface to submit ioBufs (frames) for the I/O transactions to be performed. Application invokes this API for data transfer using MCBSP. This API submits a Mcbsp_IOBuf frame containing all the transfer parameters needed by the driver to program the underlying hardware for data transfer. The mcbspSubmitChan function handles the command code passed to it as part of the Mcbsp_IOBuf structure.

The command codes supported by the MCBSP driver are: Mcbsp_IOBuf_Cmd_READ, Mcbsp_IOBuf_Cmd_WRITE, Mcbsp_IOBuf_Cmd_ABORT and Mcbsp_IOBuf_Cmd_FLUSH.

· Mcbsp_IOBuf_Cmd_READ: Read data from MCBSP interface and store it in memory (input channel – RX path).
· Mcbsp_IOBuf_Cmd_WRITE: Write data from memory to MCBSP interface (output channel – TX path).
· Mcbsp_IOBuf_Cmd_ABORT and Mcbsp_IOBuf_Cmd_FLUSH. To abort or flush I/O requests already submitted, all I/O requests pending in the driver must be completed and returned to the device independent layer. The mcbspSubmitChan function will de-queue each of the I/O requests from the driver's channel queue. It will then set the size and status fields in the Mcbsp_IOBuf. Finally, it will call the callback function registered for the channel. Note: The behavior of the driver will be same for both the ABORT and FLUSH commands i.e. all the frames will be aborted and returned back to the application.

The mcbspSubmitChan function performs the following actions:
· The input Mcbsp_IOBuf frame is validated.

· If the driver has sufficient frames then the current frame is loaded in to the pending queue.
· Otherwise the frame is programmed into the link PARAMs of the EDMA.
· In NON LOOP JOB mode, the first frame is always loaded in to the main transfer channel. The subsequent two frames are loaded into the spare PARAM sets of the EDMA. Also if this is the first frame for the driver then the clocks are started as per the configuration of the channel. Any other frames after this are loaded into the pending queue. These frames will be loaded by the EDMA callback into the appropriate PARAM set of the EDMA.
5.3.3.1 Asynchronous I/O Mechanism

The MCBSP driver supports asynchronous I/O mechanism. In this mechanism, multiple I/O requests can be submitted by the application without causing it to block while waiting for the previous I/O requests to complete. Application can submit multiple I/O requests using mcbspSubmitChan API. The application callback function registered during the transfer request submission will be called upon transfer completion by the driver. The driver internally will queue the I/O frames submitted to support the asynchronous I/O functionality.
5.3.4 Control Commands

MCBSP driver implements device specific control functionality which may be useful for any application, which uses the MCBSP driver. Application may invoke the control functionality through a call to mcbspControlChan. MCBSP driver supports the following control functionality.

The below table lists the control commands supported by the MCBSP driver

	Command
	Command

Argument
	Explanation

	Mcbsp_IOCTL_START
	NULL
	Starts the requested (TX or RX) section.

	Mcbsp_IOCTL_STOP
	NULL
	Stops the requested (TX or RX) section.

	Mcbsp_IOCTL_MUTE_ON

	NULL
	Mutes the TX channel

	Mcbsp_IOCTL_MUTE_OFF

	NULL
	Un-Mutes the TX channel

	Mcbsp_IOCTL_PAUSE
	NULL
	Pauses the selected section (channel)

	Mcbsp_IOCTL_RESUME
	NULL
	Resumes a previously paused channel.

	Mcbsp_IOCTL_CHAN_RESET
	NULL
	Resets the requested channel.

	Mcbsp_IOCTL_DEVICE_RESET
	NULL
	Resets the entire device by resetting both the channels.

	Mcbsp_IOCTL_SRGR_START
	NULL
	starts the sample rate generator

	Mcbsp_IOCTL_SRGR_STOP
	NULL
	stops the sample rate generator

	Mcbsp_IOCTL_FSGR_START
	NULL
	starts the frame sync generator

	Mcbsp_IOCTL_FSGR_STOP
	NULL
	Stops the frame sync generator.

	Mcbsp_IOCTL_SET_CLKMODE,
	Mcbsp_TxRxClkMode *
	Configure the bit clock mode.

	Mcbsp_IOCTL_SET_FRMSYNCMODE,
	Mcbsp_FsClkMode *
	Configure the frame sync mode

	Mcbsp_IOCTL_CONFIG_SRGR,
	Mcbsp_srgConfig *
	Configure the sample rate generator

	Mcbsp_IOCTL_SET_BCLK_POL
	Mcbsp_ClkPol *
	Set the Bit clock polarity

	Mcbsp_IOCTL_SET_FRMSYNC_POL
	Mcbsp_FsPol *
	Set the frame sync polarity

	Mcbsp_IOCTL_MODIFY_LOOPJOB
	Mcbsp_ChanParams *
	Configure the user supplied loop job buffer.

	Mcbsp_IOCTL_RECEIVE_SYNCERR_INT_ENABLE
	NULL
	Enable the SYNCERR for RX section

	Mcbsp_IOCTL_XMIT_SYNCERR_INT_ENABLE
	NULL
	Enable the SYNCERR for TX section

	Mcbsp_IOCTL_LOOPBACK
	Mcbsp_Loopback *
	Enable/disable the loopback mode

	Mcbsp_IOCTL_CHAN_RESET
	NULL
	Resets the required channel

	Mcbsp_IOCTL_DEVICE_RESET
	NULL
	Resets both the TX and RX channels

The typical control flow for the MCBSP control function is as given below.

· Validate the command sent by the application.

· Check if the appropriate arguments are provided by the application for the execution of the command.

· Process the command and return the status back to the application.

The basic control flow for the handling of the control commands for the driver is shown in Figure 7: Control Command Flow. Please note that the individual command handling is not detailed here.

[image: image8]
Figure 7: Control Command Flow
5.3.5 Channel Deletion

Once a channel has completed all the transactions it can be closed so that all the resources allocated to the channel can be freed. The driver provides mcbspDeleteChan API to delete a previously created MCBSP channel for an instance. The actions performed during the channel deletion are as follows:
· The channel to be deleted is reset.
· The reset operation aborts all the packets in the pending queue and also the packets in the current active queue.
· The EDMA transfer for this channel is disabled.
· The MCBSP state machines are stopped.
· The interrupt handlers are unregistered.
· All the spare PARAM sets of the EDMA are freed.
· The status of the channel is updated to DELETED.
5.3.6 Driver Instance Unbinding/Deletion

The MCBSP driver provides mcbspUnBindDev interface to delete a driver instance. The function de-allocates all the resources allocated to the instance object during the driver binding operation. The operations performed by the unbind operation are as listed below:

· Check if both the TX and the RX channels are closed.
· Update the instance object.
· Set the status of the driver instance to “DELETED”.
· Set the status of the instance “inUse” to FALSE (so that instance can be used again).

5.4 Data Structures
5.4.1 Constants and Enumerations

5.4.1.1 Mcbsp_TXEVENTQUE
This constant defines the EDMA3 event queue to be used in case of Transmit channel operation.

Definition

#define Mcbsp_TXEVENTQUE (1u)

Comments

None

Constraints

Please check the available event queues in the EDMA3 before changing/modifying this.

See Also

None

5.4.1.2 Mcbsp_RXEVENTQUE
This constant defines the EDMA3 event queue to be used in case of Receive channel operation.

Definition

#define Mcbsp_RXEVENTQUE (2u)

Comments

None

Constraints

Please check the available event queues in the EDMA3 before changing/modifying this.

See Also

None

5.4.1.3 Mcbsp_OpMode

This enumeration defines the operating mode of the MCBSP driver.

Definition
typedef enum Mcbsp_OpMode_t

{
 Mcbsp_OpMode_POLLED = 0,

 Mcbsp_OpMode_INTERRUPT,

 Mcbsp_OpMode_DMAINTERRUPT

} Mcbsp_OpMode;

Comments

None

Constraints

Only EDMA mode of operation is supported by the MCBSP driver.

See Also

None

5.4.1.4 Mcbsp_DevMode

This enumeration is used to define the operational mode of the MCBSP device like normal MCBSP device or SPI device (master/slave) mode.

Definition
typedef enum Mcbsp_DevMode_t

{

 Mcbsp_DevMode_McBSP,

} Mcbsp_DevMode;
Comments

None
Constraints

The SPI mode of operation is not supported as the underlying hardware doesn’t support the same.

See Also

None

5.4.1.5 Mcbsp_BufferFormat

This enumeration is used to specify the different types of buffer formats supported by the MCBSP driver.

Definition
typedef enum Mcbsp_BufferFormat_t

{
 Mcbsp_BufferFormat_1SLOT,

 Mcbsp_BufferFormat_MULTISLOT_NON_INTERLEAVED,

 Mcbsp_BufferFormat_MULTISLOT_INTERLEAVED

} Mcbsp_BufferFormat;

Comments
None

Constraints
None

See Also
None

5.4.2 Internal Data Structures

5.4.2.1 Driver Instance Object
This structure is the MCBSP driver’s internal data structure. This data structure is used by the driver to hold the information specific to the MCBSP instance. There will be one unique instance object for every instance of the MCBSP controller supported by the driver.

Definition
typedef struct Mcbsp_Object_t

{

 int32_t instNum;

 Mcbsp_DriverState devState;

 Mcbsp_OperatingMode mode;

 Mcbsp_OpMode opMode;
 Bool enablecache;

 Mcbsp_HwInfo hwInfo;

 Bool stopSmFsXmt;

 Bool stopSmFsRcv;

 Mcbsp_ChannelObj xmtObj;

 Mcbsp_ChannelObj rcvObj;

 Mcbsp_srgConfig srgrConfig;

 Bool txSrgEnable;

 Bool rxSrgEnable;

 Bool srgConfigured;

 volatile Bool srgEnabled;
 Bool txFsgEnable;

 Bool rxFsgEnable;

 Bool fsgConfigured;

 volatile Bool fsgEnabled;

 Uint32 retryCount;
 Bool loopJobMode;
} Mcbsp_Object;

Fields

	instNum
	Instance number of the MCBSP.

	devState
	Current state of the driver (Created/Deleted).

	Mode
	Operating mode of the MCBSP (Mcbsp, SPI master Mode, SPI slave mode).

	opMode
	Mode of operation of the driver(POLLED/INTERRUPT/DMA)

	enableCache
	Whether the driver should take care of cache cleaning operations for the buffers submitted by the application

	hwInfo
	Structure holding the hardware information related to the instance (e.g. interrupt numbers, base address etc).

	stopSmFsXmt
	State of transmit state machine. (TRUE = stopped, FALSE = running).

	stopSmFsRcv
	State of receive state machine. (TRUE = stopped, FALSE = running).

	xmtObj
	Transmit channel object

	rcvObj
	Receive channel object

	srgrConfig
	Sample rate generator configurations supplied by the user.

	txSrgEnable
	Variable to indicate if the sample rate generator is required by the TX section.

	rxSrgEnable
	Variable to indicate if the sample rate generator is required by the RX section.

	srgConfigured
	Variable to indicate if the sample rate generator is configured or not.

	srgEnabled
	Variable to indicate if the sample rate generator is running.

	txFsgEnable
	Variable to indicate if the frame sync generator is required by the TX section.

	rxSrgEnable
	Variable to indicate if the frame sync generator is required by the RX section.

	fsgEnabled
	Variable to indicate if the frame sync generator is running.

	retryCount
loopJobMode
pscPwrmEnable
	Retry count to be used by the driver when waiting in indefinite loops. (e.g. waiting for the TX to get empty etc).

check if the loop job mode is enabled or not
Option to enable or disable the PSC control

Comments
1. The MCBSP Driver works only in the EDMA mode of operation.

2. One instance object represents one instance of the driver.

Constraints

None

See Also
Mcbsp_ChannelObj

5.4.2.2 Channel Object
This structure is the MCBSP driver’s internal data structure. This data structure is used by the driver to hold the information specific to a channel. There will be at most two channels supported per MCBSP instance (one for TX and one for RX). It is used to maintain the information pertaining to the channel like the current channel state, callback function etc. This structure is initialized by mcbspCreateChan and a pointer to this is passed down to all other channel related functions. Lifetime of the data structure is from its creation by mcbspCreateChan till it is invalidated (deleted) by mcbspDeleteChan.

Definition
typedef struct Mcbsp_ChannelObj_t

{

 uint16_t mode;

 Mcbsp_DriverState chanState;

 Void* devHandle;

 Mcbsp_CallbackFxn cbFxn;

 void* cbArg;

 void* edmaHandle;
 uint32_t edmaEventQue;
 EDMA3_RM_TccCallback edmaCallback;

 uint32_t xferChan;

 uint32_t tcc;

 uint32_t pramTbl[Mcbsp_MAXLINKCNT];

 uint32_t pramTblAddr[Mcbsp_MAXLINKCNT];

 void* ptrQPendList;

 void* ptrQFloatList;

 Mcbsp_IOBuf *tempIOBuf;

 Mcbsp_IOBuf *dataIOBuf;

 uint32_t submitCount;
 Mcbsp_BufferFormat dataFormat;

 volatile Bool nextFlag;

 volatile Bool bMuteON;

 volatile Bool paused;

 volatile Bool flush;

 volatile Bool isTempIOBufValid;

 Bool enableHwFifo;

 Mcbsp_GblErrCallback gblErrCbk;

 uint32_t userDataBufferSize;

 void* loopJobBuffer;

 uint16_t loopJobLength;

 uint32_t userLoopJobLength;

 uint32_t nextLinkParamSetToBeUpdated;

 volatile Bool loopjobUpdatedinParamset;

 uint16_t roundedWordWidth;

 uint16_t currentDataSize;

 Mcbsp_DataConfig chanConfig;

 Mcbsp_ClkSetup clkSetup;

 Mcbsp_McrSetup multiChanCtrl;

 uint32_t chanEnableMask[4];

 Bool userLoopJob;
 int32_t currentError;
}Mcbsp_ChannelObj;

Fields

	mode
	Current operating mode of the channel (INPUT/OUTPUT).

	chanState
	Current state of the channel (opened/closed).

	devHandle
	Pointer to the instance object.

	cbFxn
	Callback function pointer

	cbArg
	Callback function argument

	edmaHandle
	Pointer to the EDMA handle given by the application.

	edmaEventQue
	EDMA event queue to be used by this channel.

	edmaCallback
	EDMA callback function pointer.

	xferChan
	The EDMA transfer channel to be used.

	tcc
	Transfer completion code to be used in case of EDMA mode.

	pramTbl
	Value of the two spare PARAM sets issued by the EDMA driver.

	pramTblAddr
	Address of the two spare paramsets.

	ptrQPendList
	Pointer to queue for holding the pending packets.

	ptrQFloatList
	Pointer to queue for holding currently executing packets.

	tempIOBuf
	Temporary place holder for the currently completed frame.

	dataIOBuf
	Pointer to hold the Mcbsp_IOBuf frame

	submitCount
	Total number of packets held in the driver for this channel

	dataFormat
	The format in which the MCBSP data is arranged in the buffer.

	nextFlag
	Flag used in stopping the MCBSP state machines.

	bMuteON
	Flag to indicate if the mute is ON.

	paused
	Flag to indicate if the channel is paused.

	flush
	Flag to indicate if the flush command is issued to the driver.

	isTempIOBufValid
	Flag to indicate if the “tempIOBuf” is holding a valid frame.

	enableHwFifo
	Flag to indicate if the hardware FIFO is to be enabled for this channel (RX/TX).

	gblErrCbk
	Application registered callback function to be called in case of an error.

	userDataBufferSize
	Size of the user supplied buffer.

	loopJobBuffer
	Loop job buffer to be used when the driver does not have any more packets for the I/O

	loopJobLength
	Length of the loop job buffer.

	userLoopJobLength
	User specified loop job’s length.

	nextLinkParamSetToBeUpdated
	Variable to indicate which of the spare paramset is to be updated next.

	loopjobUpdatedinParamset
	Variable to indicate if the loop job is loaded in to the paramset.

	roundedWordWidth
	The actual word width to be transferred per sync event.

	currentDataSize
	The size of the current data packet

	chanConfig
	Channel configuration required for the configuring of the channel.

	clkSetup
	Clock setup to be used for this channel.

	multiChanCtrl
	Multiple channel selection settings.

	chanEnableMask
	Mask for the channels to be enabled

	userLoopJob

currentError
	Variable to indicate if the user loop job is used or internal driver loop job buffer.

Current packet error status

Comments
1. Only 2 channels are supported per instance

Constraints

None

See Also
Mcbsp_Object

5.4.3 External Data Structures
5.4.3.1 Mcbsp_Params

This structure is used to supply user parameters during the creation of the driver instance. The structure is as defined below:

Definition

typedef struct Mcbsp_Params_t

{

 Mcbsp_DevMode mode;

 Mcbsp_OpMode opMode;

 Bool enablecache;

 Mcbsp_Loopback dlbMode;

 Mcbsp_srgConfig *srgSetup;

} Mcbsp_Params;

Fields

	mode
	Operating mode of the Mcbsp (Mcbsp, SPI master Mode, SPI slave mode). Default mode is MCBSP mode.

	opMode
	Mode of operation of the controller. Default is EDMA mode.
Note: Only EDMA mode is supported for the MCBSP mode of operation

	enableCache
	Whether the driver should take care of cache cleaning operations for the buffers submitted by the application.

	dlbMode
	Digital loop back mode selection.

	srgSetup
	Sample rate generator setup.

Comments
1. The Mcbsp Driver works only in the EDMA mode of operation.

Constraints

None

See Also
Mcbsp_srgConfig
5.4.3.2 Mcbsp_ChanParams
This structure is used to supply user parameters during the creation of the channel instance. During the creation of the channel, user needs to supply the above structure with the appropriate parameters as per the required mode of operation. The structure is defined as below:

Definition
typedef struct Mcbsp_ChanParams_t

{
 uint32_t wordWidth;

 void* userLoopJobBuffer;

 uint16_t userLoopJobLength;

 Mcbsp_GblErrCallback gblCbk;

 void* edmaHandle;

 uint32_t edmaEventQue;

 uint32_t hwiNumber;

 Mcbsp_BufferFormat dataFormat;

 Bool enableHwFifo;

 Mcbsp_DataConfig *chanConfig;

 Mcbsp_ClkSetup *clkSetup;

 Mcbsp_McrSetup *multiChanCtrl;

 uint32_t chanEnableMask[4];

}Mcbsp_ChanParams;
Fields
	wordWidth
	Word width per slot

	userLoopJobBuffer
	User supplied loop job buffer

	userLoopJobLength
	User supplied buffer length

	gblCbk
	Pointer to the function to handle the Error conditions.

	edmaHandle
	Handle to the EDMA driver.

	edmaEventQue
	Event queue of the EDMA to be used by this channel.

	hwiNumber
	HWI number for the ECM group in which the event is configured

	dataFormat
	Buffer format to be used by the application

	enableHwFifo
	Flag to indicate whether hardware FIFO’s are to be enabled.

	chanConfig
	Channel configuration settings.

	clkSetup
	Clock configuration settings.

	multiChanCtrl
	Multi channel control settings.

	chanEnableMask
	Multiple channel selection mask

Comments
1. The user can provide the Loop Job buffer, if required. Otherwise the “userLoopJobBuffer” and “userLoopJobLength” should be set to NULL and 0 respectively. In case, the user has not provided the buffer then the driver will use its internal buffer.

Note: This is applicable only if the driver is in loop job mode.

2. “gblCbk” function will be called in the ISR context hence appropriate care should be taken that the function confirms to the ISR coding guidelines.

3. “hwiNumber” needs to specified according to the ECM event group that the channel being configured falls into.

Constraints
See above.
See Also

Mcbsp_DataConfig
5.4.3.3 Mcbsp_srgConfig

This is the MCBSP sample rate generator configuration structure. The application needs to configure the sample rate generator to generate the BCLK and Frame Sync signals at the specified rate in MCBSP master mode.

Definition
typedef struct Mcbsp_srgConfig_t

{
 Bool gSync;

 Mcbsp_ClkSPol clksPolarity;

 Mcbsp_SrgClk srgInputClkMode;

 uint32_t srgrInputFreq;

 uint32_t srgFrmPulseWidth;

}Mcbsp_srgConfig;

Fields
	gSync
	Sample rate generator synchronization bit

	clksPolarity
	CLKS polarity used to drive the CLKG and FSG clocks.

	srgInputClkMode
	Source for the sample rate generator.

	srgrInputFreq
	Input frequency for the Sample rate generator

	srgFrmPulseWidth
	Frame sync width

Comments
1. This structure will be required to specify the sample rate generator settings if sample rate generator is required.
2. The driver will decide internally if the sample rate generator need to be enabled or not depending on the TX or RX channel clock requirements
Constraints

None

See Also

Mcbsp_Params

5.4.3.4 Mcbsp_DataConfig

This specifies the configuration for the MCBSP data stream including whether it is single phase or dual phase, number of frames, the word length in each phase and data delay etc.

Definition

typedef struct Mcbsp_DataConfig_t

{

 Mcbsp_Phase phaseNum;

 Mcbsp_WordLength wrdLen1;

 Mcbsp_WordLength wrdLen2;

 uint32_t frmLen1;

 uint32_t frmLen2;

 Mcbsp_FrmSync frmSyncIgn;

 Mcbsp_DataDelay dataDelay;

 Mcbsp_Compand compandSel;

 Mcbsp_BitReversal bitReversal;

 Mcbsp_IntMode intMode;

 Mcbsp_Rjust rjust;

 Mcbsp_DxEna dxState;

}Mcbsp_DataConfig;

Fields

	phaseNum
	Option to choose single phase or dual phase frame.

	wrdLen1
	Word length for the first frame.

	wrdLen2
	Word length for the second frame. Will be used only in case of a dual phase frame.

	frmLen1
	Length of the first frame.

	frmLen2
	Length of the second frame. To be specified only in case of dual frame.

	frmSyncIgn
	Option to select the action to be taken in case if an unexpected frame sync.

	dataDelay
	Data delay from the frame sync

	comapandSel
	Companding (a-law, mu-law etc.) selection

	bitReversal
	Option to select the bit reversal of data (MSB first or LSB first).

	intMode
	Event which should generate an CPU interrupt

	rjust
	Receive data justification settings

	dxState
	DX pin high impedance state enable disable option.

Comments
1. The frmLen2 and wrdLen2 options should be used only in case of an dual phase frame.

2. dxState option is applicable only while creating a channel for transmission.

3. rjust option is applicable only in case of creating a channel for reception.
Constraints

None

See Also

Mcbsp_Params

5.4.3.5 Mcbsp_ClkSetup

This structure is used to configure the clock settings for the Mcbsp channel.

Definition

typedef struct Mcbsp_ClkSetup_t

{

 Mcbsp_FsClkMode frmSyncMode;

 uint32_t samplingRate;

 Mcbsp_TxRxClkMode clkMode;

 Mcbsp_FsPol frmSyncPolarity;

 Mcbsp_ClkPol clkPolarity;

}Mcbsp_ClkSetup;
Fields

	frmSyncMode
	Frame sync generator mode (Internal/external).

	samplingRate
	Frame sync frequency.

	clkMode
	Bit clock mode (internal/external)

	frmSyncPolarity
	Frame sync polarity (active high/active low)

	clkPolarity
	Bit clock polarity

5.5 Supported Data Formats
Mcbsp driver expects the data (samples) to be arranged in a specific format when requesting for an I/O transfer. These formats are explained under scenario of using 1-slot or multiple slots. The sections below capture the details of supported data formats.

	MCBSP Mode
	Data Format
	Buffer Format

	1-Slot
	Interleaved data Format
	Mcbsp_BufferFormat_1SER_1SLOT

	Multi-Slot
	Interleaved data Format
	Mcbsp_BufferFormat_1SER_MULTISLOT_NON_INTERLEAVED

	Multi-Slot
	Non-interleaved data format
	Mcbsp_BufferFormat_1SER_MULTISLOT_INTERLEAVED

5.5.1 1-Slot Data Format

This format is used when a single slot is used to transfer the data. The expected format is as depicted below:
[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>]

The size (number of bytes) that would be required to specify during an I/O request is computed using the formula size = <word width>*<number of samples N>.

The key configurations (sample) are:
· Mcbsp_ChanParams.dataFormat = Mcbsp_BufferFormat_1SER_1SLOT;

· Mcbsp_ChanParams. noOfTdmChans = 1;
· The size of the I/O request is computed as <No. of Bytes per Sample> * <No. of Samples>. This value should be given as a size parameter to mcbspSubmitChan function.
· Idle Time data pattern length computation: Minimum length should be <word width in bytes> or an integral multiple of computed value. While allocating a buffer, allocate <computed value> * <no. of slots enabled>.
5.5.2 Multi-Slot Non-Interleaved Data Format

When configured in this mode, it is expected that driver is configured to use multiple slots. The expected data format is as depicted below. When configured to use multiple slots, the samples are expected to be contiguous for a given slot as shown below. It is assumed below that number of slots is 2 and number of samples is N.

[<Slot1-Sample1>, <Slot1-Sample2>..…<Slot1-SampleN>,

<Slot2-Sample1>, < Slot2-Sample2>….. < Slot2-SampleN>]
The key configurations (sample) are:

· Mcbsp_ChanParams.dataFormat = Mcbsp_BufferFormat_1SER_NON_INTERLEAVED;

· Mcbsp_ChanParams.noOfTdmChans = N;
· The size of the I/O request is computed as <No. of Bytes per Sample> * <No. of Samples> * <No. of slots>. This value should be given as a size parameter to mcbspSubmitChan function.
· Idle Time data pattern length computation: Minimum length should be <word width in bytes> or an integral multiple of computed value. While allocating a buffer, allocate <computed value> * <no. of slots enabled>.
5.5.3 Multi-Slot Interleaved Data Format

When configured to use multiple slots and interleaved format, the samples are expected to be interleaved for the slots, as depicted below. It is assumed below that number of slots is 2 and number of samples is N.
[<Slot1-Sample1>, <Slot2-Sample1>…<Slot1-SampleN><Slot2-SampleN>]

The key configurations (sample) are:

· Mcbsp_ChanParams.dataFormat = Mcbsp_BufferFormat_1SER_INTERLEAVED;

· Mcbsp_ChanParams.noOfTdmChans = N;
· The size of the I/O request is computed as <No. of Bytes per Sample> * <No. of Samples> * <No. of slots>. This value should be given as a size parameter to mcbspSubmitChan function.
· Idle Time data pattern length computation: Minimum length should be <word width in bytes> or an integral multiple of computed value. While allocating a buffer, allocate <computed value> * <no. of slots enabled>.
6 Integration

The MCBSP LLD depends on the following components:

a. CSL

b. EDMA3 LLD

These components need to be installed before the MCBSP driver can be integrated. The MCBSP driver is released in source code and in pre-built library. Applications can decide how to use the MCBSP driver.

The MCBSP Driver release notes indicate the version of the above components which that release is dependent upon. The next steps use the version numbers for illustrative purpose only.

6.1 Pre-built approach

In this approach, the application developers can decide to use the MCBSP driver pre-built libraries as is. The following steps need to be done:

a. The application developers modify their application configuration file to use the MCBSP package.

var Mcbsp = xdc.loadPackage('ti.drv.mcbsp');
b. Ensure that the XDCPATH is configured to have the path to the PDK package

c. This implies that XDC Configuration scripts will link the application using the MCBSP Driver libraries (Module.xs)

d. The application authors need to provide an OSAL implementation file for MCBSP and ensure that this is linked with the application; failure to do so will results in linking errors. Please refer to the MCBSP OSAL header file (mcbsp_osal.h) for more information on the API’s which need to be provided.
6.2 Rebuild library

In this approach, the application developers can decide to use the MCBSP driver source code and add these files to the application project to rebuild the MCBSP driver code base. The following steps need to be redone:

a. Application developers should port the file “mcbsp_osal.h” to their operating system environment. Developers are recommended to create a copy of this file and place it in their application directory. They should use the file which is provided in the MCBSP installation only as a template. The goal here should be to map the Mcbsp_osalXXX macros to the OS calls directly thus reducing the overhead of an API callout. E.g.

#define Mcbsp_osalCreateSem() (Void*)Semaphore_create(0, NULL, NULL)
b. Application developers should port the file “mcbsp_types.h” to the application environment. Developers are recommended to create a copy of this file and place it in their application directory.
c. Append the include path to the top level MCBSP package directory i.e. if the MCBSP package is installed in C:\Program Files\Texas Instruments\mcbsp_C6657_1_0_0_0; then make sure the include path is configured as C:\Program Files\Texas Instruments\mcbsp_C6657_1_0_0_0\packages
d. Add the MCBSP driver files listed in the src directory to the application build files

The approach above is highlighted in the MCBSP example directory.
Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/

TX EDMA

MCBSP LLD

Memory

MCBSP

Controller

RX EDMA

START

Set the module state “inUse” to FALSE

Initialize the Loop job Buffer

(if Mcbsp_LOOPJOB_ENABLED)

Initialize the Mute Buffer (used for the Mute command implementation)

Return

Update the device instance specific information depending on the instance that is being currently initialized

START

Validate Input parameters

Is

Instance in Use?

No

Update the instance object with the user supplied Params.

Initialize the channel objects to default values.

Initialize the pending & floating queue for RX/TX.

Disable the TX, RX, SRGR and FSGR.

The requested channel is allocated.

Configure the Mcbsp with the user supplied parameters

Configure the EDMA for the Mcbsp channel required

Update the channel handle to be returned to application

START

Validate input parameters

Is the requested channel already open?

Start the SRGR and FSGR depending on parameters

Supplied/Configured

Return device handle

Yes

Is Loop Job mode enabled?

Set device Handle to NULL

Start the EDMA for the channel

Start the respective hardware sections(RX/TX)

Return the channel handle

Return to the application

Yes

No

Return chanHandle as NULL

Yes

No

START

Validate the input parameters

Is the command supported by the driver?

Execute the command

Return status

Return “command not implemented” status

NO

YES

� This command is applicable only for the TX section

� This command is applicable only for the TX section

Page i

Page 15

_1407855875.vsd
text

Application Code

MCBSP Device Driver

CSL Register Layer

OSAL

Driver Exposed APIs

OS Abstraction Layer
OSAL APIs

XDC Kernel/XDC Runtime/BIOS

Other
OS

Device Specific MCBSP

