
 Page i

20450 Century Boulevard
Germantown, MD 20874

MCBSP LLD

Software Design Specification (SDS)

Revision A

 Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page ii

Revision Record

Document Title: Software Design Specification

Revision

Description of Change

A 1. Initial Release – Code drop 1.0.0.0

Note: Be sure the Revision of this document matches the Approval record Revision letter. The

revision letter increments only upon approval via the Quality Record System.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page iii

TABLE OF CONTENTS

1 SCOPE .. 2

2 REFERENCES ... 2

3 DEFINITIONS ... 2

4 OVERVIEW ... 3

4.1 HARDWARE OVERVIEW .. 3

4.2 SOFTWARE OVERVIEW ... 4

4.3 KEY FEATURES .. 5

5 DESIGN .. 5

5.1 MCBSP DRIVER INITIALIZATION ... 6

5.2 MCBSP PERIPHERAL CONFIGURATION .. 6

5.3 MCBSP DRIVER EXTERNAL INTERFACE (PUBLIC APIS) .. 8

5.3.1 Driver Instance Binding... 9

5.3.2 Channel Creation ... 11

5.3.3 I/O Frame Processing .. 13

5.3.3.1 Asynchronous I/O Mechanism .. 13

5.3.4 Control Commands .. 14

5.3.5 Channel Deletion ... 16

5.3.6 Driver Instance Unbinding/Deletion ... 17

5.4 DATA STRUCTURES .. 17

5.4.1 Constants and Enumerations ... 17

5.4.1.1 Mcbsp_TXEVENTQUE ... 17

5.4.1.2 Mcbsp_RXEVENTQUE ... 17

5.4.1.3 Mcbsp_OpMode ... 18

5.4.1.4 Mcbsp_DevMode .. 18

5.4.1.5 Mcbsp_BufferFormat .. 19

5.4.2 Internal Data Structures .. 19

5.4.2.1 Driver Instance Object .. 19

5.4.2.2 Channel Object ... 21

5.4.3 External Data Structures ... 24

5.4.3.1 Mcbsp_Params .. 24

5.4.3.2 Mcbsp_ChanParams ... 25

5.4.3.3 Mcbsp_srgConfig .. 27

5.4.3.4 Mcbsp_DataConfig ... 28

5.4.3.5 Mcbsp_ClkSetup ... 29

5.5 SUPPORTED DATA FORMATS .. 30

5.5.1 1-Slot Data Format .. 30

5.5.2 Multi-Slot Non-Interleaved Data Format .. 30

5.5.3 Multi-Slot Interleaved Data Format .. 31

6 INTEGRATION ... 31

6.1 PRE-BUILT APPROACH .. 32

6.2 REBUILD LIBRARY .. 32

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 1

LIST OF FIGURES

Figure 1: MCBSP Hardware Block Diagram .. 3

Figure 2: MCBSP LLD Software Overview ... 4

Figure 3: MCBSP LLD Driver Architecture ... 5

Figure 4: Device Initialization Sequence .. 8

Figure 5: Driver Instance Binding ... 10

Figure 6: Create Channel Flow Diagram .. 12

Figure 7: Control Command Flow .. 16

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 2

1 Scope

This document describes the design of Multichannel Buffered Serial Port Low Level Driver

(MCBSP LLD). Also, the data types, data structures and application programming interfaces

(APIs) provided by the MCBSP driver are explained in this document.

2 References

The following references are related to the feature described in this document and shall be

consulted as necessary.

No Referenced Document Control Number Description

1 MCBSP User Guide SPRUHH0 KeyStone Architecture

MCBSP User Guide

2 MCBSP LLD Documentation The MCBSP LLD APIs are

generated by DOXYGEN

and is located in the

MCBSP package under the

“docs” directory in CHM

format.

3 EDMA User Guide SPRUGS5A Enhanced Direct Memory

Access (EDMA3)

Controller User Guide

Table 1. Referenced Materials

3 Definitions

Acronym Description

API Application Programming Interface

CSL Chip Support Library

CPU Central Processing Unit

DMA Direct Memory Access

DSP Digital Signal Processor

EDMA Enhanced Direct Memory Access Controller

FIFO First In First Out

IP Intellectual Property

ISR Interrupt Service Routine

LLD Low Level Driver

MCBSP Multichannel Buffered Serial Port

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 3

Acronym Description

MMR Memory Mapped Register

OSAL Operating System Abstraction Layer

PARAM Parameter RAM

SOC System On Chip

SRGR Sample Rate Generator

Table 2. Definitions

4 Overview

The multichannel buffered serial port (MCBSP) peripheral allows direct interface to other TI

DSPs, codecs, and other devices in a system. The primary use for the MCBSP is for audio

interface purposes. The following sub sections explain the hardware (MCBSP peripheral) and

software context of the MCBSP LLD.

4.1 Hardware Overview

Figure 1: MCBSP Hardware Block Diagram

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 4

The Figure 1: MCBSP Hardware Block Diagram above shows the hardware overview of the

MCBSP controller. The peripheral contains a main controller, a FIFO interface and also the

EDMA controller interface. The MCBSP controller provides the hardware registers that allows

the MCBSP to be configured for the serial data transfer. The MCBSP Buffer FIFO (BFIFO)

provides additional data buffering for the MCBSP. The time it takes the CPU or DMA controller

to respond to DMA requests from the MCBSP may vary. The additional buffering provided by

the BFIFO allows greater tolerance to such variations.

The EDMA controller interface allows the EDMA to be programmed to move the serial data

between the MCBSP and the DSP. There are dedicated EDMA channels available for the

MCBSP to transfer and receive data. (The software also uses two additional spare EDMA

PARAM sets for PING PONG operation for providing additional buffering required especially

when transferring audio data as the tolerance to delays is very less during an audio data transfer).

4.2 Software Overview

Figure 2: MCBSP LLD Software Overview

Figure 2: MCBSP LLD Software Overview depicts the various components involved in the

transfer of data when the MCBSP driver runs on the DSP. Serial data is stored in the memory by

DSP e.g. after decoding the audio data. The main function of MCBSP driver is to program the

EDMA channels to move the data from memory to the MCBSP interface on every transfer event

TX EDMA

MCBSP LLD

Memory

MCBSP

Controller

RX EDMA

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 5

from the MCBSP (TX path). Similarly, the driver can configure EDMA channels to move data

received on MCBSP interface to the memory for DSP use (RX path).

The EDMA3 channel controller services MCBSP peripheral in the background of DSP operation,

without requiring any DSP intervention. Through proper initialization of the EDMA3 channels,

they can be configured to continuously service the peripheral throughout the device operation.

Each event available to the EDMA3 has its own dedicated channel, and all channels operate

simultaneously. The only requirements are to use the proper channel for a particular transfer and

to enable the channel event in the event enable register (EER). When programming an EDMA3

channel to service MCBSP peripheral, it is necessary to know how data is to be presented to the

DSP. Data is always provided with some kind of synchronization event as either one element per

event (non-bursting) or multiple elements per event (bursting).

4.3 Key Features

Following are the key features of MCBSP LLD software:

• Multi-instance support and re-entrant driver

• Each instance can operate as a receiver and or transmitter

• Supports multiple data formats

• Can be configured to operate in multi-slot TDM, DSP (used in audio data transfer)

• Mechanisms to transmit desired data (such as NULL tone) when idle

5 Design

This section explains the overall architecture of MCBSP device driver, including the device

driver functional partitioning as well as run-time considerations. The MCBSP LLD driver

provides well-defined API layers which allow applications to use the MCBSP peripheral to send

and receive data.

O
S
A
L

X
D
C
 K
e
rn
e
l/
X
D
C

R
u
n
ti
m
e
/B
IO

S

O
th
e
r

O
S

Figure 3: MCBSP LLD Driver Architecture

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 6

The Figure 3: MCBSP LLD Driver Architecture illustrates the following key components:

1.) MCBSP Device Driver

This is the core MCBSP device driver. The device driver exposes a set of well-defined

APIs which are used by the application layer to send and receive data via the MCBSP

peripheral. The driver also exposes a set of well-defined OS abstraction APIs which are

used to ensure that the driver is OS independent and portable. The MCBSP driver uses

the CSL MCBSP register layer for all MCBSP MMR access. The MCBSP driver also

interfaces with the EDMA3 library to be able to transfer data to and from MCBSP

peripheral and data memory.

2.) Device Specific MCBSP Layer

This layer implements a well defined interface which allows the core MCBSP driver to be

ported on any device which has the same MCBSP IP block. This layer may change for

every device.

3.) Application Code
This is the user of the driver and its interface with the driver is through the well-defined

APIs set. Application users use the driver APIs to send and receive data via the MCBSP

peripheral.

4.) Operating System Abstraction Layer (OSAL)

The MCBSP LLD is OS independent and exposes all the operating system callouts via

this OSAL layer.

5.) CSL Register Layer
The CSL register layer is the IP block memory mapped registers which are generated by

the IP owner. The MCBSP LLD driver directly accesses the MMR registers.

5.1 MCBSP Driver Initialization

The MCBSP Driver initialization API needs to be called only once and it initializes the internal

driver data structures like device objects. Application developers need to ensure that they call the

MCBSP Driver Init API before they call the MCBSP Device Initialization.

The following API is used to initialize the MCBSP Driver.

int32_t mcbspInit (void)

The function returns MCBSP_STATUS_COMPLETED on success indicating that the MCBSP

driver internal data structures have been initialized correctly.

5.2 MCBSP Peripheral Configuration

The MCBSP driver provides a sample implementation sequence which initializes the MCBSP IP

block. The MCBSP Device initialization API is implemented as a sample prototype:

void McbspDevice_init (void)

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 7

The function initializes all the instance specific information like base address of instance CFG

registers, FIFO address for the instance, TX and RX CPU event numbers, TX and RX EDMA

event numbers etc. The function also sets the inUse field of MCBSP instance module object to

FALSE so that the instance can be used by an application which will create it. In loop job

enabled mode the LOOP Job buffers and the mute buffers are initialized. The non-loop job mode

doesn’t have any LOOP Job buffers so only mute buffers are initialized. Please refer to the figure

below for the typical control flow during the device initialization.

START

Set the module state “inUse” to
FALSE

Initialize the Loop job Buffer
(if Mcbsp_LOOPJOB_ENABLED)

Initialize the Mute Buffer (used
for the Mute command

implementation)

Return

Update the device instance
specific information depending
on the instance that is being

currently initialized

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 8

Figure 4: Device Initialization Sequence

The Figure 4: Device Initialization Sequence depicts the typical control flow during the

initialization of the MCBSP device.

This implementation is sample only and application developers are recommended to modify it as

deemed necessary. The initialization sequence is not a part of the MCBSP driver library. This

was done because the MCBSP Device Initialization sequence has to be modified and customized

by application developers. If the initialization sequence was a part of the MCBSP driver then it

would require the driver to be rebuilt. Moving this API outside the driver realm solves this issue.

The MCBSP Device Initialization API should only be called after calling the MCBSP Device Init

API. Failure to do so will result in unpredictable behaviors.

5.3 MCBSP Driver External Interface (Public APIs)

The following table outlines the basic interfaces provided by MCBSP LLD.

Function Description

mcbspBindDev

The mcbspBindDev function is called by the application after

MCBSP device initialization. The mdBindDev performs following

actions:

� Acquire the device handle for the specified instance of MCBSP

on the SOC.

� Configure the MCBSP device instance with the specified

parameters (or default parameters, if there is no external

configuration).

mcbspUnBindDev

The mcbspUnBindDev function is called to delete an instance of the

Mcbsp driver. It will unroll all the changes done during the bind

operation and free all the resources allocated to the MCBSP.

mcbspCreateChan

The mcbspCreateChan function creates a TX or RX channel on

the specified MCBSP instance. Application has to specify the mode in

which the channel has to be created through the “mode” parameter.

The MCBSP driver supports only two modes of channel creation

(input and output mode) for every device instance. It performs

following actions:

� The required EDMA channel and spare PARAM sets are

acquired and configured.

� The required TX or RX sections (clocks, SRGR, frame sync

etc.) are setup.

mcbspDeleteChan

The mcbspDeleteChan deletes a channel created on a MCBSP

instance. It frees all the resources allocated during the creation of the

channel.

mcbspSubmitChan

The mcbspSubmitChan is invoked with the appropriate channel

handle and IOBuf (aka frame) containing the operation to be

performed and required parameters needed for programming the

EDMA channels.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 9

mcbspGblXmtIsr This function is the interrupt service routine for the MCBSP TX event.

mcbspGblRcvIsr This function is the interrupt service routine for the MCBSP RX event.

mcbspControlChan

The mcbspControlChan function is used to issue a control

command to the MCBSP driver. Please refer to the list of control

commands supported by the MCBSP driver.

� Typical commands supported are PAUSE, RESUME, STOP,

START etc.

5.3.1 Driver Instance Binding

The binding function (mcbspBindDev) of the MCBSP driver is called to allocate and configure

a MCBSP instance as specified by devid. Each driver instance corresponds to one hardware

instance of the MCBSP. The function performs following actions:

• Check if the instance being created is already in use by checking “inUse”.

• Update the instance object with the user supplied parameters.

• Initialize all the channel objects (TX and RX) with default parameters.

• Initialize queues to hold the pending frames and currently executing frames (floating

queue).

• Configure the MCBSP to receive the Frame Sync and bit clocks either externally or

internally for both receiver and transmitter depending on the user supplied parameters.

• Return the device handle.

The driver binding operation expects the following parameters:

1. Pointer to hold the function returned device handle.

2. Instance number of the MCBSP instance being created.

3. Pointer to the user provided device parameter structure required for the creation of device

instance. The user provided device parameter structure will be of type “Mcbsp_Params”.

Please refer the Figure 5: Driver Instance Binding below for the control flow of driver Bind

operation.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 10

Figure 5: Driver Instance Binding

START

Validate Input parameters

Is

Instance in

Use?

No

1. Update the instance object with the user supplied Params.

2. Initialize the channel objects to default values.

3. Initialize the pending & floating queue for RX/TX.

4. Disable the TX, RX, SRGR and FSGR.

Start the SRGR and FSGR depending on

parameters

Supplied/Configured

Return device handle

Yes

Set device Handle to NULL

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 11

5.3.2 Channel Creation

Once the application has created a device instance, it needs to create a communication channel

for transactions with the underlying hardware. As such a channel is a logical communication

interface between the driver and the application. The driver allows at most two channels per

MCBSP instance to be created which are a transmit channel (TX path e.g. audio playback or data

transmission) and a receive channel (RX path e.g. audio recording or data reception). The

application can create a communication channel by calling mcbspCreateChan function. The

application should call mcbspCreateChan with the appropriate “mode”

(MCBSP_MODE_OUTPUT or MCBSP_MODE_INPUT) parameter for the type of the channel to be

created.

The application needs to supply the parameters which will characterize the features of the

channel e.g. number of slots, slot width etc. The application can use the

“Mcbsp_ChanParams” structure to specify the parameters to configure the channel.

The mcbspCreateChan function performs the following actions:

• Validates the input parameters given by the application.

• Checks if the requested channel is already opened or not. If it is already opened then the

driver will flag an error to the application else the requested channel will be allocated.

• Updates the appropriate channel object with the user supplied parameters.

• MCBSP is configured with the appropriate word width.

• EDMA parameters for the requested channel are setup.

• If the global error callback function registration is enabled, the appropriate user supplied

function is registered to be called in case of an error.

• If the LOOPJOB configuration is enabled then the respective section (TX or RX) is

enabled and the EDMA transfer is enabled.

• If the channel creation fails then it will perform a cleanup and also free all the resource

allocated by it till now.

• If the complete process of channel creation is successful, then it will return a unique

channel handle to the application. This handle should be used by the application for

further transactions with the channel. This handle will be used by the driver to identify the

channel on which the transactions are being requested.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 12

Figure 6: Create Channel Flow Diagram

START

Validate input parameters

Is the requested

channel already

open?

1. The requested channel is allocated.

2. Configure the Mcbsp with the user supplied parameters

3. Configure the EDMA for the Mcbsp channel required

4. Update the channel handle to be returned to application

Is Loop Job

mode enabled?

1. Start the EDMA for the channel

2. Start the respective hardware sections(RX/TX)

3. Return the channel handle

Return to the

application

Yes

No

Return chanHandle as

NULL

Yes

No

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 13

5.3.3 I/O Frame Processing

MCBSP driver provides mcbspSubmitChan interface to submit ioBufs (frames) for the I/O

transactions to be performed. Application invokes this API for data transfer using MCBSP. This

API submits a Mcbsp_IOBuf frame containing all the transfer parameters needed by the driver

to program the underlying hardware for data transfer. The mcbspSubmitChan function

handles the command code passed to it as part of the Mcbsp_IOBuf structure.

The command codes supported by the MCBSP driver are: Mcbsp_IOBuf_Cmd_READ,

Mcbsp_IOBuf_Cmd_WRITE, Mcbsp_IOBuf_Cmd_ABORT and Mcbsp_IOBuf_Cmd_FLUSH.

• Mcbsp_IOBuf_Cmd_READ: Read data from MCBSP interface and store it in memory

(input channel – RX path).

• Mcbsp_IOBuf_Cmd_WRITE: Write data from memory to MCBSP interface (output

channel – TX path).

• Mcbsp_IOBuf_Cmd_ABORT and Mcbsp_IOBuf_Cmd_FLUSH. To abort or flush

I/O requests already submitted, all I/O requests pending in the driver must be completed

and returned to the device independent layer. The mcbspSubmitChan function will de-

queue each of the I/O requests from the driver's channel queue. It will then set the size

and status fields in the Mcbsp_IOBuf. Finally, it will call the callback function

registered for the channel. Note: The behavior of the driver will be same for both the

ABORT and FLUSH commands i.e. all the frames will be aborted and returned back to

the application.

The mcbspSubmitChan function performs the following actions:

• The input Mcbsp_IOBuf frame is validated.

• If the driver has sufficient frames then the current frame is loaded in to the pending

queue.

• Otherwise the frame is programmed into the link PARAMs of the EDMA.

• In NON LOOP JOB mode, the first frame is always loaded in to the main transfer

channel. The subsequent two frames are loaded into the spare PARAM sets of the

EDMA. Also if this is the first frame for the driver then the clocks are started as per the

configuration of the channel. Any other frames after this are loaded into the pending

queue. These frames will be loaded by the EDMA callback into the appropriate PARAM

set of the EDMA.

5.3.3.1 Asynchronous I/O Mechanism

The MCBSP driver supports asynchronous I/O mechanism. In this mechanism, multiple I/O

requests can be submitted by the application without causing it to block while waiting for the

previous I/O requests to complete. Application can submit multiple I/O requests using

mcbspSubmitChan API. The application callback function registered during the transfer

request submission will be called upon transfer completion by the driver. The driver internally

will queue the I/O frames submitted to support the asynchronous I/O functionality.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 14

5.3.4 Control Commands

MCBSP driver implements device specific control functionality which may be useful for any

application, which uses the MCBSP driver. Application may invoke the control functionality

through a call to mcbspControlChan. MCBSP driver supports the following control

functionality.

The below table lists the control commands supported by the MCBSP driver

Command
Command

Argument
Explanation

Mcbsp_IOCTL_START NULL Starts the requested (TX or RX) section.

Mcbsp_IOCTL_STOP NULL Stops the requested (TX or RX) section.

Mcbsp_IOCTL_MUTE_ON1 NULL Mutes the TX channel

Mcbsp_IOCTL_MUTE_OFF2 NULL Un-Mutes the TX channel

Mcbsp_IOCTL_PAUSE NULL Pauses the selected section (channel)

Mcbsp_IOCTL_RESUME NULL Resumes a previously paused channel.

Mcbsp_IOCTL_CHAN_RESET NULL Resets the requested channel.

Mcbsp_IOCTL_DEVICE_RESET NULL
Resets the entire device by resetting both the

channels.

Mcbsp_IOCTL_SRGR_START NULL starts the sample rate generator

Mcbsp_IOCTL_SRGR_STOP NULL stops the sample rate generator

Mcbsp_IOCTL_FSGR_START NULL starts the frame sync generator

Mcbsp_IOCTL_FSGR_STOP NULL Stops the frame sync generator.

1
 This command is applicable only for the TX section

2
 This command is applicable only for the TX section

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 15

Mcbsp_IOCTL_SET_CLKMODE,
Mcbsp_TxRxClkM

ode * Configure the bit clock mode.

Mcbsp_IOCTL_SET_FRMSYNCMODE,
Mcbsp_FsClkMod

e * Configure the frame sync mode

Mcbsp_IOCTL_CONFIG_SRGR,
Mcbsp_srgConfi

g * Configure the sample rate generator

Mcbsp_IOCTL_SET_BCLK_POL Mcbsp_ClkPol * Set the Bit clock polarity

Mcbsp_IOCTL_SET_FRMSYNC_POL Mcbsp_FsPol * Set the frame sync polarity

Mcbsp_IOCTL_MODIFY_LOOPJOB
Mcbsp_ChanPara

ms * Configure the user supplied loop job buffer.

Mcbsp_IOCTL_RECEIVE_SYNCERR_
INT_ENABLE

NULL Enable the SYNCERR for RX section

Mcbsp_IOCTL_XMIT_SYNCERR_INT
_ENABLE

NULL Enable the SYNCERR for TX section

Mcbsp_IOCTL_LOOPBACK
Mcbsp_Loopback

* Enable/disable the loopback mode

Mcbsp_IOCTL_CHAN_RESET NULL Resets the required channel

Mcbsp_IOCTL_DEVICE_RESET NULL Resets both the TX and RX channels

The typical control flow for the MCBSP control function is as given below.

• Validate the command sent by the application.

• Check if the appropriate arguments are provided by the application for the execution of

the command.

• Process the command and return the status back to the application.

The basic control flow for the handling of the control commands for the driver is shown in Figure

7: Control Command Flow. Please note that the individual command handling is not detailed

here.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 16

Figure 7: Control Command Flow

5.3.5 Channel Deletion

Once a channel has completed all the transactions it can be closed so that all the resources

allocated to the channel can be freed. The driver provides mcbspDeleteChan API to delete a

previously created MCBSP channel for an instance. The actions performed during the channel

deletion are as follows:

• The channel to be deleted is reset.

• The reset operation aborts all the packets in the pending queue and also the packets in the

current active queue.

• The EDMA transfer for this channel is disabled.

• The MCBSP state machines are stopped.

• The interrupt handlers are unregistered.

START

Validate the input parameters

Is the

command

supported by

the driver?

Execute the command

Return status

Return “command not

implemented” status

NO

YES

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 17

• All the spare PARAM sets of the EDMA are freed.

• The status of the channel is updated to DELETED.

5.3.6 Driver Instance Unbinding/Deletion

The MCBSP driver provides mcbspUnBindDev interface to delete a driver instance. The

function de-allocates all the resources allocated to the instance object during the driver binding

operation. The operations performed by the unbind operation are as listed below:

• Check if both the TX and the RX channels are closed.

• Update the instance object.

• Set the status of the driver instance to “DELETED”.

• Set the status of the instance “inUse” to FALSE (so that instance can be used again).

5.4 Data Structures

5.4.1 Constants and Enumerations

5.4.1.1 Mcbsp_TXEVENTQUE

This constant defines the EDMA3 event queue to be used in case of Transmit channel
operation.

Definition

#define Mcbsp_TXEVENTQUE (1u)

Comments

None

Constraints

Please check the available event queues in the EDMA3 before changing/modifying
this.

See Also

None

5.4.1.2 Mcbsp_RXEVENTQUE

This constant defines the EDMA3 event queue to be used in case of Receive channel
operation.

Definition

#define Mcbsp_RXEVENTQUE (2u)

Comments

None

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 18

Constraints

Please check the available event queues in the EDMA3 before changing/modifying
this.

See Also

None

5.4.1.3 Mcbsp_OpMode

This enumeration defines the operating mode of the MCBSP driver.

Definition

typedef enum Mcbsp_OpMode_t

{

 Mcbsp_OpMode_POLLED = 0,

 Mcbsp_OpMode_INTERRUPT,

 Mcbsp_OpMode_DMAINTERRUPT

} Mcbsp_OpMode;

Comments

None

Constraints

Only EDMA mode of operation is supported by the MCBSP driver.

See Also

None

5.4.1.4 Mcbsp_DevMode

This enumeration is used to define the operational mode of the MCBSP device like
normal MCBSP device or SPI device (master/slave) mode.

Definition

typedef enum Mcbsp_DevMode_t

{

 Mcbsp_DevMode_McBSP,

} Mcbsp_DevMode;

Comments

None

Constraints

The SPI mode of operation is not supported as the underlying hardware doesn’t
support the same.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 19

See Also

None

5.4.1.5 Mcbsp_BufferFormat

This enumeration is used to specify the different types of buffer formats supported by
the MCBSP driver.

Definition

typedef enum Mcbsp_BufferFormat_t

{

 Mcbsp_BufferFormat_1SLOT,

 Mcbsp_BufferFormat_MULTISLOT_NON_INTERLEAVED,

 Mcbsp_BufferFormat_MULTISLOT_INTERLEAVED

} Mcbsp_BufferFormat;

Comments

None

Constraints

None

See Also

None

5.4.2 Internal Data Structures

5.4.2.1 Driver Instance Object

This structure is the MCBSP driver’s internal data structure. This data structure is
used by the driver to hold the information specific to the MCBSP instance. There will
be one unique instance object for every instance of the MCBSP controller supported
by the driver.

Definition

typedef struct Mcbsp_Object_t

{

 int32_t instNum;

 Mcbsp_DriverState devState;

 Mcbsp_OperatingMode mode;

 Mcbsp_OpMode opMode;

 Bool enablecache;

 Mcbsp_HwInfo hwInfo;

 Bool stopSmFsXmt;

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 20

 Bool stopSmFsRcv;

 Mcbsp_ChannelObj xmtObj;

 Mcbsp_ChannelObj rcvObj;

 Mcbsp_srgConfig srgrConfig;

 Bool txSrgEnable;

 Bool rxSrgEnable;

 Bool srgConfigured;

 volatile Bool srgEnabled;

 Bool txFsgEnable;

 Bool rxFsgEnable;

 Bool fsgConfigured;

 volatile Bool fsgEnabled;

 Uint32 retryCount;

 Bool loopJobMode;

} Mcbsp_Object;

Fields

instNum Instance number of the MCBSP.

devState Current state of the driver (Created/Deleted).

Mode Operating mode of the MCBSP (Mcbsp, SPI master Mode, SPI
slave mode).

opMode Mode of operation of the driver(POLLED/INTERRUPT/DMA)

enableCache Whether the driver should take care of cache cleaning
operations for the buffers submitted by the application

hwInfo Structure holding the hardware information related to the
instance (e.g. interrupt numbers, base address etc).

stopSmFsXmt State of transmit state machine. (TRUE = stopped, FALSE =
running).

stopSmFsRcv State of receive state machine. (TRUE = stopped, FALSE =
running).

xmtObj Transmit channel object

rcvObj Receive channel object

srgrConfig Sample rate generator configurations supplied by the user.

txSrgEnable Variable to indicate if the sample rate generator is required
by the TX section.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 21

rxSrgEnable Variable to indicate if the sample rate generator is required
by the RX section.

srgConfigured Variable to indicate if the sample rate generator is
configured or not.

srgEnabled Variable to indicate if the sample rate generator is running.

txFsgEnable Variable to indicate if the frame sync generator is required
by the TX section.

rxSrgEnable Variable to indicate if the frame sync generator is required
by the RX section.

fsgEnabled Variable to indicate if the frame sync generator is running.

retryCount

loopJobMode

pscPwrmEnable

Retry count to be used by the driver when waiting in
indefinite loops. (e.g. waiting for the TX to get empty etc).

check if the loop job mode is enabled or not

Option to enable or disable the PSC control

Comments

1. The MCBSP Driver works only in the EDMA mode of operation.

2. One instance object represents one instance of the driver.

Constraints

None

See Also

Mcbsp_ChannelObj

5.4.2.2 Channel Object

This structure is the MCBSP driver’s internal data structure. This data structure is
used by the driver to hold the information specific to a channel. There will be at most
two channels supported per MCBSP instance (one for TX and one for RX). It is used
to maintain the information pertaining to the channel like the current channel state,
callback function etc. This structure is initialized by mcbspCreateChan and a pointer

to this is passed down to all other channel related functions. Lifetime of the data
structure is from its creation by mcbspCreateChan till it is invalidated (deleted) by

mcbspDeleteChan.

Definition

typedef struct Mcbsp_ChannelObj_t

{

 uint16_t mode;

 Mcbsp_DriverState chanState;

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 22

 Void* devHandle;

 Mcbsp_CallbackFxn cbFxn;

 void* cbArg;

 void* edmaHandle;

 uint32_t edmaEventQue;

 EDMA3_RM_TccCallback edmaCallback;

 uint32_t xferChan;

 uint32_t tcc;

 uint32_t pramTbl[Mcbsp_MAXLINKCNT];

 uint32_t pramTblAddr[Mcbsp_MAXLINKCNT];

 void* ptrQPendList;

 void* ptrQFloatList;

 Mcbsp_IOBuf *tempIOBuf;

 Mcbsp_IOBuf *dataIOBuf;

 uint32_t submitCount;

 Mcbsp_BufferFormat dataFormat;

 volatile Bool nextFlag;

 volatile Bool bMuteON;

 volatile Bool paused;

 volatile Bool flush;

 volatile Bool isTempIOBufValid;

 Bool enableHwFifo;

 Mcbsp_GblErrCallback gblErrCbk;

 uint32_t userDataBufferSize;

 void* loopJobBuffer;

 uint16_t loopJobLength;

 uint32_t userLoopJobLength;

 uint32_t nextLinkParamSetToBeUpdated;

 volatile Bool loopjobUpdatedinParamset;

 uint16_t roundedWordWidth;

 uint16_t currentDataSize;

 Mcbsp_DataConfig chanConfig;

 Mcbsp_ClkSetup clkSetup;

 Mcbsp_McrSetup multiChanCtrl;

 uint32_t chanEnableMask[4];

 Bool userLoopJob;

 int32_t currentError;

}Mcbsp_ChannelObj;

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 23

Fields

mode Current operating mode of the channel (INPUT/OUTPUT).

chanState Current state of the channel (opened/closed).

devHandle Pointer to the instance object.

cbFxn Callback function pointer

cbArg Callback function argument

edmaHandle Pointer to the EDMA handle given by the application.

edmaEventQue EDMA event queue to be used by this channel.

edmaCallback EDMA callback function pointer.

xferChan The EDMA transfer channel to be used.

tcc Transfer completion code to be used in case of EDMA
mode.

pramTbl Value of the two spare PARAM sets issued by the EDMA
driver.

pramTblAddr Address of the two spare paramsets.

ptrQPendList Pointer to queue for holding the pending packets.

ptrQFloatList Pointer to queue for holding currently executing packets.

tempIOBuf Temporary place holder for the currently completed
frame.

dataIOBuf Pointer to hold the Mcbsp_IOBuf frame

submitCount Total number of packets held in the driver for this
channel

dataFormat The format in which the MCBSP data is arranged in the
buffer.

nextFlag Flag used in stopping the MCBSP state machines.

bMuteON Flag to indicate if the mute is ON.

paused Flag to indicate if the channel is paused.

flush Flag to indicate if the flush command is issued to the
driver.

isTempIOBufValid Flag to indicate if the “tempIOBuf” is holding a valid

frame.

enableHwFifo Flag to indicate if the hardware FIFO is to be enabled for
this channel (RX/TX).

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 24

gblErrCbk Application registered callback function to be called in
case of an error.

userDataBufferSize Size of the user supplied buffer.

loopJobBuffer Loop job buffer to be used when the driver does not have
any more packets for the I/O

loopJobLength Length of the loop job buffer.

userLoopJobLength User specified loop job’s length.

nextLinkParamSetToB
eUpdated

Variable to indicate which of the spare paramset is to be
updated next.

loopjobUpdatedinPar
amset

Variable to indicate if the loop job is loaded in to the
paramset.

roundedWordWidth The actual word width to be transferred per sync event.

currentDataSize The size of the current data packet

chanConfig Channel configuration required for the configuring of the
channel.

clkSetup Clock setup to be used for this channel.

multiChanCtrl Multiple channel selection settings.

chanEnableMask Mask for the channels to be enabled

userLoopJob

currentError

Variable to indicate if the user loop job is used or
internal driver loop job buffer.

Current packet error status

Comments

1. Only 2 channels are supported per instance

Constraints

None

See Also

Mcbsp_Object

5.4.3 External Data Structures

5.4.3.1 Mcbsp_Params

This structure is used to supply user parameters during the creation of the driver
instance. The structure is as defined below:

Definition

typedef struct Mcbsp_Params_t

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 25

{

 Mcbsp_DevMode mode;

 Mcbsp_OpMode opMode;

 Bool enablecache;

 Mcbsp_Loopback dlbMode;

 Mcbsp_srgConfig *srgSetup;

} Mcbsp_Params;

Fields

mode Operating mode of the Mcbsp (Mcbsp, SPI master Mode, SPI
slave mode). Default mode is MCBSP mode.

opMode Mode of operation of the controller. Default is EDMA mode.

Note: Only EDMA mode is supported for the MCBSP mode of
operation

enableCache Whether the driver should take care of cache cleaning
operations for the buffers submitted by the application.

dlbMode Digital loop back mode selection.

srgSetup Sample rate generator setup.

Comments

1. The Mcbsp Driver works only in the EDMA mode of operation.

Constraints

None

See Also

Mcbsp_srgConfig

5.4.3.2 Mcbsp_ChanParams

This structure is used to supply user parameters during the creation of the channel
instance. During the creation of the channel, user needs to supply the above
structure with the appropriate parameters as per the required mode of operation. The
structure is defined as below:

Definition

typedef struct Mcbsp_ChanParams_t

{

 uint32_t wordWidth;

 void* userLoopJobBuffer;

 uint16_t userLoopJobLength;

 Mcbsp_GblErrCallback gblCbk;

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 26

 void* edmaHandle;

 uint32_t edmaEventQue;

 uint32_t hwiNumber;

 Mcbsp_BufferFormat dataFormat;

 Bool enableHwFifo;

 Mcbsp_DataConfig *chanConfig;

 Mcbsp_ClkSetup *clkSetup;

 Mcbsp_McrSetup *multiChanCtrl;

 uint32_t chanEnableMask[4];

}Mcbsp_ChanParams;

Fields

wordWidth Word width per slot

userLoopJobBuffer User supplied loop job buffer

userLoopJobLength User supplied buffer length

gblCbk Pointer to the function to handle the Error conditions.

edmaHandle Handle to the EDMA driver.

edmaEventQue Event queue of the EDMA to be used by this channel.

hwiNumber HWI number for the ECM group in which the event is
configured

dataFormat Buffer format to be used by the application

enableHwFifo Flag to indicate whether hardware FIFO’s are to be
enabled.

chanConfig Channel configuration settings.

clkSetup Clock configuration settings.

multiChanCtrl Multi channel control settings.

chanEnableMask Multiple channel selection mask

Comments

1. The user can provide the Loop Job buffer, if required. Otherwise the
“userLoopJobBuffer” and “userLoopJobLength” should be set to NULL and 0
respectively. In case, the user has not provided the buffer then the driver will use
its internal buffer.

Note: This is applicable only if the driver is in loop job mode.

2. “gblCbk” function will be called in the ISR context hence appropriate care should
be taken that the function confirms to the ISR coding guidelines.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 27

3. “hwiNumber” needs to specified according to the ECM event group that the
channel being configured falls into.

Constraints

See above.

See Also

Mcbsp_DataConfig

5.4.3.3 Mcbsp_srgConfig

This is the MCBSP sample rate generator configuration structure. The application
needs to configure the sample rate generator to generate the BCLK and Frame Sync
signals at the specified rate in MCBSP master mode.

Definition

typedef struct Mcbsp_srgConfig_t

{

 Bool gSync;

 Mcbsp_ClkSPol clksPolarity;

 Mcbsp_SrgClk srgInputClkMode;

 uint32_t srgrInputFreq;

 uint32_t srgFrmPulseWidth;

}Mcbsp_srgConfig;

Fields

gSync Sample rate generator synchronization bit

clksPolarity CLKS polarity used to drive the CLKG and FSG clocks.

srgInputClkMode Source for the sample rate generator.

srgrInputFreq Input frequency for the Sample rate generator

srgFrmPulseWidth Frame sync width

Comments

1. This structure will be required to specify the sample rate generator settings if
sample rate generator is required.

2. The driver will decide internally if the sample rate generator need to be enabled
or not depending on the TX or RX channel clock requirements

Constraints

None

See Also

Mcbsp_Params

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 28

5.4.3.4 Mcbsp_DataConfig

This specifies the configuration for the MCBSP data stream including whether it is
single phase or dual phase, number of frames, the word length in each phase and
data delay etc.

Definition

typedef struct Mcbsp_DataConfig_t

{

 Mcbsp_Phase phaseNum;

 Mcbsp_WordLength wrdLen1;

 Mcbsp_WordLength wrdLen2;

 uint32_t frmLen1;

 uint32_t frmLen2;

 Mcbsp_FrmSync frmSyncIgn;

 Mcbsp_DataDelay dataDelay;

 Mcbsp_Compand compandSel;

 Mcbsp_BitReversal bitReversal;

 Mcbsp_IntMode intMode;

 Mcbsp_Rjust rjust;

 Mcbsp_DxEna dxState;

}Mcbsp_DataConfig;

Fields

phaseNum Option to choose single phase or dual phase frame.

wrdLen1 Word length for the first frame.

wrdLen2 Word length for the second frame. Will be used only in
case of a dual phase frame.

frmLen1 Length of the first frame.

frmLen2 Length of the second frame. To be specified only in case of
dual frame.

frmSyncIgn Option to select the action to be taken in case if an
unexpected frame sync.

dataDelay Data delay from the frame sync

comapandSel Companding (a-law, mu-law etc.) selection

bitReversal Option to select the bit reversal of data (MSB first or LSB
first).

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 29

intMode Event which should generate an CPU interrupt

rjust Receive data justification settings

dxState DX pin high impedance state enable disable option.

Comments

1. The frmLen2 and wrdLen2 options should be used only in case of an dual phase
frame.

2. dxState option is applicable only while creating a channel for transmission.

3. rjust option is applicable only in case of creating a channel for reception.

Constraints

None

See Also

Mcbsp_Params

5.4.3.5 Mcbsp_ClkSetup

This structure is used to configure the clock settings for the Mcbsp channel.

Definition

typedef struct Mcbsp_ClkSetup_t

{

 Mcbsp_FsClkMode frmSyncMode;

 uint32_t samplingRate;

 Mcbsp_TxRxClkMode clkMode;

 Mcbsp_FsPol frmSyncPolarity;

 Mcbsp_ClkPol clkPolarity;

}Mcbsp_ClkSetup;

Fields

frmSyncMode Frame sync generator mode (Internal/external).

samplingRate Frame sync frequency.

clkMode Bit clock mode (internal/external)

frmSyncPolarity Frame sync polarity (active high/active low)

clkPolarity Bit clock polarity

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 30

5.5 Supported Data Formats

Mcbsp driver expects the data (samples) to be arranged in a specific format when requesting for

an I/O transfer. These formats are explained under scenario of using 1-slot or multiple slots. The

sections below capture the details of supported data formats.

5.5.1 1-Slot Data Format

This format is used when a single slot is used to transfer the data. The expected format is as

depicted below:

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>]

The size (number of bytes) that would be required to specify during an I/O request is computed

using the formula size = <word width>*<number of samples N>.

The key configurations (sample) are:

• Mcbsp_ChanParams.dataFormat = Mcbsp_BufferFormat_1SER_1SLOT;

• Mcbsp_ChanParams. noOfTdmChans = 1;

• The size of the I/O request is computed as <No. of Bytes per Sample> *

<No. of Samples>. This value should be given as a size parameter to

mcbspSubmitChan function.

• Idle Time data pattern length computation: Minimum length should be <word width in

bytes> or an integral multiple of computed value. While allocating a buffer, allocate

<computed value> * <no. of slots enabled>.

5.5.2 Multi-Slot Non-Interleaved Data Format

When configured in this mode, it is expected that driver is configured to use multiple slots. The

expected data format is as depicted below. When configured to use multiple slots, the samples

are expected to be contiguous for a given slot as shown below. It is assumed below that number

of slots is 2 and number of samples is N.

[<Slot1-Sample1>, <Slot1-Sample2>..…<Slot1-SampleN>,

<Slot2-Sample1>, < Slot2-Sample2>….. < Slot2-SampleN>]

MCBSP

Mode
Data Format Buffer Format

1-Slot Interleaved data Format Mcbsp_BufferFormat_1SER_1SLOT

Multi-Slot Interleaved data Format Mcbsp_BufferFormat_1SER_MULTISLOT
_NON_INTERLEAVED

Multi-Slot Non-interleaved data

format

Mcbsp_BufferFormat_1SER_MULTISLOT
_INTERLEAVED

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 31

The key configurations (sample) are:

• Mcbsp_ChanParams.dataFormat =
Mcbsp_BufferFormat_1SER_NON_INTERLEAVED;

• Mcbsp_ChanParams.noOfTdmChans = N;

• The size of the I/O request is computed as <No. of Bytes per Sample> *

<No. of Samples> * <No. of slots>. This value should be given as a size

parameter to mcbspSubmitChan function.

• Idle Time data pattern length computation: Minimum length should be <word width in

bytes> or an integral multiple of computed value. While allocating a buffer, allocate
<computed value> * <no. of slots enabled>.

5.5.3 Multi-Slot Interleaved Data Format

When configured to use multiple slots and interleaved format, the samples are expected to be

interleaved for the slots, as depicted below. It is assumed below that number of slots is 2 and

number of samples is N.

[<Slot1-Sample1>, <Slot2-Sample1>…<Slot1-SampleN><Slot2-SampleN>]

The key configurations (sample) are:

• Mcbsp_ChanParams.dataFormat =
Mcbsp_BufferFormat_1SER_INTERLEAVED;

• Mcbsp_ChanParams.noOfTdmChans = N;

• The size of the I/O request is computed as <No. of Bytes per Sample> *

<No. of Samples> * <No. of slots>. This value should be given as a size

parameter to mcbspSubmitChan function.

• Idle Time data pattern length computation: Minimum length should be <word width in

bytes> or an integral multiple of computed value. While allocating a buffer, allocate
<computed value> * <no. of slots enabled>.

6 Integration

The MCBSP LLD depends on the following components:

a. CSL

b. EDMA3 LLD

These components need to be installed before the MCBSP driver can be integrated. The MCBSP

driver is released in source code and in pre-built library. Applications can decide how to use the

MCBSP driver.

The MCBSP Driver release notes indicate the version of the above components which that

release is dependent upon. The next steps use the version numbers for illustrative purpose only.

Texas Instruments Incorporated Software Design Specification

Revision A MCBSP LLD

 Page 32

6.1 Pre-built approach

In this approach, the application developers can decide to use the MCBSP driver pre-built

libraries as is. The following steps need to be done:

a. The application developers modify their application configuration file to use the MCBSP

package.

var Mcbsp = xdc.loadPackage('ti.drv.mcbsp');

b. Ensure that the XDCPATH is configured to have the path to the PDK package

c. This implies that XDC Configuration scripts will link the application using the MCBSP

Driver libraries (Module.xs)

d. The application authors need to provide an OSAL implementation file for MCBSP and

ensure that this is linked with the application; failure to do so will results in linking

errors. Please refer to the MCBSP OSAL header file (mcbsp_osal.h) for more

information on the API’s which need to be provided.

6.2 Rebuild library

In this approach, the application developers can decide to use the MCBSP driver source code and

add these files to the application project to rebuild the MCBSP driver code base. The following

steps need to be redone:

a. Application developers should port the file “mcbsp_osal.h” to their operating system

environment. Developers are recommended to create a copy of this file and place it in

their application directory. They should use the file which is provided in the MCBSP

installation only as a template. The goal here should be to map the Mcbsp_osalXXX

macros to the OS calls directly thus reducing the overhead of an API callout. E.g.

#define Mcbsp_osalCreateSem() (Void*)Semaphore_create(0, NULL, NULL)

b. Application developers should port the file “mcbsp_types.h” to the application

environment. Developers are recommended to create a copy of this file and place it in

their application directory.

c. Append the include path to the top level MCBSP package directory i.e. if the MCBSP

package is installed in C:\Program Files\Texas

Instruments\mcbsp_C6657_1_0_0_0; then make sure the include path is configured as
C:\Program Files\Texas Instruments\mcbsp_C6657_1_0_0_0\packages

d. Add the MCBSP driver files listed in the src directory to the application build files

The approach above is highlighted in the MCBSP example directory.

