[image: image2.jpg]_
INSTRUMENTS

Multicore Application Deployment Utilities

User's Guide

November 2010

Table of Contents
Preface
4
Overview
5
Acronyms and definitions
5
Motivation for MAD infrastructure
5
MAD infrastructure components
5
Build time utilities
5
Run time utilities
6
MAD flow
7
MAD flow summary
7
Getting started
8
Package overview
8
MAD UTILS overview
9
MAP tool configuration
9
Deployment configuration file
9
MAP tool invocation
11
Demo walkthrough
12
Software overview
13
MAD Loader overview
13
Code organization
13
Build instructions
13
MAD Loader APIs
15

List of Figures

6Figure 1: MAD flow

List of Tables

7Table 1: Package overview

Table 2: MAD UTILS directory structure
8

Preface

About This Manual

This document describes the usage of Multicore Application Deployment (MAD) utilities.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the prefix “0x”. For example, the following number is 40 hexadecimal (decimal 64): 0x40.

Overview

Acronyms and definitions

The following acronyms are used throughout this document.

	Acronym
	Description

	API
	Application Programming Interface

	DSO
	Dynamic Shared Object

	DSBT
	Data Segment Base Table

	DP
	Data Page register

	ELF
	Executable and Linkable Format

	IBL
	Intermediate Boot Loader

	JSON
	Java Script Object Notation

	MAD
	Multi-core Application Deployment

	MAP
	Multiple Application Pre-Linker

	NML
	No Man’s Land (Reserved virtual address space)

	SP
	Stack Pointer register

	ROMFS
	ROM File System

	XIP
	eXecute In Place

	EEPROM
	Electrically Erasable Programmable Read-Only Memory

	OFD
	Object File Dump

	I2C
	Inter-Integrated Circuit

Motivation for MAD infrastructure
1. Need to deploy multiple applications on multiple cores.
2. Need to conserve memory by sharing common code.
3. Need to deploy an application dynamically on a core.

MAD infrastructure components
MAD infrastructure provides a set of utilities to help achieve the above mentioned needs.
There are 5 major utilities provided by the MAD infrastructure grouped into the following 2 categories

Build time utilities
Static Linker

For linking the applications and dependent dynamic shared objects (DSO).
Prelink Tool
Prelink tool provides the following functionality

Storage Allocation: binding segments in an ELF file to virtual addresses
Dynamic Relocation: Resolving references to imported symbols
DSBT Size Checking: If the DSBT model is in use for an application, then the prelink utility can perform a check on the DSBT size allocated for each application component.

DSBT Index Assignment: If the DSBT model is in use for an application, then the prelink utility will do the assignment of DSBT indices to the DSOs that are used in the application.
MAP tool
MAD infrastructure will provide a Multi-core Application Prelinker (MAP) tool which will supports the following functionality.

The user specifies the desired memory partition for the device and high level instructions for segment placements to the MAP tool. Based on this information MAP tool determines the runtime virtual/physical address for each ELF segment. It then invokes the prelinker to do the storage allocation, dynamic relocation and DSBT index assignment (if applicable) for all the applications and the dependent DSO(s).
The MAP tool will also generate a set of activation records for loading an application on a specific core. The activation records are instructions to the run-time loader to do the following:

· Setup virtual memory mapping and memory protection/permission attributes of partitions

· Copy and initialize loadable segment at their run address

· Updation of the DSBT tables.

The prelinked applications, DSO(s) and the activations records are then packed into a ROM file system image to be downloaded to the target.
Run time utilities
Load tool (IBL)

Intermediate Boot Loader (IBL) will provide the functionality of downloading the ROM file system image to the device’s external DDR memory. The configuration parameters for IBL will be programmed into the I2C EEPROM of the target platform.
Run tool (MAD Loader)

MAD Loader utility provides the functionality of starting an application on a given core. It does the following to start an application on a core.
· Configures the virtual memory map for the core.

· Configures the memory attributes and permissions for each memory partition

· Copies segment from the load address to the run address.
· Initialize the execution environment for the application.

· Update the DSBT table of the application and the DSO(s)

· Execute the pre-initialization functions of the application

· Execute the initialization functions of the dependent libraries and the application

· Configure the Stack pointer (SP) and Data page (DP) registers

MAD flow

Following figure illustrates the MAD flow

[image: image1]
Figure 1: MAD flow

MAD flow summary

Image Preparation

· Identify common code among applications.

· Link common code as position independent shared objects (DSO).

· Link the applications.

· The above steps create the set of applications/DSO(s) that will be run on the device.

· Identify which applications can run on each core.

· Identify the memory partitions for the device by envisioning the usage.

Example memory partition for Nyquist

DDR:

32 MB per core 0-3

112 MB ro image

16 MB shared r/w

MSMC RAM:

512 KB per core

no ro image

no shared r/w

L2:

Max Cache

L1:

All Cache

· Create a deployment configuration file for the Map tool with the above information

· Run the MAP tool with the deployment configuration file as an input.

· Map tool generates a pre-link command file containing segment to virtual address binding instructions for the Prelink tool.

· The Prelink tool reads the ELF files in combination with the prelink command file from the Map tool and prelinks all input applications (binding segments to virtual addresses, processing dynamic relocations, etc.) and produces a prelinked output file for every EXE and DSO that was prelinked.

· Using the prelinked output files and the information of the allocation of the segments into the physical address space, the MAP tool creates a load image (in ROMFS format) containing activation records for each application.
Application deployment

· At boot, device will run ROM Bootloader

· ROM boot loader will load and run IBL that will be on the board (eg. i2c eeprom)

· IBL will download MAD image from the server to DDR

· IBL is configured with a ‘entry point’ into the execution.

In a non-MAD case, this would be ‘main’ of the application downloaded

In MAD case, IBL will be configured to jump to the “MAD Loader”

· MAD loader does, parsing of MAD image, copying image segments to their ‘run’ address and finally runs the application

Getting started

Package overview

The following tool packages are required for supporting multicore application deployment
	Package
	Description

	Code Generation Tools
	Provides tools for compiling and linking the applications

	Prelink tool
	Provides the prelinker tool

	MAD utils
	Provides the MAP tool, MAD loader

	IBL
	Provides the Intermediate Boot Loader

Table 1: Package overview
MAD UTILS overview

MAD utils is provided as a source distribution. Following is the directory structure of mad-utils.
	directory
	description

	./mad-loader
	Source code for the MAD loader

	./map-tool
	Source code for MAP tool

Table 2: MAD UTILS directory structure

The README.txt files within the respective directories give details about the code organization and build procedures.

MAP tool configuration

MAP tool configuration file

The input to MAP tool is a configuration file in JSON format. The configuration file has the following objects:

deploymentCfgFile : specifies the deployment configuration file.

LoadImageName : specifies the name of the load image file to be generated. The load image file (in ROMFS format) will be placed in the “./image” directory.
prelinkExe: specifies the name of the prelinker executable. The path to prelinker executable should be set in the set in the execution environment.
ofdTool: specifies the name of the OFD tool executable. The path to OFD tool executable should be set in the set in the execution environment. The OFD tool is a part of the code generation tools package.
malApp: specifies the file name of the MAD loader application
nmlLoader: specifies the file name of the NML loader. NML loader is a sub-component of the MAD loader.
Sample configuration file for the MAP tool is shown below.

{

 "deploymentCfgFile" : "./config-files/deployment_template_tomahawk.json",

 "LoadImageName" : "c6472-le.bin",

 "prelinkExe" : "prelink6x",

 "ofdTool" : "ofd6x",

 "malApp" : "./loader/mal_app.pdo",

 "nmlLoader" : "./loader/nml.pdo"

}

Deployment configuration file
The deployment configuration file is used to specify the following information to the MAP tool.

· The desired memory partitions on each core of the device

· Attributes and access permissions of the partitions

· The applications to be deployed.

The deployment configuration file is in JSON format. Deployment configuration file has the following sections:

1. deviceName: This JSON object identifies the target device.

2. partitions: This sections identifies the memory partitions and its attributes. The user controls the placement of ELF segments into partition, by specifying the segment identifiers (section name). “partitions” is a list of structures. Each structure has the following objects:

· name : Name of the partition. This is used as a partition identifier in MAP tool debug logs

· vaddr : Virtual address of the partition. For devices without virtual addressing, this would be the physical address.

· paddr : Physical address of the partition. This is an ordered list indexed by the device CoreId. The value at a given index specifies the physical address corresponding to the virtual address for that core. For devices without virtual memory addressing, “vaddr” and “paddr” would be the same.

· size : Size of the memory partition in bytes.

· secNamePat : Section name pattern. This is a regular expression string used to identify ELF segments. MAP tool will place all segments with matching section names into this memory partition.

· cores : List of applicable cores for this partition.

· permissions : List of access permissions applicable to the partition. Allowed values are “SR” (supervisor Read), “SW” (supervisor Write), “SX” (supervisor Execute), “UR” (user Read), “UW” (User Write), “UX” (User Execute).

· cacheEnable : Enable/disable Cache. Allowed values are “True”, “False”. This is an optional parameter with a default value of “True”.

· prefetch : Enable/disable prefetch. Allowed values are “True”, “False”. This is an optional parameter with a default value of “False”.

· shared : Specifies if the partition is shared or local. Allowed values are “True”, “False”.

· loadPartition : Specifies if the partition is a Load partition. The ROMFS image will be downloaded to this partition. MAP tool will try to make the Execute segments in this partition XIP. Allowed values are “True”, “False”. This is an optional parameter with a default value of “False”.

· priority : Specifies the priority for the virtual memory map. A higher number specifies a higher priority. Priority is used when virtual memory mappings are overlapping. This is an optional parameter with a default value of “0”.

3. applications : This section specifies the applications to be loaded on the device. “applications” is a list of structures. Each structure has the following objects:

· name : Specifies a name or alias for the application.

· filename : File name with full path of the application’s ELF executable.

· libPath : Specifies the path for the shared libraries used by the application.

· allowedCores : List of cores on which the application can run.

4. appDeployment: Specifies the applications to be loaded on each core on the initial boot. This is an ordered list of application names indexed by core-id. If a core has to be booted without an application, then an empty string should be specified.

Sample deployment configuration for C6472 (Tomahawk) device is shown below.

{

"deviceName" : "C6472",

"partitions" : [

{

"name"

: "ddr-code",

"vaddr"

: "0xE0000000",

"paddr"

: ["0xE0000000"],

"size"

: "0x8000000",

"secNamePat"
: ["^.text", "const", "switch", "rodata"],

"cores"

: [0,1,2,3,4,5],

"permissions"
: ["SR", "SX"],

"cacheEnable"
: true,

"shared"
: true,

"loadPartition" : true

},

{

"name"

: "L2-SRAM",

"vaddr"

: "0x800000",

"paddr"

: ["0x800000"],

"size"

: "0x98000",

"secNamePat"
: ["stack", "^.far$", "args", "neardata", "fardata"],

"cores"

: [0,1,2,3,4,5],

"permissions"
: ["SR", "SW"],

"cacheEnable"
: true,

"prefetch" : false,

"shared"
: false

}

],

"applications" : [

{

"name"

 : "app1",

"fileName" : "../mad-loader/examples/app_1/app_1.exe",

"libPath" : "../mad-loader/examples/shlibs",

"allowedCores" : [0,1,2,3,4,5]

},

{

"name"

 : "app2",

"fileName" : ../mad-loader/examples/app_2/app_2.exe",

"libPath" : ../mad-loader/examples/shlibs",

"allowedCores" : [0,1,2,3,4,5]

},

{

"name"

 : "app3",

"fileName" : ../mad-loader examples/app_3/app_3.exe",

"libPath" : ../mad-loader/examples/shlibs",

"allowedCores" : [0,1,2,3,4,5]

}

],

"appDeployment" : [

"app1",

"app2",

"app1",

"app2",

"app1",

"app2"

]

}

MAP tool invocation

MAP tool has to be invoked from command-line as follows:

python maptool.py <maptoolCfg.json>

where “maptoolCfg.json” is the input configuration file in JSON format
Demo walkthrough

This section will do a walk through of an example MAD flow on C6472 EVM. The “mad-utils” package contains a few example applications and DSO(s) which will be used here.
STEP-1: Image Preparation
1. Build the sample shared library in the directory “mad-loader/examples/shlibs/”

2. Build the sample applications “app_1”, “aap_2” in the directory “mad-loader/examples/”

The above steps create the set of applications/DSO(s) that will be run on the device
3. Build the MAD loader components:

a. MAD Loader library

b. NML Loader

c. MAD Loader application

Instructions for building MAD loader components are provided in the README.txt in “mad-loader” directory.

STEP-2: Device memory partitioning

For this example, we will place all the “executable segments” in DDR and all the “data segments” in local L2 memory. So we need to create 2 memory partitions for the device.

Parttiton-1:

{

"name"

: "ddr-code",

"vaddr"
: "0xE0000000",

"paddr"
: ["0xE0000000"],

"size"

: "0x8000000",

"secNamePat" : ["^.text", "const", "switch", "rodata"],

"cores"

: [0,1,2,3,4,5],

"permissions"
: ["SR", "SX"],

"cacheEnable"
: true,

"shared"
: true,

"loadPartition" : true

}

Partition-1 is also marked as the “loadPartition”, since the downloaded ROMFS image will be placed here. MAP tool will make the executable segments placed in this partition XIP.
Parttiton-2:

{

"name"

: "L2-SRAM",

"vaddr"
: "0x800000",

"paddr"
: ["0x800000"],

"size"

: "0x98000",

"secNamePat" : ["stack", "^.far$", "args", "neardata", "fardata"],

"cores"

: [0,1,2,3,4,5],

"permissions"
: ["SR", "SW"],

"cacheEnable"
: true,

"prefetch" : false,

"shared"
: false

}
STEP-3: Invoke MAP tool

1. Create a deployment configuration file for the Map tool with the above information. The sample deployment configuration for this example is available in the “mad-utils” package as “map-tool/config-files/deployment_template_tomahawk.json”.
2. Create the configuration file for the MAP tool. The sample configuration for this example is available in the “mad-utils” package as “map-tool/config-files/maptoolCfg_tomahawk.json”.

3. Invoke the MAP tool on a Linux command shell:

python maptool.py config-files/maptoolCfg_tomahawk.json.
4. Check that the output image “c6472-le.bin” has been created in “./images” directory.
STEP-4: Application deployment on device
The target board should have IBL programmed and configured on the board’s I2C EEPROM. Details on programming and configuring IBL are available at http://linux-c6x.org/wiki/index.php/Bootloaders. The “start addr” to be programmed into IBL configuration will be “E0001040”.
Place the output image “c6472-le.bin” into the root directory of the TFTP server running on the host computer.
Power cycle the target board and wait for ~10 seconds.
The device should now have downloaded the ROMFS image and deployed the sample applications on all the cores.

Following is the procedure to verify that the sample application has been deployed on a core, connect CCS to the core.

Load the symbols for the application to be deployed on that core. The application executable can be found at “./tmp/fs/” directory relative to the directory where MAP tool was run.

Verify that the value of the variable “signature” is “<app name><core id>”. E.g. “App1Core3”
Software overview
MAD Loader overview

Code organization

./examples: This folder contains example applications and DSO(s) for testing the MAD flow

./mal: This folder contains the source for MAD loader library and the loader application

./nmlLoader: This folder contains the source for the no man's land loader(NML). NML is a sub-component of the MAD loader and resides in a reserved virtual address space.

Build instructions

NOTE FOR BUILDING ON WINDOWS ENVIRONMENT: For building on windows environment GNU utilities like

"make" would be required. The following build procedure should also work on Cygwin or MINGW-MSYS Bourne shell.

Environment Setup:

Before starting the build following environment setup has to be done

1. variable C_DIR should be set to the top directory of the Code Generation tools e.g.

 Linux bash shell:

 export C_DIR=/opt/TI/TI_CGT_C6000_7.2.0A10232/

 Cygwin/MSYS bash shell:

 export C_DIR='"C:/Program Files/Texas Instruments/ccsv5/tools/compiler/c6000"'

2. Code Generation tool binaries should be in the path e.g.

 Linux bash shell:

 export PATH=/opt/TI/TI_CGT_C6000_7.2.0A10232/bin:$PATH

 Cygwin bash shell:

 export PATH=$PATH:/cygdrive/c/Program\ Files/Texas\ Instruments/ccsv5/tools/compiler/c6000/bin/

 MSYS bash shell:

 export PATH=$PATH:/c/Program\ Files/Texas\ Instruments/ccsv5/tools/compiler/c6000/bin/

Example applications:

Each of the applications have a makefile which should be used to build the application.

 make DEVICE=<device number>

 supported device numbers are

 C6472 (Tomahawk)

 C6616 (Nyquist)

 C6678 (Tomahawk).

MAD loader library:

The makefile for building the MAD loader library is in the directory "mal/malLib/build"

Following are the steps to build the MAD loader library:

 cd mal/malLib/build

 make DEVICE=<device number>

 supported device numbers are

 C6472 (Tomahawk)

 C6616 (Nyquist)
 C6678 (Shannon)
MAD loader application:

The makefile for building the MAD loader library is in the directory "mal/malApp/build"

Since the MAD loader application links the MAD loader library hence the MAD loader library has to be built prior to building MAD loader App

Following are the steps to build the MAD loader library:

 cd mal/malApp/build

 make DEVICE=<device number>

 supported device numbers are

 C6472 (Tomahawk)

 C6616 (Nyquist)
 C6678 (Shannon)
MAD loader application needs to be XIP in DDR. The linker command file "lnk_<device number>.cmd" is used to ensure that the MAD loader app is bound to XIP address in DDR.
NML:

The makefile for building the NML is in the directory "nmlLoader/build"

Following are the steps to build NML:

 cd nmlLoader/build

 make DEVICE=<device number>

 supported device numbers are

 C6472 (Tomahawk)

 C6616 (Nyquist)
 C6678 (Shannon)
Since NML is XIP in DDR, it has to be ensured that the NML code segments are bound to virtual address which is XIP in DDR. NML is a part of the ROM file system loaded on DDR. if the offset of the NML ELF file changes in the ROM file system, then this address needs to be modified. This can happen if the size of the MAD loader application changes.

To get the current offset of NML in ROM file system, do a trial run of the MAP tool, MAP tool will create a file ./tmp/fsOffsets.txt. This file will list the offset of all the files in the filesystem. The linker command file "lnk_<device number>.cmd" is used to ensure that the NML is bound to XIP address in DDR.

NOTE: NML also needs RW area for stack and global variables. By default the linker command file has been setup to allocate the RW area towards the end of DDR memory. This should be changed by the user according to the target execution environment.
MAD Loader APIs
MAD loader library can be linked by an application to provide application deployment services. This section describes the APIs provided by the MAD loader library.
Loader API’s:

int mal_lib_init (void *load_partition_addr): API to initialize the library

int mal_lib_stop_core (unsigned int coreId): API to stop a core. Non graceful forced shutdown.

int mal_lib_load_core (unsigned int coreId, char *appName): API to load and run an APP on a given core.

File System API’s:

int mal_lib_fopen (const char *filename): API to open a file stream

int mal_lib_fclose (int file_handle): API to close a file stream

int mal_lib_fsize (const char *filename, unsigned int *size): API to get the file size

unsigned int mal_lib_fread (void *ptr, unsigned int size, unsigned int count, int file_handle): API to read from a file stream

int mal_lib_fseek (int file_handle, unsigned int offset, int origin): API to seek to a position in a file

long mal_lib_ftell (int file_handle): API to get the current offset in the file

MAP Tool

+ prelink

(Host)

IBL

(Target)

MAP Tool

Mad L

RW

RO

RW

RW

RW

RW

MAP

RW

RO

RW

RO

RW

RW

RW

RW

Mad L

RW

RO

MAP

RW

RO

RW

RO

1. copy segments to the assigned physical address

2. program virtual memory mapping

3. program memory attributes

4. setup App execution environment

Cloned R/W

Segments

Unmodified

Load Image

Physical Memory View

Virtual Memory View

Multicore

Application

Deployer

RO

RW

RW

RO

CORE 3

RO

RW

RW

RO

CORE 2

RO

RW

RW

RO

CORE 1

RO

RW

RW

RO

CORE 0

MAD

Loader

1. Assign each segment to a physical address

2. Bind segment to virtual address (prelink)

3. Create load image/activation records

Download image to target DDR

ELF Binaries

Load Image

(ROMFS)

RO SEGMENT

RW SEGMENT

shlib.dso (ELF)

Intermediate Bootloader

Deployment

template

RW SEGMENT

RO SEGMENT

app1.exe (ELF)

RW SEGMENT

RO SEGMENT

app0.exe (ELF)

PAGE
2
Copyright © 2010, Texas Instruments Incorporated

