

PA Low Level Driver

Release Notes

Applies to Product Release: 03.00.00.08

Publication Date: November 25, 2013

Texas Instruments, Incorporated

20450 Century Boulevard

Germantown, MD 20874 USA

VP00102-Form-1

Revision F

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons,

171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/

Contents

Overview ... 1

LLD Dependencies... 1

Resolved Incident Reports (IR)... 1

Known Issues/Limitations .. 1

New/Updated Features and Quality... 2

Licensing ... 26

Delivery Package.. 26

Installation Instructions .. 26

Customer Documentation List .. 28

PA Low Level Driver for 03.00.00.08

 1

Release Notes

Overview

This document provides the release information for the latest PA LLD which should be used by

drivers and application that interface with PA.

PA LLD module includes:

• Pre-compiled library for DSP (Big and Little) Endian of PA Low Level Driver.

• Sources, examples and unit test code.

• API reference guide

LLD Dependencies

- This release of PA LLD requires CSL package released with PDK

- RM LLD

Resolved Incident Reports (IR)

Table 2 provides information on IR resolutions incorporated into this release.

Table 2 Resolved IRs for this Release

IR Parent/
Child Number

Severity
Level IR Description

Known Issues/Limitations

Table 3 Known Issue IRs for this Release

IR Parent/
Child Number Severity Level IR Description

New/Updated Features and Quality

Release 3.0.0.8
This release includes the following features from PA LLD 2.0.1.4:

• Interface-based routing support

• Enhanced user-defined statistics support

This release supports all keystone2 devices with two separate libraries for the first generation and second
generation PASS respectively

• Kepler/Hawking: PA
• Lamarr/Edison: PA2

Release 3.0.0.7
This release includes the following features from PA LLD 2.0.1.3:

• Multi-process support

• Linux user-mode support

• Enhance all examples and unit tests to be restartable

Release 3.0.0.6
This is the first official engineering drop of PA LLD for the second generation PASS (Packet Accelerator
Sub-System) on advanced Keystone2 devices. The supported feature list is compatible with PA LLD
version 1.3.0.11. To minimize the software migration effort of existing applications from older devices, the
new PA LLD maintains backward compatibility of all existing APIs with the following minor exceptions:

• API Pa_requestStats() and Pa_formatStatsReply() are depreciated due to the new mechanism of
handling PASS system statistics. It is no longer required to send the statistics request packet to
PASS and wait for the statistics response packet from PASS. The application can simply call the
new API Pa_querySysStats() or the updated API Pa_requestStats() which will return the
formatted system statistics.

• The prototype of API Pa_configCrcEngine() stays the same. However, this API will configure the
corresponding CRC engine directly in stead of formatting a CRC configuration command packet
to be delivered to PASS.

• The following two parameters have been moved from CRC configuration structure paCrcConfig_t
to CRC command structure paCmdCrcOp_t due to PASS CRC engine changes:

o crc size
o init value

• To add an IP entry of specific IP addresses and IPSEC SPI number with API Pa_addIp or
Pa_addIp2, the application needs to specify the IP protocol as either IPSEC ESP (50) or IPSEC
AH (51). The parameter proto should not be specified for an IP entry of specific SPI number only.

The second generation PASS provides several new features. Overview of new features and APIs are
highlighted below, please refer to PA LLD header file pa.h, pa_fc.h or PA LLD doxygen document for
details. The PA unit test program under pa/test provides some examples and sample codes for all new
features.

• Outer IP and inner IP reassembly
The second generation PASS provides a Reassembly engine (RA) which can be used to perform
outer and inner IP reassembly and the reassembled packets will be delivered back to PASS for
continuous processing. The following data structures and API are provided for RA related operation.

o paRaConfig_t: RA global configuration structure added to PASS system configuration
structure paConfig_t.

o paRaGroupConfig_t: RA group configuration structure which is used by API Pa_control to
control RA of Outer IP and inner IP reassembly operation.

o paRaStats_t: Define IP reassembly statistics

o Pa_queryRaStats: Query the RA statistics

• Egress Flow and Flow Cache operation
The second generation PASS includes one 256-entry LUT1 engine and three clusters of PDSP engine
chain to support ingress packet forwarding, flow cache lookup and egress packet formatting and
modification operation as described below:

o Flow Cache Classification: Classify up to 256 established egress flows based on
the inner IP and L4 parameters.

o Egress Flow Operation: Perform up to 4-level packet modification such as IP mangling,
IPSEC framing and encryption, L2 framing and etc per packet modification records.

o Ingress Packet Forwarding: Route the ingress packets to the Egress processing unit
as one of the classification routing options.

The following data structures and APIs are used for Egress Flow and Flow Cache related operations:
o paEfRec_t: Define Egress Flow modification records
o paFcInfo_t: Specify Flow Cache matching parameters
o paEfOpInfo_t: Specify Egress Flow operation information
o paFcStats_t: Define Flow Cache entry statistics
o Pa_addFc: Add/Replace Flow Cache entry into Flow Cache lookup table
o Pa_delFcHandle: Delete the specified Flow Cache entry
o Pa_queryFcStats: Query Flow Cache per-entry statistics
o Pa_configEflowRecords: Configure multiple Egress Flow modification records
o Pa_configEflowExceptionRoute: Configure egress packet routing based on exception

condition

• Pre-IPSEC and Post-IPSEC ACL (Access Control List) operation
The second generation PASS includes two 256-entry LUT1 with associated PDSP engines to support
pre-IPSEC and post-IPSEC L3/L4 ACL lookup operation. The following data structures and APIs are
used for ACL related operation.

o paAclInfo_t: Specify ACL matching parameters
o paAclConfig_t: Specify ACL actions per match
o paAclStats_t: Define ACL entry statistics
o Pa_addAcl: Add ACL entry into ACL table
o Pa_delAclHandle: Delete the specified ACL entry
o Pa_queryAclStats: Query the ACL per-entry statistics

• Local PKTDMA
The second generation NetCP includes a local PKTDMA (CPPI) and QMSS sub-system which may be
used to transfer packets within the NetCP sub-system, such as packets from PA to RA, PA to SA and
SA to PA. To use NetCP local PKTDMA, the application needs to enable this feature through the CPPI
and QMSS LLDs and setup local PKTDMA path as the followings:

o PA to RA: set control bit pa_RA_CTRL_USE_LOCAL_DMA at RA group configuration
structure paRaGroupConfig_t.

o PA to SA: set routing destination to pa_DEST_SASS_LOC_DMA in stead of
pa_DEST_SASS

o SA to PA: set control bit sa_DEST_INFO_CTRL_USE_LOC_DMA at the SA LLD channel
destination configuration structure Sa_DestInfo_t.

The following features, which are still supported functionally or in API by PA LLD for backward compatibility,
should be depreciated or changed due to the more advanced capability of the second generation PASS:

• PASS-assisted IP Reassembly: This feature is still supported, but it is recommended to be
replaced by the RA-based IP reassembly operation which does not request host intervention.

• IPSEC ESP NAT-T Detection: In the 2nd generation PASS, the IPSEC NAT-T detector is
implemented within the Outer IP and IPSEC processing stage to avoid the re-entry operation from
LUT2 stage. And the detector is also implemented at the traditional LUT2 stage to maintain
backward compatibility. It is recommend making the following two changes to enable IPSEC NAT-T

detector at the appropriate processing stage to avoid PASS throughput degradation due to IPSEC
NAT-T packet re-entry operation.

o IPSEC NAT-T configuration: set control bit pa_IPSEC_NAT_T_CTRL_LOC_LUT1
o Outer IP routing configuration: use pa_DEST_CONTINUE_PARSE_LUT1 in stead of

pa_DEST_CONTINUE_PARSE_LUT2
• Tx Commands: Most of tx command operations such as IP/UDP checksum, IPSEC AH patching

and IP Fragmentation are also supported by the Egress Flow operation. To simplify the egress
operation, it is recommended to setup an egress flow and replace a set of Tx commands with a
single pa_CMD_EF_OP command.

• GTPU classification with L3 link: This feature is no longer required since the advanced LUT2
engine supports GTPU 32-bit Tunnel-ID classification with L3 link and therefore, it is not necessary
to restrict the effective tunnel-ID to 24-bit. The GTPU configuration will be still processed by the
PASS for backward compatibility and the configuration command packet will be ignored by PASS.

• Configurable L3 offset location: This feature is no longer required since both offsets to outer IP
and inner IP will be provided at packet information area and extracted by the following two Macros:

o PASAHO_LINFO_READ_L3_OFFSET(): Offset to outer IP
o PASAHO_LINFO_READ_INNER_IP_OFFSET(): Offset to inner IP

Although most of the PA LLD APIs are backward compatible, some minor application changes are still
required due to the following transport layer changes introduced at the second generation keystone2
devices:

• More PASS CPPI channels: There are 21 Tx channels and 91 Rx channels in the second
generation NetCP devices where there are 9 Tx channels and 24 Rx channels in the first
generation devices.

• More PASS Tx Queues: The are 21 Tx queues in the second generation NetCP devices where
there is only 9 TX queues in the first generation devices.

• Local PKTDMA and QMSS: There is NetCP local PDTDMA and QMSS modules in addition to the
global ones.

• NetCP Tx Queue Layout:

Location NetCP 1.0 equivalent Global Local
EMAC priority 0 EMAC 896 0
EMAC priority 1 NA 897 1
EMAC priority 2 NA 898 2
EMAC priority 3 NA 899 3
EMAC priority 4 NA 900 4
EMAC priority 5 NA 901 5
EMAC priority 6 NA 902 6
EMAC priority 7 NA 903 7
Ingress 0 PDSP0: MAC/SRIO 904 8
Ingress 1 PDSP1: Outer IP 905 9
Ingress 2 NA 906 10
Ingress 3 NA 907 11
Ingress 4 PDSP2 (Inner IP) and

PDSP3 (LUT2)
908 12

Post PDSP4: Command Set 909 13
Egress 0 PDSP5: Tx Command 910 14
Egress 1 NA 911 15
Egress 2 NA 912 16
RA (Reassembly
Engine)

NA 913 17

SASS SASS 914 18
SASS2 SASS2 915 19
Statistics Module NA 916 20

Release 3.0.0.1 – 3.0.0.5:

TI internal engineering drops

Release 3.0.0.0:

This is the initial engineering drop of the second generation PASS (Packet Accelerator Sub-System) on
advanced Keystone2 devices. The supported feature list is compatible with PA LLD version 1.2.3.3. It is
provided for initial integration support for the AVV team. Only limited tests have been performed at the
Lamarr simulator with local provided tisim_pass.dll.

Release 1.3.0.11

Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00101118
Major Received Fragmented ICMP with invalid fragment-offset causes eth0 to

jam

Release 1.3.0.10
Resolved IRs as listed below:

IR Parent/
Child Number

Severity
Level IR Description

00100400 Minor PA LLD: 1.3.0 software manifest points to release 1.2.0

00100401 Minor PA LLD: Need constant definition of the virtual link buffer ID

Release 1.3.0.9

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00099556 Major PA LLD: Deleting LUT2 entries enables GTPU processing unconditionally

Release 1.3.0.8

• API changes involved in this release are backward compatible to PA 1.3.0.7; no

application modification is required for PA 1.3.0.7 based features. Details of new feature

and API changes from PA LLD 1.3.0.7 are described below:

o GTPU classification with L3 link
Due to the LUT2 engine using 32-bit matching parameter, the default GTP-U classification is
solely based on its 32-bit tunnel ID. However, it may be desirable to match a GTP-U tunnel with
both its tunnel ID and the previous link information at some use cases. PASS is enhanced to
support GTPU classification with L3 link where the classification vector consists of the least
significant 24-bit of tunnel ID and an 8-bit previous link parameter.

The data structure paCtrlInfo_t is enhanced to include global GTPU configuration parameter
gtpuCfg. The application should invoke API Pa_control() with configuration code set to
pa_CONTROL_GTPU_CONFIG to enable/disable this feature at system startup.

o Configurable L3 offset location
The PASS records several protocol header offsets as part of packet information stored at PS
Info section while it is parsing the packet. In the current implementation, the L3 offset will point
to the outer IP header. However, it is useful to set L3 offset to the packet offset of the inner IP
header at certain use cases.

To support configurable L3 offset at the packet info, a new packet control bit
pa_PKT_CTRL_L3OFFSET_TO_INNER_IP is defined, which can be used to enable/disable
this feature at system startup.

o Cascaded Forwarding
The cascaded forwarding packets are expected to be delivered to QoS queues based on the
VLAN/DSCP priority at its final classification stage. Therefore, those packets should not be
subject to some PASS actions such IP reassembly and IP fragment exception route.

A new packet routing destination type pa_DEST_CASCADED_FORWARDING_LUT1 is
added, which should be used at Pa_addMac() API call to disable IP reassembly and IP
fragmentation exception route at sub-sequent classification stage.

o Priority-based routing with post-classification command set
There is some use cases where output packets from QoS are delivered to PASS for pre-routing
operation such as tx timestamp report and both egress and ingress forwarding packets go
through the same QoS. To support this use case, PASS is enhanced to delay the
post-classification command set execution until the packets re-entering PASS from QoS if
priority-based routing is selected..

• Resolved IRs as listed below:

IR Parent/
Child Number

Severity
Level IR Description

00098539 Major PA LLD: Support GTPU classification with L3 link

00098540 Minor PA LLD: Support configurable L3 offset location

00098877
Minor PA LLD: Enhance IPv6 fragmentation and reassembly to support IPv6

extension headers

00098878 Major PA LLD: Support Cascaded Forwarding

IR Parent/
Child Number

Severity
Level IR Description

00099016 Major PA LLD: Need to support multiple UDP 2152 entries

00098922
Minor paEthInfo2_t structure defines validBitMap, but there are no constants

defined to enable setting the bitmap

00098920 Major Pa_addMac2 () not implemented

Release 1.3.0.7

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00098035
Major PA LLD: Unexpected Cache operations related to Virtual Link cause

potential memory corruption

Release 1.3.0.6

• This release includes Custom LUT2 operation enhancement by adding a new parameter

custHdrSize to API Pa_setCustomLUT2. The custHdrSize specifies size of fixed-length

custom header; it is used by PASS to adjust the location of the next protocol header so that

the packet can be further processed by another module such as SASS or host application.

The custHdrSize should be set to 0 for variable-length header.

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00097383
Minor PA LLD 48-bit Time Stamp macro from host file is inconsistent with

firmware definition

00097730 Major PA LLD: Custom LUT2 enhancement

Release 1.3.0.5:

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00097274
High PA_emacExample_exampleProject fails on EVM and Simulator for BE and

LE

00097275 High PA_multicoreExample_exampleProject fails on EVM and Simulator for BE

IR Parent/
Child Number

Severity
Level IR Description

and LE

Release 1.3.0.4:

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00097286 High Added support for additional comamnds for IP fragmentation

Release 1.3.0.3:

API changes involved in this release are backward compatible to PA 1.3.0.2, no application

modification is required for PA 1.3.0.2 based features, except PA initialization regarding virtual

link. In order to use the Virtual Link feature, one must initialize PA with the maximum number of desired

virtual links by setting paSizeInfo_t->nVlnkMax to a non-zero value. Consequently, if virtual link feature is

not used, it must be turned off by setting paSizeInfo_t->nVlnkMax to 0. Release includes additional

feature enhancements. Details of new feature and API changes from PA LLD 1.3.0.2 is described

below:
• Virtual Link

This feature was added to support linkage sustainability between Outer IP and Inner IP LUT entries
during IPSec Tunnel rekey. Previous APIs was not changed to maintain backwards compatiblity,
while the new API functions Pa_addIP2(), Pa_addVirtualLink() and Pa_delVirtualLink() provides
support for Virtual Link.

Pa_addIP2() requires the following parameters, changes from Pa_addIP() are highlighted

o Pa_Handle iHandle,

o paIpInfo2_t *ipInfo,

o paParamDesc *params,

o paLnkHandle_t *retHandle,

o paCmd_t cmd,

o uint16_t *cmdSize,

o paCmdReply_t *reply,

o int *cmdDest

The new parameters in Pa_addIP2() were designed for improving expandability for future API
changes:

o paIpInfo2_t is extended upon paIpInfo_t to include a valid bit map

o paParamDesc combined several conditionally optional parameters with a valid bit map

The following are the sequence of API calls in pseudo-code to correctly invoke Virtual Link feature:
o Tunnel configuration

o addMac()
o virtLink = Pa_addVirtualLink().
o Outer IP Rule-> Call Pa_addIP2() with

� paParamDesc-> nextLink = virtLink
� paParamDesc->prevLink = NULL or L2 handle

o Inner IP Rule -> Call Pa_addIP2() with
� paParamDesc-> nextLink = NULL
� paParamDesc->prevLink = virtLink

• QoS based priority routing

This feature was added to facilitate QoS based priority routing using either VLAN or DSCP values
from individual packets. The new routing logic enables matched packets to be delivered to different
QoS queues derived by taking the base queue number added with either VLAN/DSCP. We provide
a new structure paRouteInfo2_t, which extends upon the original paRouteInfo_t, where the
parameter priorityType is used to specify packet routing priority mode. Valid values are:

o pa_ROUTE_PRIORITY_NONE = 0 (Default)
o pa_ROUTE_PRIORITY_VLAN, Route by using VLAN bits as priority
o pa_ROUTE_PRIORITY_DSCP, Route by using DSCP bits as priority

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00095408 Add IPv6 fragmentation and reassembly unit test

Release 1.3.0.2:
• Merged changes from release 1.2.3.2.
• Resolved IRs as listed below

• Provided as internal engineering drops

IR Parent/
Child Number

Severity
Level IR Description

00095730 Major PA LLD: Buffer leak through PASS

Release 1.3.0.1:
• Added IPv6 reassembly assistance to forward fragment packets to software reassembly stack

• Added IPv6 fragmentation support in firmware

• Added support for 48-bit transmit and receive timestamp.

• Added the following two counters as of PASS system statistics
o nIpv4PacketsInner: Number of Inner IPv4 packets
o nIpv6PacketsInner: Number of Inner IPv6 packets

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00093442 Major Provide 48-bit timestamp in descriptor

Release 1.3.0.0:

• Provided as internal engineering drops

Release 1.2.3.3:

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00095942 Minor PA_UnitTest_testProject fails on the simulator

Release 1.2.3.2:
• Add new post-classification command pa_CMD_SPLIT which is used to split the packet into header

and payload portion to be delivered to different destination queues with different CPPI flows.

Please note that the first 8-byte of psInfo area is reserved for this splitting operation, therefore, they
should not be updated by the pa_CMD_COPY_DATA_TO_PSINFO commands within the same
command set.

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00094669 Minor Update of packet length for incoming RX packets without CRC bytes

00095226 Major PA LLD: Add Packet splitting feature

Release 1.2.3.1:

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00094662 Minor PA LLD: Pa_resetControl(Query) returns wrong state

00094975
Major PA LLD: Invalid LUT1 entry may be added into LUT1 engine under race

condition

Release 1.2.3.0:

• Resolved IRs as listed below:

IR Parent/
Child Number

Severity
Level IR Description

IR Parent/
Child Number

Severity
Level IR Description

00093638 Major UDP Lookup fails if the IPv6 packet contains extension headers

00094117
Minor PA LLD: PA LLD Bit-manipulation macros cause compiler warning at Linux

Kernel build

Release 1.2.2.2:
• Added new API Pa_getPDSPVersion() to query the version number of PDSP image to provide the

capability to verify the compatibility of the PA LLD and the PDSP image which may be downloaded
by another processor. The version number of the PDSP image should be identical to the version
number of the PA LLD.

• Resolved IRs as listed below:

IR Parent/
Child Number

Severity
Level IR Description

00091769 Minor PA LLD: Add API to query the version number of PDSP images

00092662
Major PA LLD: a_CMD_PATCH(delete) causes extra bytes to be deleted at

pa_CMD_REMOVE_TAIL operation

00092663
Major PA LLD:Some of IPv4 fragments are not delivered to the desired

destination queue

00092664 Major PA LLD: Invalid IPv4 header causes the CPSW stop receiving packets

Release 1.2.2.1:

• Resolved IRs as listed below:

IR Parent/
Child Number

Severity
Level IR Description

00091702 Major PA LLD: Enhanced Cache-related OSAL functions per Cache Advisory 12

00091767
Minor PA LLD: Enhance IPv4 fragmentation operation to support fragment

padding

Release 1.2.2.0:

Release includes additional feature enhancements as per PA 1.2.2 requirements. Details of new

feature and API changes from PA LLD 1.2.1.2 is highlighted below:

• System statistics enhancements

The PASS system statistics has been revised by removing unused statistics and adding some

useful statistics. The following system statistics are removed:

o Classify1.nNonIpPackets

o Classify1.nCommandFail

o Classify1.nInvalidComReplyDest

o Classify2.nParseFail

o Classify2.nInvldHdr

o Classify2.nCommandFail

o Classify2.nInvalidComReplyDest

o Common.nIdAllocationFail

 The following system statistics are added:

o Classify1.nSrioPackets

o Classify1.nTxIpFrag

o Classify2.nPackets

• Miscellaneous Packet Control enhancements
Replace the global configuration data structure paPacketVerifyConfig_t with

paPacketControlConfig_t to support general packet control in addition to the enhanced

protocol header verification for the specified protocol. New parameters are added to specify

the desired user-defined statistics of the rx padding error counter and the tx padding counter.

The parameters protoBitMap is replaced with ctrlBitMap as defined below:

• pa_PKT_CTRL_HDR_VERIFY_PPPoE: Enable/Disable enhanced error check for

PPPoE header

• pa_PKT_CTRL_HDR_VERIFY_IP: Enable/Disable enhanced error check for IP

header

• pa_PKT_CTRL_MAC_PADDING_CHK: Enable/Disable MAC (802.3) padding

error check

• pa_PKT_CTRL_IP_FRAGS_TO_EROUTE: Enable/Disable IP fragments routing

through exception route

• The next route command pa_CMD_NEXT_ROUTE is enhanced to support L2 padding

control in the to-network direction.

• Add command pa_CMD_VERIFY_PKT_ERROR to control the destination of the packet

with the specified checksum or CRC error.

• Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00090761 Major PA: Redirection of unsupported protocol through Next Fail route

0091012 Minor PA LLD: Buffer leak found at all examples

00091105 Minor PA LLD: Add Verify Checksum (Packet Error) Command

IR Parent/
Child Number

Severity
Level IR Description

00091385 Major PA LLD: L2 (MAC) Padding Support

00091386 Major PA LLD: Provide IP Fragment counters

00091387 Major PA LLD: Enhance IP Fragments routing options

Release 1.2.1.2:

Release includes additional feature enhancements as per PA 1.2.1 requirements. Details of new

feature and API changes from PA LLD 1.2.1.1 is highlighted below:

• User-defined statistics enhancements
The user-defined statistics feature is enhanced to support up to 512 statistics consisting of

some 64-bit counters and some 32-bit counters whereas the total size of all counters cannot

exceed 2048 bytes. The parameter (num64bCounters) is added into the user-defined statistic

configuration data structure (paUsrStatsConfig_t) to specify the number of 64-bit counters.

The user-defined statistics query API Pa_requestUsrStats() is enhanced to provide the

user-defined statistics at return and the corresponding API Pa_formatUsrStatsReply() is

removed.

• IPSEC NAT-T packet detector
The IPSEC NAT-T detector identifies the IPSec NAT-T packets with UDP source port number

or UDP destination port number equal to the specified UDP port number such 500 or 4500.

o Identify the IPSec NAT-T negotiation packet (with SPI field equal to zero) and

forward it to the queue specified by exception route pa_EROUTE_NAT_T_CTRL

o Identify the IPSec NAT-T service packet (with SPI field does not equal to zero) and

forward it to the queue specified by exception route pa_EROUTE_NAT_T_CTRL

o Identify the IPSec NAT-T keepalive packet and forward it to the queue specified by

exception route pa_EROUTE_NAT_T_KEEPALIVE.

 The IPSEC NAT-T detector is disabled as PASS startups. The module user can call API

 Pa_control() with the NAT-T configuration data structure paIpsecNatTConfig_t to enable

 and configure this detector at PASS.

• 802.1ag packet detector
The 802.1ag detector identifies the 802.1ag packet in ether draft or standard format per module

user configuration. The PASS delivers all 802.1ag packets to the queue specified by exception

route pa_EROUTE_802_1ag.

The 802.1ag detector is disabled by default since the 802.1ag packets may be detected and

routed by a general MAC rule with etherType set to 0x8902. The module user should call API

Pa_control() with the 802.1ag configuration data structure pa802p1agDetConfig_t to enable

and configure this detector at PASS.

• Protocol Header verification enhancements
The new global configuration data structure paPacketVerifyConfig_t is used to enable/disable

the enhanced protocol header verification for the specified protocol. PASS supports the

following two enhanced protocol verification. The error packet route is specified by the

corresponding exception route such as pa_EROUTE_PPPoE_FAIL and

pa_EROUTE_IP_FAIL:

o PPPoE header verification:

� Version = 1

� Type = 1

� Code = 0

o IPv4 header verification:

� Header length >= 20

� Total length > 20

� Source address is not broadcast

� Destination address is not 0

� TTL is not 0

 Please note that the enhanced protocol header verification will reduce the packet throughput.

 Therefore, it is recommended to be disabled.

• Protocol Indication within the packet information
The following MACROs are provided at pasahost.h to verify whether the received packets

contain the specific protocol header:

o PASAHO_LINFO_IS_MAC(x)

o PASAHO_LINFO_IS_802_3(x)

o PASAHO_LINFO_IS_WITH_VLAN(x)

o PASAHO_LINFO_IS_WITH_MPLS(x)

o PASAHO_LINFO_IS_PPPoE(x)

o PASAHO_LINFO_IS_IP(x)

o PASAHO_LINFO_IS_IPSEC_ESP(x)

o PASAHO_LINFO_IS_IPSEC_AH(x)

o PASAHO_LINFO_IS_UDP(x)

o PASAHO_LINFO_IS_UDP_LITE(x)

o PASAHO_LINFO_IS_TCP(x)

o PASAHO_LINFO_IS_GRE(x)

o PASAHO_LINFO_IS_GTPU(x)

o PASAHO_LINFO_IS_CUSTOM(x)

o PASAHO_LINFO_IS_SCTP(x)

o PASAHO_LINFO_IS_IPSEC_NAT_T(x)

• The patch command pa_CMD_PATCH_DATA is enhanced to support deletion operation

by adding the control bit definition pa_PATCH_OP_DELETE.

• Update the multi-route entry data structure to support optional swInfo0 update per entry.
o Add control bit definition pa_MULTI_ROUTE_REPLACE_SWINFO
o Add parameter swInfo0

• Resolved IRs as list below

IR Parent/
Child Number

Severity
Level IR Description

00088844
Major Enhance User Defined Statistics feature to support up to 512 32-bit

counters

00089460
Major Additional handling of alignment requirement in PA helper function

Pa_formatTxCmd() for creating Tx commands

00089901
Major pa_addMac() and pa_addIp() functions is not returning handle during valid

duplicate mac entry

00089978 Major PA LLD: Support IPSEC NAT-T detection

00089980 Major PA LLD: Support 802.1ag Packet Detection

00089993 Major PA LLD: Enhance PPPoE and IP Protocol Header Error Processing

00089997 Major PA LLD: Add more protocol indication bits in the Packet Information

00090132
Major PA LLD: Enhance multiroute operation to support optional swInfo0 update

per entry

00090134
Major PA LLD: Enhance PA command pa_CMD_PATCH_DATA to support

deletion

Release 1.2.1.1:

• Added support for Resource Manager LLD. For all existing applications there are no API

modifications required. The Pa_startCfg API has been added to configure use of the RM

LLD if desired.

Release 1.2.1.0:

• LUT1 configuration APIs are enhanced to allow application to specify the desired LUT1

instance. This enhancement allows LUT1 re-entry to support some advanced IP layer

operation such as IPSEC ESP over IPSEC AH. The parameter“lutInst”is added to the

following APIs

o Pa_addIp

o Pa_addCustomLUT1

 To maintain backward compatibility, set “lutInst” to

 pa_LUT_INST_NOT_SPECIFIED.

• The message length patching command pa_CMD_PATCH_MSG_LEN is added to

instruct the PASS to update the message length field within some L2 protocol header such

as 802.3 and PPPoE after the potential IP fragmentation operation.

• Add new API Pa_getTimestamp() to query the 48-bit PASS system timestamp.

• Add the following MACROs to extract egress packet information:

o PASAHO_LINFO_READ_MAC_PKTTYPE():Extract the MAC packet

type(Unicast, Multicast or Broadcast)

o PASAHO_LINFO_READ_INPORT():Extract the (1-based) input EMAC (SGMII)

port number

• Redefine PA LLD OSAL functions to be consistent with the ones used at other LLDs:

o Cache coherency protection: Pa_beginMemAccess() & Pa_endMemAccess()

o Multi-core or Multi-thread access protection: Pa_osalMtCsEnter() &

Pa_osalMtCsExit()

• Resolved IRs as listed below

IR Parent/
Child Number

Severity
Level IR Description

00086799 Major Enhance LUT1 configuration API to support IPSEC ESP over AH operation

00086801 Minor Need to handle EMAC psFlags when routing destination is set to Host

00087268 Major Record and report input SGMII port number

00087269
Major Enhance multi-route operation to allow one of the multi-route entry

forwarding the packet back to PASS for “continue parsing"

00087270 Major Support IP over PPPoE

00087778 Major PA LLD: Add API to read the current PASS timestamp

00087779 Major PA LLD: Define new OSAL function for multi-core protection

00087922 Major MAC packet type information required for incoming packet from PA

00088269
Minor Increasing the number of custom LUT2 types to enable core to core

communication

00088842 Major CRC + Patch Command enhancement

IR Parent/
Child Number

Severity
Level IR Description

Release 1.2.0.3:

• Release adds examples and unit test code to demonstrate Linux User Mode LLD usage for

ARM processor. Support only applicable for devices with ARM processor.

Release 1.2.0.2:

• Release includes modifications to support User Mode access for ARM processor. Support

only applicable for devices with ARM processor.

Release 1.2.0.1:

• Fix for IR: 00086230: PASS drops SCTP packets

Release 1.2.0.0:
Release includes additional enhancements as per PA 1.2 requirements. Details of new feature and

API changes from PA LLD 1.1.1.0 is highlighted below:

• User-defined statistics

The PA LLD and PASS maintain up to 256 user-defined hierarchical statistics which consists

of 64 64-bit counters and 192 32-bit counters. Each statistic is classified to a level which can be

linked to one of the next level statistics. When one counter is incremented, all counters in its

linking chain will be incremented, too. The following APIs and data structures are added or

enhanced to support this and other new features:

o The parameter nUsrStats, which defines the maximum number of user-defined

statistics, is added to the data structure paSizeInfo_t.

The PA LLD will require a new buffer of the user-defined statistics link table if

nUsrStats is set to non-zero value.

 To maintain backward compatibility, set nUsrStats to zero.

o Call the new API Pa_control() with the user-defined statistics configuration

structure paUsrDefinedStatsConfig_t to update the number of user statistics

dynamically.

o Call the new API Pa_configUsrStats() to configure a list of user-defined statistics

for their type (byte counter or packet counter) and link (to the next layer counter).

o Specify the index of the user-defined statistics of the new command structure

paCmdUsrStats_t or paCmdSetUsrStats_t which will be used as part of the routing

information (paRouteInfo_t).

o Call the new API Pa_requestUsrStats() and Pa_formatUsrStatsReply() to inquire

and format the user-defined statistics respectively.

• IPv4 Fragmentation

The IP fragment command pa_CMD_IP_FRAGMENT is added to instruct the PASS to

perform IPv4 fragmentation operation. Packets are sent to PASS PDSP5 with both IP fragment

command and next route command which specifies the final destination, the entire packet or its

fragments will be delivered to the final destination based on the packet size and the MTU size

specified at the IP fragment command. This operation can be applied to non-IPSEC packets,

inner IP prior to IPSEC encapsulation and outer IP after IPSEC encapsulation.

For the inner IP fragmentation, follow the following procedure:

1. Host sends packets with the IP fragment command and the next route destination queue

set to a host queue to PASS PDSP5 for IP fragmentation operation.

2. All fragments will be delivered to the specified host queue.

3. Host adds the outer MAC/IP header, invokes the SA LLD API sendData () and then

sends the fragments to the SA queue.

4. Each fragment will be encrypted, authenticated and forwarded to the final destination.

 For the outer IP fragmentation, the overall operation is stated below:

1. Packet is delivered to SASS for IPSEC operation

2. Packet is delivered to PASS for IP Fragmentation operation

3. The entire packet or its fragments are delivered to the network.

 The next route command is required for step 2.

• PASS-assisted IP Reassembly

The current version of PASS does not support IP reassembly; all the IP fragments are detected,

forwarded to and reassembled at host. The reassembled IP packet may be forwarded back to

PASS for continuous classification. The drawback of this approach is that the order of the

incoming packets is not guaranteed to be maintained.

To provide better support for IPv4 reassembly, the PA-assisted IP Reassembly operation is

introduced and summarized below:

• Array of traffic flows which consist of source IP, destination IP, protocol and counter

are maintained at PASS.

• Traffic flow is activated by the PASS when the first IP fragment is detected and

forwarded.

• Traffic flow is freed when its packet count reaches 0

• All packets belong to any active traffic flow will be forwarded to the host so the packet

order will be maintained.

• Number of active traffic flow is configurable [0, 32]

• IP fragments is forwarded to host with “none” traffic flow id if no traffic flow is

available. In this case, the packet order is not guaranteed to be maintained.

The host IP reassembly module, which is not part of PA LLD, should interact with the PASS

and perform the full IP reassembly operation. An IP Reassembly sample code, which

demonstrates how to interact with the PASS to perform IPv4 reassembly, is available for

reference at ti\drv\pa\example\reassemLib.

The PASS-assisted IP reassembly feature is disabled by default. To enable and configure this

feature, call the new API Pa_control() with IP reassembly configuration structure

paIpReassmConfig_t to prepare and send the command packet to the corresponding PDSP.

The outer IP (PDSP1) and inner IP (PDSP2) can be configured independently.

• Atomic queue diversion operation per LUT2 entry replacement

This feature is provided to support handover operation. Enhance the API Pa_addPort() and

Pa_addCustomLUT2() to support the atomic queue diversion operation, which means that the

QMSS moves the entries in the diverted queue to the destination queue, if the divertQ is

specified and fReplace flag is set. In this case, the PASS will complete the LUT2 update, wait

for the queue diversion to be complete and then resume processing incoming packets.

Following is the additional parameter at both APIs:

o divertQ: specify the source queue for atomic queue diversion with LUT2 update

To maintain backward compatibility, set

• “divertQ” to pa_PARAMS_NOT_SPECIFIED

• Post-classification command set enhancements

The PASS will support either 64 of 64-byte command sets or 32 of 128-byte command sets. It

support 64 command sets by default. To change the number of command sets, call the new API

Pa_control() with the command set configuration structure paCmdSetConfig_t to format and

send the configuration command packet to PASS.

• The EMAC classification data structure paEthInfo_t is enhanced to include the input

EMAC port (inport) as an optional classification criterion.

To maintain backward compatibility, set inport to 0.

• Enhance the blind patch command structure to support MAC header replacement operation:

replace the single Boolean parameter “write” with “ctrlBitfield”.

• Resolved IRs as listed below:

IR Parent/
Child Number

Severity
Level IR Description

00083432 Major PA LLD: CRC operation enhancement by allowing lenOffset to be negative

00083010 Major PA LLD: Classification based on ingress port number

00083375
Minor PA LLD: Additional defines to avoid using hard coded values in PA

interfaces

Release 1.1.1.0:

• Documentation (pa.h)

o paCrcConfig_t: Add example for 16-bit CRC

o paCmdNextRoute_t: Clarify how the next route command is used in the

from-network direction.

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00083715 Major PA LLD: CRC does not work

00083377 Minor Mismatch between the OSAL begin and end tags

Release 1.1.0.10:

• Update OSAL functions Osal_paBeginMemAccess() and Osal_paEndMemAccess() at

examples and unit tests

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00081280
Major Packets not received when Udp port entry with destination port 2152

(GTPU port number)

00081493 Minor Enhance PA Multicore example with cache enabled

Release 1.1.0.9:

• Cleanup OSAL functions at examples and unit tests

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00080511
Major Pa_resetControl() API may block forever when called while receiving

incoming packets

Release 1.1.0.8:

• Support C66 ELF only

• Add multicore example

• Both the next route data structure paCmdNextRoute_t and the routing info data structure

paRouteInfo_t are enhanced to support EMAC port control when the packet destination is

set to pa_DEST_EMAC.

To maintain backward compatibility, search and replace pktType with pktType_emacCtrl.

• The data structure of CRC operation command paCmdCrcOp_t is enhanced to include new

parameter frameType.

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00071334 Major Add PA example for multicore routing of packets

00080279 Major PA LLD: Enhance ETH routing to specify the destination EMAC port

00080280

Major
PA LLD: Enhance CRC operation to support variable payload length and
offset for supported frame types such as WCDMA FP HS-DSCH Data
Frame type 2 and type 3

Release 1.1.0.7:

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00078735
Major Duplicate MAC entry puts the route in pending state. Request to change it

to Active while in transition

00078888 Major IP Fragmentation Problem on NetCP

Release 1.1.0.6:

Release includes additional enhancements as per PA 1.1 requirements. Details of API changes

from PA LLD 1.1.0.5 is highlighted below:

• LUT1 configuration APIs enhanced to support LUT1 index configuration from application.

The parameter “index” has been added to the following APIs

o Pa_addMac

o Pa_addIp

o Pa_addCustomLUT1.

 To maintain backward compatibility, set “index” to

 pa_LUT1_INDEX_NOT_SPECIFIED.

• Enhance the API Pa_addPort() to support both 16-bit UDP/TCP port and 32-bit GTPU

Tunnel ID. Following are two additional parameters :

o Port size: specify the LUT2 classification parameter size as 16-bit or 32-bit

o Replace flag: indicate whether the LUT2 entry exist or not

To maintain backward compatibility, set

• “Port size” to pa_LUT2_PORT_SIZE_16

• “Replace flag” to 0.

• Additional API Pa_addSrio() to support SRIO L0-L2 classification.

• Rename and enhance the following APIs to support the enhanced Custom LUT1 and LUT2

classification per PA 1.1 requirements.

o Pa_setCustomL3 � Pa_setCustomLUT1

o Pa_addCustomL3 � Pa_addCustomLUT1

o Pa_setCustomL4 � Pa_setCustomLUT2

o Pa_addCustom � Pa_addCustomLUT2

• API Pa_configRouteErrPacket() renamed to Pa_configExceptionRoute() and includes

support for general exception routes including the error routing.

• Following new APIs are added for the multi-route, CRC engine and system timestamp

configuration respectively:

o Pa_configMultiRoute

o Pa_configCrcEngine

o Pa_configTimestamp

• Following new APIs are added for to-network and from-network post-match command

processing:

o Pa_formatTxCmd

o Pa_configCmdSet

• The type of parameter cmdSize in the following two APIs is changed from int to uint16_t

to be consistent with all other APIs.

o Pa_formatTxRoute

o Pa_formatRoutePatch

• PA system APIs Pa_resetControl and Pa_downloadImage are updated to include the

Pa_handle as input parameter. With this enhancement, the PA LLD supports multiple PA

instance.

• The parameter handle in the API Pa_delHandle is changed from paHandleL2L3_t o a

pointer to the entry handle so that the entry handle can be set to NULL to indicate that it has

been deleted.

• PA initialization configuration structure is enhanced to include the following two

parameters:

o initDefaultRoute: specify whether the default traffic flow should be initialized

o baseAddr: specify the PASS base address which is defined at

“ti/csl/cslr_device.h”

• The data structure paHandle_t is renamed to paEntryHandle_t to clarify its usage and avoid

the confusion with Pa_handle. The paEntryHandle contains either the l2l3Handle or the

l4handle when the API call Pa_forwardResult returns in response to an LUT1/LUT2 entry

insertion request. Please note that the original structure paHandle_t contain the pointer to

the l4handle in stead of the l4handle itself.

• IP Lookup Information data structure paIpInfo_t is enhanced to support SCTP (Stream

Control Transmission Protocol) parsing and classification.

o Replace parameter “enCustUdp” with “sctpPort”where the “enCustUdp”

is no longer required by the enhanced custom LUT2 operation.

To maintain backward compatibility, set “sctpPort”to 0. It is not required to update the

tables with multiple paIpInfo_t entries unless “enCustUdp”is used.

• Packet routing configuration data structure paRouteInfo_t is enhanced to support

enhanced custom lookup operation, SRIO routing and optional post-classification

command processing by adding following parameters:

o Custom Type and Custom Index

o SRIO packet type

o Optional command pointer

To maintain backward compatibility, all the new parameters should be set to 0. If there are

some tables with one or more paRouteInfo_t entries in the application, it is desired to add

four extra 0s into each entry to avoid unexpected behavior.

• Clarify the packet destination definitions for “continue parse”by replacing

“pa_DEST_CONTINUE_PARSE” and “pa_DEST_CONTINUE_PARSE_C1” with

the following two definitions:

o pa_DEST_CONTINUE_PARSE_LUT1: Packet remains in PA sub-system for

more parsing and LUT1 classification

o pa_DEST_CONTINUE_PARSE_LUT2: Packet remains in PA sub-system for

more parsing and LUT2 classification

To maintain backward compatibility, replace“pa_DEST_CONTINUE_PARSE_C1”

with “pa_DEST_CONTINUE_PARSE_LUT1” and replace

“pa_DEST_CONTINUE_PARSE” with “pa_DEST_CONTINUE_PARSE_LUT2”

if the next classification is UDP/TCP/GTP-U (LUT2).

• The command buffer size requirement definition group cmdMaxBufSize has been renamed

to cmdMinBufSize which defines the minimum buffer size required to contain the

configuration command packets as defined below:

o pa_ADD_MAC_MIN_CMD_BUF_SIZE_BYTES

o pa_DEL_HANDLE_MIN_CMD_BUF_SIZE_BYTES

o pa_DEL_L4_HANDLE_MIN_CMD_BUF_SIZE_BYTES

o pa_ADD_IP_MIN_CMD_BUF_SIZE_BYTES

o pa_ADD_PORT_MIN_CMD_BUF_SIZE_BYTES

o pa_CONFIG_EXCEPTION_ROUTE_MIN_CMD_BUF_SIZE_BYTES

o pa_REQUEST_STATS_MIN_CMD_BUF_SIZE_BYTES

Release 1.1.0.5:

• PA examples have compile option: SIMULATOR_SUPPORT. In case if example needs to

be executed in simulator please compile with define SIMULATOR_SUPPORT.

Alternatively set following variables at run time:

o cpswSimTest = 0

o cpswLpbkMode = CPSW_LOOPBACK_PA

• PA examples have compile option: SIMULATOR_SUPPORT. In case if example needs to

be executed in simulator please compile with define SIMULATOR_SUPPORT.

• Added support for additional PDK packages

• Enhanced all examples and unit tests to run on both the simulator and the real silicon.

Release 1.1.0.4:

• Support C66 ELF

• Added PA LLD version related APIs

• Update PA examples and Unit Tests per Keystone C6616 PDK 1.0.0.9

Release 1.1.0.3:

• Support both COFF and ELF

• Update PA examples and Unit Tests per Keystone C6616 PDK 1.0.0.8

Release 1.1.0.2:

• Support ELF

Release 1.1.0.1:

• Added EMAC test example

• Added build option to support both Keystone C6616 and C6608 release package

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00068852 Major PA Firmware Error on QT (Burst packets handling in PA)

Release 1.1.0.0:

• Modified types from XDC to C99

• Changed all source, header, and example code to reflect CSL include path change in

Keystone C6616 CSL version 1.0.0.14

• Changed XDC tool version to 3.16.02.32 in example and test projects

• Modified the PA LLD APIs to remove the TI XDIAS dependency

o Pa_numAlloc() is removed. The constant pa_N_BUFS should be used to define the

number of memory buffers required by PA LLD instead.

o Pa_alloc (const IALG_Params*, struct IALG_Fxns **, IALG_MemRec *) is

replaced with the new API Pa_getBufferReq(paSizeInfo_t *, int size[], int align[]).

� The ILAG_Params type of configuration information is replaced by

paSizeInfo_t.

� The optional struct IALG_Fxns pointer is removed

� The IALG_MemRec is replaced with the memory size and alignment

requirement arrays.

o Pa_init (IALG_Handle , const IALG_MemRec *, IALG_Handle , const

IALG_Params *) is replaced with the new API Pa_create (paConfig_t *cfg, void*

bases[], Pa_Handle *pHandle).

� The ILAG_Params type of configuration information is replaced by

paConfig_t.

� This API should be called with the allocated memory buffer base addresses

in stead of the IALG_MemRec.

� This API will return the PA LLD handle which identifies the PA LLD

instance and should be used for all other PA LLD API calls.

o Pa_free (IALG_Handle , IALG_MemRec *) is replaced with the new API Pa_close

(Pa_Handle handle, void* bases[])

� This function returns the allocated memory buffer base addresses in array

bases[] so that the application can free the buffers.

• Modified the PA LLD to remove unnecessary source level dependencies

o Replace the local CSL file src/cslr_pass.h with the cslr_pa_ss.h in the CSL

package.

o Move the PA system statistics related definitions from src/pafrm.h to pa.h and

rename sysStats_t to paSysStats_t.

� The application code no longer needs to include “src/pafrm.h”

� Need to search and replace sysStats_t with paSysStats_t at the application

code.

o Rename pasahost_temp.h to pasahost.h

� Need to search and replace “pasahost_temp.h” with “pasahost.h”

o The application no longer needs to declare the global variable passRegs.

• Resolved IRs

IR Parent/
Child Number

Severity
Level IR Description

00068460 Critical PA firmware not accepting the ARP ethertype

00068119 Minor PA LLD to use PA CSL from the CSL package

00067721 Major Remove dependency of external variables

00061217 Minor Big endian library mis-named

Release 1.0.0.7:

• Modifications to the examples and unit tests to be compatible with the latest CPPI and

QMSS LLD (version 1.0.0.5).

Release 1.0.0.6:

• Modifications to the PDSP firmware to support the latest Keystone C6616/C6608

simulator (0.8.0)

• Added Custom Lookup support

Release 1.0.0.5:

• Modifications to the examples and unit tests to support the new CPPI specification (4.2.9)

Release 1.0.0.4:

• Internal Release only

Release 1.0.0.3:

• Modifications to the examples and unit tests to support the new CPPI specification (4.2.7)

Release 1.0.0.2

Release 1.0.0.1:

• Internal Release only

Release 1.0.0.0:

• Initial Release

Licensing

Please refer to the software Manifest document for the details.

Delivery Package

There is no separate delivery package. The PA LLD is being delivered as part of PDK within the

BIOS-MCSDK.

Installation Instructions

The LLD is currently bundled as part of Platform Development Kit (PDK) within the

BIOS-MCSDK. Refer installation instruction to the release notes provided for PDK.

Directory structure

After installation the PA LLD has the following directory structure:

The following table explains each individual directory:

Directory Name Description
ti/drv/pa

The top level directory contains the following:-

1. Environment configuration batch file

The file “setupenv.bat” is used to configure the build environment

for the PA low level driver.

2. XDC Build and Package files

These files (config.bld, package.xdc etc) are the XDC build files

which are used to create the PA package.

3. Exported Driver header file

Header files which are provided by the PA low level driver and

should be used by the application developers for driver

customization and usage.

ti/drv/pa/build The directory contains internal XDC build related files which are used to

create the PA low level driver package.

ti/drv/pa/docs The directory contains the PA low level driver documentation.

ti/drv/pa/example The “example” directory in the PA low level driver contains a simple

example and an EMAC example.

ti/drv/pa/test The “test” directory in the PA low level driver contains various unit tests

ti/drv/pa/fw C data files required to configure the PA hardware sub-system.

ti/drv/pa/lib The “lib” folder has pre-built Big and Little Endian libraries for the PA low

level driver along with their code/data size information.

ti/drv/pa/package Internal PA low level driver package files.
ti/drv/pa/src Source code for the PA low level driver.

Customer Documentation List

Table 4 lists the documents that are accessible through the /docs folder on the product installation

CD or in the delivery package.

Table 4 Product Documentation included with this Release

Document # Document Title File Name

1 API documentation (generated by Doxygen)
docs/paDocs.ch

m

2 Release Notes (this document)
docs/ReleaseNot

es_PA_LLD.pdf

3 Software Manifest document

docs/PA_LLD_

SoftwareManife

st.pdf

