

PA Low Level Driver

Release Notes

Telogy Software

Applies to Product Release: 03.00.02.07

Publication Date: Sep 21, 2018

Texas Instruments,
Incorporated
20250 Century Boulevard
Germantown, MD 20874 USA
VP00102-Form

-1

Revision F

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons,

171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2013-2018 Texas Instruments Incorporated - http://www.ti.com/

Contents

Overview ... 1

LLD Dependencies ... 1

Resolved Incident Reports (IR) ... 1

Known Issues/Limitations .. 2

New/Updated Features and Quality ... 2

Licensing .. 46

Delivery Package .. 46

Installation Instructions ... 47

Customer Documentation List .. 48

PA Low Level Driver for 03.00.02.07

 1

Release Notes

Overview

This document provides the release information for the latest PA LLD which should be used by

drivers and application that interface with PA.

PA LLD module includes:

 Pre-compiled library for DSP (Big and Little) Endian of PA Low Level Driver.

 Sources, examples and unit test code.

 API reference guide

LLD Dependencies

- This release of PA LLD requires CSL package released with PDK

- RM LLD

Resolved Incident Reports (IR)

Table 2 provides information on IR resolutions incorporated into this release.

Table 2 Resolved IRs for this Release

IR Parent/

Child Number

Severity

Level IR Description

Known Issues/Limitations

Table 3 Known Issue IRs for this Release

IR Parent/

Child

Number

Severity

Level IR Description

108274 Minor PA examples use hard coded queue numbers

New/Updated Features and Quality

Release 3.0.2.07

 Update test config files to use ti.trace.Sysmin

Release 3.0.2.06

This is an engineering release, tested by the development team.

 Updated buildlib.xs to include Rules.make from ti/build infrastructure.

 Resolved IRs listed at section “Resolved Incident Reports (IR)”

 Firmware versions used in the release:

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.3

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.3

Release 3.0.2.05

This is an engineering release, tested by the development team.

 Resolved IRs listed at section “Resolved Incident Reports (IR)”

IR Parent/

Child Number

Severity

Level IR Description

PRSDK-3155 Major
PA_emacExample_BiosExampleProject ARM-LE: Timeout waiting for
reply from PA to Pa_addMac command on K2 platforms

 Firmware versions used in the release:

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.3

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.3

Release 3.0.2.04

This is an engineering release, tested by the development team.

 Resolved IRs listed as below.

IR Parent/

Child Number

Severity

Level IR Description

PRSDK-2350 Major
Pa Classify1 on NetCP 1.0 hang with next packet header that is invalid to
that PDSP.

 Firmware versions used in the release:

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.3

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.3

Release 3.0.2.03

This is an engineering release, tested by the development team.

 Resolved IRs listed at section “Resolved Incident Reports (IR)”

 Firmware versions used in the release:

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.2

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.3

 Resolved IRs listed as below:

IR Parent/

Child Number

Severity

Level IR Description

PRSDK-1881 Major
Support to ignore EQoS operations as long as the
pa_CMD_REPORT_TX_TIMESTAMP is included.

Release 3.0.2.02

This is an engineering release, tested by the development team.

 Destination Queue Bounce Operation

The PA LLD/Firmware is enhanced to support the Destination Queue Bounce
Operation as part of the solution to deal with the potentialcache coherency
deficiency identified at the Keystone2 devices where memory consistency is not
guaranteed for IO coherent A15 and PktDMA masters at some rare conditions.
Therefore it is possible that the data arrival signal to the ARM (i.e., presence of a
descriptor in QMSS queue) may occur prior to the data arriving properly in the
ARM cache. Thus, the ARM core may access stale data.

To ensure ARM Cache consistency, one of the QMSS PDSP is enhanced to
provide a DMA barrier function. Packets destined to ARM queues may be
delivered first to one of the QMSS "bounce" queues serviced by this function. The
QMSS PDSP f/w will pop packets from these queues, perform the necessary
barrier operation (that will cause the ARM cache to get invalidated for the
descriptor and buffer locations), and then will relay the packet to the final
destination queue.

The PASS Destination Queue Bounce Operation is designed to enable the QMSS
proxy bounce on packets PA sends to queues served by ARM user space by
embedding 2 control bits into the destination queue ID to instruct the PASS
firmware to re-route the packets to the specified QMSS bounce queues.

 This operation can be enabled and configured by a new global configuration
message including the following parameters:

o Enable/Disable

o QMSS Bounce Queue IDs

 DDR Queue: All PktMDA descriptors and buffers use DDR memory
only

 MSMC Queue: PktDMA descriptor and buffers may use MSMC
memory and/or DDR memory

o NetCP hardware queue info

 First NSS hardware Queue

 Last NSS hardware Queue

o Default Behavior map []: Specify the default queue bounce operation for
each traffic class such as Command response and QoS operation

 The instance size of PA LLD is increased to 320 bytes to support this feature.

 Resolved IRs listed at section as below:

IR Parent/

Child Number

Severity

Level IR Description

PRSDK-1541
Major

PA LLD enhancement to support PKTDMA coherency
workaround.

 Firmware versions used in this release

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.1

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.2

Release 3.0.2.01

This is an engineering release, tested by the development team.

Firmware versions used in this release

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.0

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.1

Resolved IRs listed as below:

IR Parent/

Child Number

Severity

Level IR Description

PRSDK-1313
Major

Pa Firmware for NetCp 1.5 (Gen2 – K2L/K2E): Fixed bug in firmware when
L2-Capture debug feature is enabled.

PRSDK-1314 Major
Pa LLD bug fix for NetCp 1.5 (Gen 2 – K2L/K2E) when ACL remove entry is
initiated

IR Parent/

Child Number

Severity

Level IR Description

PRSDK-1508 Major
Pa_addCustomLUT1 causes segmentation fault on NetCp 1.5 (Gen2 –
K2L/K2E) devices.

Release 3.0.2.00

This is an engineering release, tested by the development team.

Starting from this release, Pa firmware versions would have independent versions from
LLD and would be tracked in the table format as below. The goal is to update the
individual firmware versions only if they have any changes/updates.

Firmware versions used in this release

Description Version

Pa firmware version for Gen1
devices (K2H, K2K, C6678)

3.0.2.0

Pa firmware version for Gen2
devices (K2L/K2E)

3.0.2.0

Resolved IRs listed as below:

IR Parent/

Child

Number

Severity

Level IR Description

PRSDK-971
Major

New PA firmware format to support use firmware upgrade from file system

PRSDK-963 Major pa_RESUBMIT_COMMAND endianess bug

Release 3.0.1.18

This is an engineering release, tested by the development team

Resolved IRs listed as below.

IR Parent/

Child

Number

Severity

Level IR Description

PRSDK-660
Major

PA does not read the CRC_disable flag from config command set
configuration

IR Parent/

Child

Number

Severity

Level IR Description

Release 3.0.1.17

This is an engineering release, tested by the development team

Resolved IRs listed as below.

IR Parent/

Child

Number

Severity

Level IR Description

PRSDK-594
Major

After sending a malformed packet (IPv6 with no next header) Linux is
unable to receive any packets, cannot send icmp ping

PRSDK-613 Major C1 number of invalid states counter incrementing

Release 3.0.1.8

This is an engineering release, tested by the development team

Resolved IRs listed as below.

IR Parent/

Child

Number

Severity

Level IR Description

120788
Major

After sending a malformed packet (IPv6 with no next header) Linux is
unable to receive any packets, cannot send icmp ping

116671

Major

PA 1.3.1 Egress PDSP CRC Check Lockup

119264

Minor

PA_emacExample*ExampleProject fail intermittently on K2E platform for
BE and LE

119889

Minor

PA: LLD needs to return new error code when LUT2 is full

Release 3.0.1.7

This is an engineering release, tested by the development team

Resolved IRs as listed below:

IR Parent/
Child Number

Severity Level IR Description

120212 Major PA: Untagged packet matching support

Release 3.0.1.6

 New API to get the virtual link ID from the handle is added.

 Support for building ARM RTOS libraries added

Resolved IRs as listed below:

IR Parent/
Child Number

Severity Level IR Description

120065 Minor PA: support Pa_getVirtualLinkId API

Release 3.0.1.5

 Updated serdes initialization sequence in cpsw_mgmt.c

 Support full size ACL LUT for NSS_GEN2 only

Enabled support to utilize full size LUT for ACL, this feature enhancement
triggered API change in the way Pa_addAcl() as below. The application
needs to pass a new argument, pointer to a 32 bit value, as highlighted
below. When this value is not zero, it flags the application that the
Pa_addAcl() call is not successful by returning “pa_ACL_BUSY”. The
application can attempt again to add the ACL after “timeToNextCall” micro
seconds time is elapsed.

paReturn_t Pa_addAcl (Pa_Handle iHandle,
 int aclInst,
 int aclAction,
 paAclInfo_t *aclInfo,
 paHandleL2L3_t prevLink,
 paHandleAcl_t nextEntry,
 paHandleAcl_t *retHandle,
 paCmd_t cmd,
 uint16_t *cmdSize,
 paCmdReply_t *reply,
 int *cmdDest,
 uint32_t *timeToNextCall);

In order to minimize the “pa_ACL_BUSY”, if application has prior
knowledge about how the new ACL entry is going to be inserted, a new
parameter “insertMode” is added in “paAclConfig_t”, which can take any of
the below values. The default value is “pa_ACL_INSERT_RANDOM”.

pa_ACL_INSERT_TOP - Application adds new ACL entry to the top
of the ACL table typically (typically new entry that is going to be
inserted has highest priority).

pa_ACL_INSERT_BOTTOM - Application adds new ACL entry to
the bottom of the ACL table typically (typically new entry that is
going to be inserted has lowest priority).

pa_ACL_INSERT_RANDOM - Application adds new ACL entry in
any order (application has no prior knowledge on the priority of
the new entries that are going to be inserted).

 GTP-U End marker message handling

o The new feature supports option to treat GTP-U end marker packets as
G-PDU packets.

 SPI with Link handling

o Support SPI only with link for Gen 1 devices. Please note that when IpInfo
has only SPI, previous link parameter is recommended to be set for Gen1
and mandatory for Gen2 devices due to hardware limitations.

 Migration Information

o “Pa_startCfg” API return value changed to indicate whether the start is
successful or not.

o No migration is needed if application is not using ACL for IP firewall
operations. Here is the migration information for applications using ACL for
IP firewall operations. Please refer to above section for details on
Pa_addAcl() changes.

 “pa_BUF_ACL_TABLE” size requirement increased by (nMaxAcl *
20 + 24) bytes.

 Application modification is needed as“Pa_addAcl()” API is breaking
backwards compatibility.

 Resolved IRs as listed below:

IR Parent/Child
Number

Severity Level IR Description

SDOCM00116898 Major PA: SPI with Link does not work

SDOCM00116499 Major PA 1.5 firmware locks up for MTU size = 46 packets

SDOCM00115728 Major PASS: Support IP forwarding with more than two layer of IPs

SDOCM00115449 Major PASS does not process GRE packets on NSS Gen2 device
correctly

SDOCM00115444 Major PA LLD: PASS sub system address NULL checks in the LLD are
missing

SDOCM00115345 Major PASS: IP reassembly timeout at the inner RA causes the RA
engine to hang

SDOCM00115334 Major PA LLD: Eoam Mode Target flow classification statistics does not
reflect the correct statistics

SDOCM00115312 Major PASS: Tx CRC command does not work at K2L/K2E devices

SDOCM00115088 Minor PA user space shared object libraries to have same shared object
lib name (SONAME) across devices supported

SDOCM00114984 Major Enhance Ethernet OAM unit Test to cover described test cases

SDOCM00114983 Major PA LLD: Support for IPSec NAT-T detector enable feature along
with EOAM feature

SDOCM00114982 Major PA LLD support Packet Capture along with Ethernet OAM feature

SDOCM00114971 Major PA Sub System: ACL LUTs (In0-PDSP1, In3-PDSP0) size
currently limited to half size 128

SDOCM00114416 Major GTP-U End Marker message handling

SDOCM00116833 Major Protection for bad Tx Cmd entering the PASS, which can
potentially hang the system

SDOCM00117285 Major PA FW does not send WCDMA FP fragmented packets on K2L

SDOCM00117286 Major PA FW mishandles WCDMA CRC on K2L

SDOCM00117710 Major PA LLD to support Ethernet Traffic Forwarding through QoS

SDOCM00117941 Major CPSW_LOOPBACK_NONE configuration sequence does not
work

Release 3.0.1.4

The PA LLD NSS Gen2 is enhanced to support Ethernet OAM (EOAM) mode, which
includes the EOAM classification and new packet flow. Note: PA LLD NSS Gen1 does not
support this feature.

The Ingress0 PDSP1 LUT1 is utilized to support Ethernet OAM (EOAM) target flow
classification instead of the firewall of outer IP and Ingress 3 PDSP0 is enhanced to filter
both outer IP/UDP and inner IP/UDP.

This release is backward compatible to PA 3.0.1.3 with EOAM by default being in
disabled mode with few exceptions as indicated below. Once EOAM is enabled, the PA
Sub System (PASS) transitions to a new mode of operations not compatible with original
PASS operations. Pa_create() API being called during initialization time supports
enabling the EOAM feature. Refer doxygen documentation for details.

 Migration Information

a. PA instance memory increased to 288 bytes from 256 bytes.

b. PA Number of buffer requirement increased to 8 buffers from 7 buffers

c. If new feature EOAM mode is enabled, note following features will not be

supported

 outer firewall (ACL) operations

 Plain IP Tunnel (IP over IP) without IPSec packets

Note: Application modification may be required for a) and b).

Additional details for new feature and API changes in this release are described below:

 Ethernet OAM (EOAM) Mode Operation

During EOAM classification, packets are inspected for a specific target flow match
based on any group of Destination MAC address, Source MAC address, VLAN
priority, VLAN ID and Ethernet PORT id. Each target flow is associated with the
corresponding "user defined statistics counter". During the match if the message
type/PDU found to be 1DM/DMM/DMR/LMM/LMR, PA LLD supports
configurations to forward the packet to a host queue.

o For IPSec transport mode, Ingress 3 would filter the IP/UDP header

o For IPSec tunnel mode, Ingress 3 would filter the inner IP/UDP header
o For a non-cipher packet, Ingress 3 would filter the IP/UDP header

Please refer to API header file “ti/drv/pa/pa.h” or appendix 8 in Doxygen for
detailed operations.

Additional API details
The EOAM global configuration structure is added to existing system configuration
structure “paSysConfig_t” to configure the EOAM operation. The configuration is
used to perform EOAM related configurations.
Additionally, “Pa_control()” API is enhanced to support to set timing offset in IEEE
1588 timestamp format for seconds and nano seconds.
Pa_TxCmd is enhanced to support patching of message with time in IEEE 1588
time format in the message and/or with receive packet counter at a specified
offsets in the message. This is done using the commands
“pa_CMD_PATCH_TIME” and “pa_CMD_PATCH_COUNT” in conjunction with
the next route command.

Application code should follow the following procedure to configure and enable this
feature.

o Initialize PA with EOAM buffer requirements
o Allocate 32bit user defined counters per EOAM target flow
o Global configuration enabling EOAM
o Setup Eoam target flow using “Pa_addEoamFlow()” API along with other

L2, L3, Inner ACL and L4 configurations
o Initiate Pa_control() for any timing offset correction any time after EOAM

global configuration is done in the operation.

 Resolved IRs as listed below.

IR Parent/

Child Number

Severity

Level IR Description

115006 Major PA LLD: Support for Ethernet OAM feature

Release 3.0.1.3

This is an engineering release, tested by the development team

 Resolved IRs as listed as below.

IR Parent/

Child Number

Severity

Level IR Description

114514
Major PASS: CRC calculation for large-size packet doesn't work on K2E/K2L

devices

114515 Major PASS: Fail to match default (catch-up) IP rule

IR Parent/

Child Number

Severity

Level IR Description

114543 Major PASS cannot handle some illegal IP packets

114576 Major PASS: Illegal Tx commands may cause infinite loop

114668 Major PASS: Provide LUT1 workaround for ACL operation

114669 Major PASS: Support SCTP port filter in ACL function

Release 3.0.1.2

 This release provides a mechanism to support post-classification L2 packet capture by

adding a new parameter ctrlBitMap to paRouteInfo2_t for PASS gen2 devices. To enable

post-classification packet capture, the application should configure the paRouteInfo2_t as

the followings:

o validBitMap: add pa_ROUTE_INFO_VALID_CTRLBITMAP

o dest: pa_DEST_CONTINUE_PARSE_LUT1 or

pa_DEST_CASCADED_FORWARDING_LUT1

o flowId: CPPI flow ID to deliver captured packets

o queue: destination queue of the captured packets

o swInfo0: placed in SwInfo0 for captured packets

o ctrlBitMap: pa_ROUTE_INFO_L2_PKT_CAPTURE

 Resolved IRs as listed below.

IR Parent/

Child Number

Severity

Level IR Description

114358 Major PASS: User stats should be incremented at the IP forwarding path as well

114359
Major PASS should be able to remove the outer IP header and trailer of

forwarding IP packet

114360 Major PASS: ACL byte count should include the associated IP length only

114361
Major PASS: Enhance Egress Flow L2 processing to be able to forward packet to

QoS queue with EMAC port number

114362 Major PASS: Support Post-classification L2 packet capture on K2L/E devices

114374 Major PASS: The ACL entry with DSCP does not work

Release 3.0.1.1

 This release expands the 3.0.1.0 feature supports to all keystone2 devices including K2L

and K2E.

 This release includes a PASS feature enhancement which increases the size of PA

timestamp from 48-bit to 64-bit to avoid the potential rollover issue. The lower 32-bit value

of the 64-bit timestamp still resides at the timestamp field of the EPIB section of the CPPI

host descriptor and the upper 32-bit timestamp value is moved from the last 16-bit value of

24-byte PASS Long Info section to the 7
th

 32-bit word of 32-byte PASS Long info as

shown at the table below:

Section offset Description

EPIB 0 Timestamp (LSW: lower 32-bit)

4 swInfo0

8 swInfo1

12 Swinfo2 (not used)

PASS
LongInfo

0 PASS-specific

4 PASS-specific

8 PASS-specific

12 PASS-specific

16 PASS-specific

20 PASS-specific

24 Timestamp (MSW: upper 32-bit)

28 Reserved

The timestamp MSB field extract macro PASAHO_LINFO_READ_TSTAMP_MSB(x) is

redefined to reflect this change at pasahost.h.

The new PASS Long Info format defined above is applicable to all known applications

running on DSP, ARM user mode and Linux Kernel except for the application which

invokes the PA command pa_CMD_COPY_DATA_TO_PSINFO to copy some payload

data to the PASS Long Info area byte24-byte31. In this case, the size of PASS Long Info

will be increased from 32 to 40 bytes as shown below:

Section offset Description

EPIB 0 Timestamp (LSW: lower 32-bit)

4 swInfo0

8 swInfo1

12 Swinfo2 (not used)

PASSS
LongInfo

0 PASS-specific

4 PASS-specific

8 PASS-specific (or payload Info)

12 PASS-specific (or payload Info)

16 PASS-specific (or payload Info)

20 PASS-specific (or payload Info)

24 Payload Info

28 Payload Info

32 Timestamp (MSW: upper 32-bit)

36 Reserved

.

A new macro PASAHO_LINFO_READ_TSTAMP_MSB2(x) is provided to extract the

upper 32-bit timestamp in this use case.

In the egress direction, the TX timestamp report descriptor contains the lower 32-bit

timestamp at the timestamp field and the upper 32-bit timestamp at the swInfo1 field

within its EPIB section.

Besides, the PASS system timestamp data structure is enhanced to report the most

significant 16-bit timestamp value at parameter hi_hi. This is to maintain backward

compatibility with 48-bit timestamp.

For devices with the second generation PASS, the PA timestamp is replaced with the CPTS

timestamp from the CPSW in the ingress direction. The pa_CMD_NEXT_ROUTE is also

enhanced to support Tx timestamp request. To instruct CPSW (switch) to report the packet

transmit timestamp as a CPTS event, the application should perform the following actions.

o Format tx command pa_CMD_NEXT_ROUTE with

pa_NEXT_ROUTE_RPT_TX_TIMESTAMP bit set.

o Invoke macro a_FORMAT_REPORT_TIMESTAMP_INFO(domain, msgType,

seqId) to format the timestamp control word at swInfo0 field of the CPPI

descriptor.

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

113125
Major PA LLD: Pa_addAcl does not support the same entry at both outer and

inner ACL

113142
Major PASS Firmware: Ingress packet sideband access can be to prior packet on

PA so that packet will be delivered to incorrect destination

113996 Major Modify PA firmware to return 64 bit timestamp counter values

Release 3.0.1.0

Release is backward compatible to PA 3.0.0.10 with following exception.

The classify1 PDSP image is divided into three images running on PDSP0, PDSP1 and PDSP2

respectively for enabling new features on NSS Gen1 devices. In the case of Linux Kernel

downloading firmware change would need to be reflected. This will be available in default Kernel

release from TI.

Additional details for new feature and API changes in this release are described below:

 EMAC Interface-based Packet Capture (Mirroring)

The ingress packet and/or the egress packet can be duplicated and forwarded to desired

host queue or mirror port per interface configuration during first stage of ingress

processing and the egress processing at PDSP. To minimize the performance impact when

this feature is not enabled, there is a system-level global control in addition to the per

interface configuration as described below:

o Additional two control bit definitions are available at validBitMap and ctrlBitMap

within paPacketControl2Config_t to enable/disable the system-wide packet

capture (mirroring) operation.

 pa_PKT_CTRL_EMAC_IF_IGRESS_CLONE

 pa_PKT_CTRL_EMAC_IF_EGRESS_CLONE

o The data structure paPortMirrorConfig_t, paPktCaptureConfig_t and

paEmacPortConfig_t are added to support interface-based port mirror and packet

capture configuration. Refer to PA LLD doxygen document or pa.h for details.

Application code should follow following procedure to configure and enable this feature.

o Populate the interface-based configuration data structures and then call

Pa_control() API with control code pa_CONTROL_EMAC_PORT_CONFIG and

emacPort subtype pa_EMAC_PORT_CFG_MIRROR or

pa_EMAC_PORT_CFG_PKT_CAPTURE to format PASS configuration packet

and then send configuration packet to specified PASS input queue.

o Populate the packet control data structure (paPacketControlConfig_t or

paPacketControl2Config_t) and system configuration data structure

(paSysConfig_t) and then invoke Pa_control() API with control code

pa_CONTROL_SYS_CONFIG to format PASS configuration packet and then

send configuration packet to the specified PASS input queue.

To capture ingress packets at other processing stage such as post-IPSEC processing stage,

application should setup a Rx command set with pa_CMD_MULTI_ROUTE command

and then link that command set to the routing information (paRouteInfo_t or

paRouteInfo2_t) of the desired final classification entry.

Please refer to pa/test/PAPktCapTest for some examples to configure and verify EMAC

interface-based port mirroring and packet capture operations.

Please note that this feature is used for debug purpose only and it will reduce PASS

throughput as much as 50% since each packet needs to be processed by PASS twice.

Please note the egress packet capture or mirroring will be applied to pre-fragmented

packets only due to hardware limitation.

 Ingress Default Route

This feature allows host to configure PASS to send all packets with broadcast bit set (bit 2

of 1st mac header byte) from ingress port X to a corresponding route before or after the

LUT look up. The ingress default route provides the route configurations for ingress

broadcast (BC) and multicast (MC) packets and the unicast packets that do not match L2

entries on ingress port X as described below.

o Route BC/MC traffics prior to LUT1 lookup if configured as pre-classification

route

o Route unmatched BC/MC traffics from EMAC port X if configured as

post-classification route

o Route unmatched unicast traffic (post-classification) from EMAC port X if

configured

o This rule precedes the exception route rule.

To minimize the performance impact when this feature is not enabled, there is a

system-level global control in addition to the per interface configuration as described

below:

o Following control bit definition is available at validBitMap and ctrlBitMap within

paPacketControl2Config_t to enable/disable the system-wide ingress default route

operation.

 pa_PKT_CTRL_EMAC_IF_INGRESS_DEFAULT_ROUTE

o Additional interface paDefRouteConfig_t supports ingress default route

configuration. Refer to PA LLD doxygen document or pa.h for details.

Application code should follow following procedure to configure and enable this feature.

o Populate the ingress default route configuration data structures and then call

Pa_control() API with control code pa_CONTROL_EMAC_PORT_CONFIG and

emacPort subtype pa_EMAC_PORT_CFG_DEFAULT_ROUTE to format PASS

configuration packet and then send configuration packet to the specified PASS

input queue.

o Populate the packet control data structure (paPacketControlConfig_t or

paPacketControl2Config_t) and system configuration data structure

(paSysConfig_t) and then invoke Pa_control() API with control code

pa_CONTROL_SYS_CONFIG to format PASS configuration packet and then

send configuration packet to the specified PASS input queue.

Please refer to pa/test/PAUnitTest/src/tests/test2.c for some examples to configure and

verify Ingress Default Route operation.

 Enhanced QoS Mode Operation

Enhanced QoS mode is an advanced priority-based routing algorithm where VLAN P-bit,

IP DSCP or the EMAC port-based default priority is used to determine the destination QoS

queue and CPPI flow. This routing algorithm is required to support egress L2 shaper and is

described below.

For each EMAC interface, PASS will be configured for:

o Base queue (egress only)

o Base flow (egress only

o DSCP_MAP[] {one entry (= queue offset /flow offset) for each DSCP value, 64

total}

o VLAN_PRIORITY_MAP[] { one entry (= queue offset/flow offset) for each P-bit

value, 8 total}

o Default priority to use on the interface (ingress only)

o Routing mode: DP-bit or DSCP

o PriorityOverride: True/False

Routing algorithm is:

o DP-bit mode

 If frame has VLAN tag, use p-bits to lookup shaper input queue offset and

flow from the VLAN_PRIORITY_MAP[] for the frame’s egress port

 If frame is un-tagged, but is an IP packet, use the DSCP value to lookup the

shaper input queue offset and flow offset from the DSCP_MAP[] for the

frame’s egress port unless priority override is set for the egress port (see last

bullet below).

 If frame is un-tagged, and non-ip, then use the default priority for the

frame’s ingress port (or from host default global config for egress packets)

to look up the shaper input queue offset and flow offset from the egress

port’s VLAN_PRIORITY_MAP[]. For from host/SOC-generated traffic,

the default priority is a global configuration item

 If priority override is set and the packet is IP then do as in un-tagged/non-ip

(above bullet).

o DSCP mode

 IP packets: use the packet DSCP bits and the DSCP_MAP [] for the egress

port as above to determine the L2 shaper queue offset and flow offset to use

 Non-ip packets: use the default priority for the frame’s ingress port (or

from-host default priority if packet is from host) to look up the shaper input

queue offset and flow offset from the egress port’s

VLAN_PRIORITY_MAP[]. For SOC-generated traffic, the default

priority is a separate configuration item.

 Priority override setting is not applicable in this mode

In modes, base queue and flow number is provided by host routing information for

ingress traffic and the enhanced QoS mode per interface configuration parameters for

egress traffic.

Enhanced QoS mode is triggered by host route information per ingress connection and it is

enabled or disabled system-wide for all egress traffic destined to specified EMAC port.

The related configuration data structures are described below:

o Following control bit definition is available validBitMap and ctrlBitMap within

paPacketControl2Config_t to enable/disable the system-wide egress enhanced QoS

route operation.

 pa_PKT_CTRL_EMAC_IF_EGRESS_EQoS_MODE

o The new priority type pa_ROUTE_EQoS_MODE is added to paPriIntfRouteMode

to indicate enhanced QoS mode for Host-route traffic.

o The data structure paEQosModeConfig_t is added to support enhanced QoS route

configuration. Refer to PA LLD doxygen document or pa.h for details.

Application code should follow following procedure to configure and enable this feature.

o Populate enhanced QoS route configuration interface and then call Pa_control()

API with control code pa_CONTROL_EMAC_PORT_CONFIG and emacPort

subtype pa_EMAC_PORT_CFG_EQOS_MODE to format PASS configuration

packet and then send configuration packet to the specified PASS input queue.

o Populate packet control data structure (paPacketControlConfig_t or

paPacketControl2Config_t) and system configuration data structure

(paSysConfig_t) and then invoke Pa_control() API with control code

pa_CONTROL_SYS_CONFIG to format PASS configuration packet and then

send configuration packet to the specified PASS input queue.

o For ingress connection which requires enhanced QoS route, invoke the LUT entry

API such as Pa_addMac2() with priorityType set to pa_ROUTE_EQoS_MODE to

format LUT configuration packet and then send this packet to the specified PASS

input queue.

Please refer to pa/test/PAUnitTest/src/tests/test2.c and test4.c for some examples to

configure and verify Enhanced QoS Mode operation.

This release includes resolved IPs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

108550 Major Support Packet Capture (Port Mirroring) feature in PA LLD (K2HK only)

108551 Major Support Cascaded dual shaper in PA LLD (K2HK only)

112339 Major PASS: Egress Flow exception causes internal PASS buffer leak

112340
Major PASS: Deletion of the pair of IP/IPSEC entry may miss the IPSEC (SPI)

entry due to firmware timing issue

112994 Major PASS: Egress flow route to CPSW (pa_DEST_EMAC) does not work

Release 3.0.0.10
This release includes resolved IPs as listed below

IR Parent/

Child Number

Severity

Level IR Description

108066 Major add RM to pa unit test on dsp

IR Parent/

Child Number

Severity

Level IR Description

108212
Minor PA unit tests and examples should have the "All tests have passed"

message when tests have passed to assure the proper automation result

108364 Major Usermode LLD paUnit Test fails on k2hk platform

108377
Minor PA LLD: IPv4 reassembly test failed due to stats mismatch in

software-reassembly mode

112182
Major PA LLD: Pa_delHandle() does not remove the root IP entry associated with

an IPSEC entry

Release 3.0.0.9
To facilitate the integration effort of the Network Sub-System (NSS), which includes PASS, SASS and
CPSW, the following two header files and the device-specific NSS layout configuration file nss_device.c are
included at the PA LLD delivery package:

 nss_if.h: Define NSS transport layer related constants, such as number of CPPI Tx/Rx channels,
the NSS Tx queue layouts and etc.

 nss_cfg.h: Define NSS transport layer and other global configuration data structure.

 device/k2x/nss_device.c: NSS device-specific configuration files

 added QMSS osal functions for Accumulator programming in test and examples

Although the NSS related files are included at PA LLD delivery package, they are not used by PA LLD itself.
Instead, they are used by the NSS driver or application module such as NWAL and PA/SA

1
 unit tests and

examples to provide device-specific and/or device-independent libraries. All the PA/SA unit tests and
examples are enhanced to demonstrate the usage of nss_if.h, nss_cfg.h and nss_device.c as described
below:

 PA Unit Test: nss_if.h

 PA EMAC Example: nss_if.h, nss_cfg.h and nss_device.c

 PA Multicore Example: nss_if.h

 SA Unit Test: nss_if.h, nss_cfg.h and nss_device.c

 SA Basic Example:nss_if.h

 SA Multicore Example: nss_if.h

This release include all the bug fixes from PA LLD 2.0.1.5
This release also includes resolved IPs as listed below.

IR Parent/

Child Number

Severity

Level IR Description

107355
Major Use DSP compiler options for debug ability with optimization (and compiler

upgrade for the same)

107310
Major PA LLD: Provide NSS Transport Layer related definitions and/or

configuration data structure

1
 The SA example/unit test are under ti/drv/sa.

IR Parent/

Child Number

Severity

Level IR Description

103812
Major PA LLD 3.0.0.x: Turn on C66x optimizer after C66x compiler version 7.4.2

bug ix fixed

106914 Major Pa_delHandle() fails with error pa_INSUFFICIENT_CMD_BUFFER_SIZE

107045 Major PaUnit Test user mode LLD fails on K2L

107090 Major PA LLD: PASS generate incorrect IPv4 checksum for large size packets

107300 Major PASS may deliver packets with unexpected CPPI flow to host queue

107412 Major PA: Packets are lost when inner IP(IPSec) and post processing is enabled

Release 3.0.0.8
This release includes the following features from PA LLD 2.0.1.4:

 Interface-based routing support

 Enhanced user-defined statistics support

This release supports all keystone2 devices with two separate libraries for the first generation and second
generation PASS respectively.

 Kepler/Hawking: PA

 Lamarr/Edison: PA2

The corresponding PASS firmware image files are moved to the following sub-directories respectively.

 Kepler/Hawking: fw/v0

 Lamarr/Edison: fw/v1

The top layer header file pa.h and pasahost.h are shared by both generations of PASS where the compiler
switch NSS_GEN2 is used to distinguish the constant and macro definitions which are unique or different
for the first and generation PASS. Besides, two addition sets of those constants and macros with suffix
GEN1 and GEN2 for the first generation and second generation PASS respectively are provided to allow
the PASS users to create single-library applications.

The latest PA LLD APIs are 99% backward compatible to support both generations of PASS to minimize the
migration impact from the first generation PASS device to the second generation one. However, the
application still needs to account for the transport layer changes summarized at the following table.

 PASS PASS2

Number of CPPI Tx channels 9 21

Number of CPPI Rx channels 24 91

Number of CPPI Flows 32 96

Number of Tx Queues 9 21

L2 (MAC/SRIO) Configuration Queue 640 904

Outer IP Configuration Queue 641 905

Inner IP Configuration Queue 642 908

L4 (LUT2) Configuration Queue 643 908

Post-Classification Processing Queue 644 909

Tx Command Processing Queue 645 910

SASS Queue1 646 914

SASS Queue2 647 915

EMAC Queues 648 896-903

Outer ACL Configuration Queue NA 904

Inner ACL Configuration Queue NA 907

Outer IPSEC Configuration Queue NA 905

Inner IPSEC Configuration Queue NA 906

Egress Processing Stage 1 Queue NA 910

Egress Processing Stage 2 Queue NA 911

Egress Processing Stage 3 Queue NA 912

Release 3.0.0.7
This release includes the following features from PA LLD 2.0.1.3:

 Multi-process support

 Linux user-mode support

 Enhance all examples and unit tests to be restartable

Release 3.0.0.6
This is the first official engineering drop of PA LLD for the second generation PASS (Packet Accelerator
Sub-System) on advanced Keystone2 devices. The supported feature list is compatible with PA LLD
version 1.3.0.11. To minimize the software migration effort of existing applications from older devices, the
new PA LLD maintains backward compatibility of all existing APIs with the following minor exceptions:

 API Pa_requestStats() and Pa_formatStatsReply() are depreciated due to the new mechanism of
handling PASS system statistics for the second generation PASS. It is no longer required to send
the statistics request packet to PASS and wait for the statistics response packet from PASS. The
application should call the new API Pa_querySysStats() which will return the formatted system
statistics.

 The prototype of API Pa_configCrcEngine() stays the same. However, this API will configure the
corresponding CRC engine directly in stead of formatting a CRC configuration command packet
to be delivered to PASS.

 The following two parameters have been moved from CRC configuration structure paCrcConfig_t
to CRC command structure paCmdCrcOp_t due to PASS CRC engine changes:

o crc size
o init value

 To add an IP entry of specific IP addresses and IPSEC SPI number with API Pa_addIp or
Pa_addIp2, the application needs to specify the IP protocol as either IPSEC ESP (50) or IPSEC
AH (51). The parameter proto should not be specified for an IP entry of specific SPI number only.

The second generation PASS provides several new features. Overview of new features and APIs are
highlighted below, please refer to PA LLD header file pa.h, pa_fc.h or PA LLD doxygen document for
details. The PA unit test program under pa/test provides some examples and sample codes for all new
features.

 Outer IP and inner IP reassembly
The second generation PASS provides a Reassembly engine (RA) which can be used to perform
outer and inner IP reassembly and the reassembled packets will be delivered back to PASS for
continuous processing. The following data structures and API are provided for RA related operation.

o paRaConfig_t: RA global configuration structure added to PASS system configuration
structure paConfig_t.

o paRaGroupConfig_t: RA group configuration structure which is used by API Pa_control to
control RA of Outer IP and inner IP reassembly operation.

o paRaStats_t: Define IP reassembly statistics
o Pa_queryRaStats: Query the RA statistics

 Egress Flow and Flow Cache operation
The second generation PASS includes one 256-entry LUT1 engine and three clusters of PDSP engine
chain to support ingress packet forwarding, flow cache lookup and egress packet formatting and
modification operation as described below:

o Flow Cache Classification: Classify up to 256 established egress flows based on
the inner IP and L4 parameters.

o Egress Flow Operation: Perform up to 4-level packet modification such as IP mangling,
IPSEC framing and encryption, L2 framing and etc per packet modification records.

o Ingress Packet Forwarding: Route the ingress packets to the Egress processing unit
as one of the classification routing options.

The following data structures and APIs are used for Egress Flow and Flow Cache related operations:
o paEfRec_t: Define Egress Flow modification records
o paFcInfo_t: Specify Flow Cache matching parameters
o paEfOpInfo_t: Specify Egress Flow operation information
o paFcStats_t: Define Flow Cache entry statistics
o Pa_addFc: Add/Replace Flow Cache entry into Flow Cache lookup table
o Pa_delFcHandle: Delete the specified Flow Cache entry
o Pa_queryFcStats: Query Flow Cache per-entry statistics
o Pa_configEflowRecords: Configure multiple Egress Flow modification records
o Pa_configEflowExceptionRoute: Configure egress packet routing based on exception

condition

 Pre-IPSEC and Post-IPSEC ACL (Access Control List) operation
The second generation PASS includes two 256-entry LUT1 with associated PDSP engines to support
pre-IPSEC and post-IPSEC L3/L4 ACL lookup operation. The following data structures and APIs are
used for ACL related operation.

o paAclInfo_t: Specify ACL matching parameters
o paAclConfig_t: Specify ACL actions per match
o paAclStats_t: Define ACL entry statistics
o Pa_addAcl: Add ACL entry into ACL table
o Pa_delAclHandle: Delete the specified ACL entry
o Pa_queryAclStats: Query the ACL per-entry statistics

 Local PKTDMA
The second generation NetCP includes a local PKTDMA (CPPI) and QMSS sub-system which may be
used to transfer packets within the NetCP sub-system, such as packets from PA to RA, PA to SA and
SA to PA. To use NetCP local PKTDMA, the application needs to enable this feature through the CPPI
and QMSS LLDs and setup local PKTDMA path as the followings:

o PA to RA: set control bit pa_RA_CTRL_USE_LOCAL_DMA at RA group configuration
structure paRaGroupConfig_t.

o PA to SA: set routing destination to pa_DEST_SASS_LOC_DMA in stead of
pa_DEST_SASS

o SA to PA: set control bit sa_DEST_INFO_CTRL_USE_LOC_DMA at the SA LLD channel
destination configuration structure Sa_DestInfo_t.

The following features, which are still supported functionally or in API by PA LLD for backward compatibility,
should be depreciated or changed due to the more advanced capability of the second generation PASS:

 PASS-assisted IP Reassembly: This feature is still supported, but it is recommended to be
replaced by the RA-based IP reassembly operation which does not request host intervention.

 IPSEC ESP NAT-T Detection: In the 2nd generation PASS, the IPSEC NAT-T detector is
implemented within the Outer IP and IPSEC processing stage to avoid the re-entry operation from
LUT2 stage. And the detector is also implemented at the traditional LUT2 stage to maintain
backward compatibility. It is recommend making the following two changes to enable IPSEC NAT-T
detector at the appropriate processing stage to avoid PASS throughput degradation due to IPSEC
NAT-T packet re-entry operation.

o IPSEC NAT-T configuration: set control bit pa_IPSEC_NAT_T_CTRL_LOC_LUT1
o Outer IP routing configuration: use pa_DEST_CONTINUE_PARSE_LUT1 in stead of

pa_DEST_CONTINUE_PARSE_LUT2

 Tx Commands: Most of tx command operations such as IP/UDP checksum, IPSEC AH patching
and IP Fragmentation are also supported by the Egress Flow operation. To simplify the egress
operation, it is recommended to setup an egress flow and replace a set of Tx commands with a
single pa_CMD_EF_OP command.

 GTPU classification with L3 link: This feature is no longer required since the advanced LUT2
engine supports GTPU 32-bit Tunnel-ID classification with L3 link and therefore, it is not necessary
to restrict the effective tunnel-ID to 24-bit. The GTPU configuration will be still processed by the
PASS for backward compatibility and the configuration command packet will be ignored by PASS.

 Configurable L3 offset location: This feature is no longer required since both offsets to outer IP
and inner IP will be provided at packet information area and extracted by the following two Macros:

o PASAHO_LINFO_READ_L3_OFFSET(): Offset to outer IP
o PASAHO_LINFO_READ_INNER_IP_OFFSET(): Offset to inner IP

Although most of the PA LLD APIs are backward compatible, some minor application changes are still
required due to the following transport layer changes introduced at the second generation keystone2
devices:

 More PASS CPPI channels: There are 21 Tx channels and 91 Rx channels in the second
generation NetCP devices where there are 9 Tx channels and 24 Rx channels in the first
generation devices.

 More PASS Tx Queues: The are 21 Tx queues in the second generation NetCP devices where
there is only 9 TX queues in the first generation devices.

 Local PKTDMA and QMSS: There is NetCP local PDTDMA and QMSS modules in addition to the
global ones.

 NetCP Tx Queue Layout:

Location NetCP 1.0 equivalent Global Local

EMAC priority 0 EMAC 896 0

EMAC priority 1 NA 897 1

EMAC priority 2 NA 898 2

EMAC priority 3 NA 899 3

EMAC priority 4 NA 900 4

EMAC priority 5 NA 901 5

EMAC priority 6 NA 902 6

EMAC priority 7 NA 903 7

Ingress 0 PDSP0: MAC/SRIO 904 8

Ingress 1 PDSP1: Outer IP 905 9

Ingress 2 NA 906 10

Ingress 3 NA 907 11

Ingress 4 PDSP2 (Inner IP) and
PDSP3 (LUT2)

908 12

Post PDSP4: Command Set 909 13

Egress 0 PDSP5: Tx Command 910 14

Egress 1 NA 911 15

Egress 2 NA 912 16

RA (Reassembly
Engine)

NA 913 17

SASS SASS 914 18

SASS2 SASS2 915 19

Statistics Module NA 916 20

Release 3.0.0.1 – 3.0.0.5:

TI internal engineering drops

Release 3.0.0.0:

This is the initial engineering drop of the second generation PASS (Packet Accelerator Sub-System) on
advanced Keystone2 devices. The supported feature list is compatible with PA LLD version 1.2.3.3. It is
provided for initial integration support for the AVV team. Only limited tests have been performed at the
Lamarr simulator with local provided tisim_pass.dll.

Release 1.3.0.11

Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00101118
Major Received Fragmented ICMP with invalid fragment-offset causes eth0 to

jam

Release 1.3.0.10

Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00100400 Minor PA LLD: 1.3.0 software manifest points to release 1.2.0

00100401 Minor PA LLD: Need constant definition of the virtual link buffer ID

Release 1.3.0.9

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00099556 Major PA LLD: Deleting LUT2 entries enables GTPU processing unconditionally

Release 1.3.0.8

 API changes involved in this release are backward compatible to PA 1.3.0.7; no

application modification is required for PA 1.3.0.7 based features. Details of new feature

and API changes from PA LLD 1.3.0.7 are described below:

o GTPU classification with L3 link
Due to the LUT2 engine using 32-bit matching parameter, the default GTP-U classification is
solely based on its 32-bit tunnel ID. However, it may be desirable to match a GTP-U tunnel with
both its tunnel ID and the previous link information at some use cases. PASS is enhanced to
support GTPU classification with L3 link where the classification vector consists of the least
significant 24-bit of tunnel ID and an 8-bit previous link parameter.

The data structure paCtrlInfo_t is enhanced to include global GTPU configuration parameter
gtpuCfg. The application should invoke API Pa_control() with configuration code set to
pa_CONTROL_GTPU_CONFIG to enable/disable this feature at system startup.

o Configurable L3 offset location
The PASS records several protocol header offsets as part of packet information stored at PS
Info section while it is parsing the packet. In the current implementation, the L3 offset will point
to the outer IP header. However, it is useful to set L3 offset to the packet offset of the inner IP
header at certain use cases.

To support configurable L3 offset at the packet info, a new packet control bit
pa_PKT_CTRL_L3OFFSET_TO_INNER_IP is defined, which can be used to enable/disable
this feature at system startup.

o Cascaded Forwarding
The cascaded forwarding packets are expected to be delivered to QoS queues based on the
VLAN/DSCP priority at its final classification stage. Therefore, those packets should not be
subject to some PASS actions such IP reassembly and IP fragment exception route.

A new packet routing destination type pa_DEST_CASCADED_FORWARDING_LUT1 is
added, which should be used at Pa_addMac() API call to disable IP reassembly and IP
fragmentation exception route at sub-sequent classification stage.

o Priority-based routing with post-classification command set
There is some use cases where output packets from QoS are delivered to PASS for pre-routing
operation such as tx timestamp report and both egress and ingress forwarding packets go
through the same QoS. To support this use case, PASS is enhanced to delay the
post-classification command set execution until the packets re-entering PASS from QoS if
priority-based routing is selected..

 Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00098539 Major PA LLD: Support GTPU classification with L3 link

00098540 Minor PA LLD: Support configurable L3 offset location

IR Parent/

Child Number

Severity

Level IR Description

00098877
Minor PA LLD: Enhance IPv6 fragmentation and reassembly to support IPv6

extension headers

00098878 Major PA LLD: Support Cascaded Forwarding

00099016 Major PA LLD: Need to support multiple UDP 2152 entries

00098922
Minor paEthInfo2_t structure defines validBitMap, but there are no constants

defined to enable setting the bitmap

00098920 Major Pa_addMac2 () not implemented

Release 1.3.0.7

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00098035
Major PA LLD: Unexpected Cache operations related to Virtual Link cause

potential memory corruption

Release 1.3.0.6

 This release includes Custom LUT2 operation enhancement by adding a new parameter

custHdrSize to API Pa_setCustomLUT2. The custHdrSize specifies size of fixed-length

custom header; it is used by PASS to adjust the location of the next protocol header so that

the packet can be further processed by another module such as SASS or host application.

The custHdrSize should be set to 0 for variable-length header.

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00097383
Minor PA LLD 48-bit Time Stamp macro from host file is inconsistent with

firmware definition

00097730 Major PA LLD: Custom LUT2 enhancement

Release 1.3.0.5:

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00097274
High PA_emacExample_exampleProject fails on EVM and Simulator for BE and

LE

00097275
High PA_multicoreExample_exampleProject fails on EVM and Simulator for BE

and LE

Release 1.3.0.4:

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00097286 High Added support for additional comamnds for IP fragmentation

Release 1.3.0.3:

API changes involved in this release are backward compatible to PA 1.3.0.2, no application

modification is required for PA 1.3.0.2 based features, except PA initialization regarding virtual

link. In order to use the Virtual Link feature, one must initialize PA with the maximum number of desired

virtual links by setting paSizeInfo_t->nVlnkMax to a non-zero value. Consequently, if virtual link feature is

not used, it must be turned off by setting paSizeInfo_t->nVlnkMax to 0. Release includes additional

feature enhancements. Details of new feature and API changes from PA LLD 1.3.0.2 is described

below:
 Virtual Link

This feature was added to support linkage sustainability between Outer IP and Inner IP LUT entries
during IPSec Tunnel rekey. Previous APIs was not changed to maintain backwards compatiblity,
while the new API functions Pa_addIP2(), Pa_addVirtualLink() and Pa_delVirtualLink() provides
support for Virtual Link.

Pa_addIP2() requires the following parameters, changes from Pa_addIP() are highlighted

o Pa_Handle iHandle,

o paIpInfo2_t *ipInfo,

o paParamDesc *params,

o paLnkHandle_t *retHandle,

o paCmd_t cmd,

o uint16_t *cmdSize,

o paCmdReply_t *reply,

o int *cmdDest

The new parameters in Pa_addIP2() were designed for improving expandability for future API
changes:

o paIpInfo2_t is extended upon paIpInfo_t to include a valid bit map

o paParamDesc combined several conditionally optional parameters with a valid bit map

The following are the sequence of API calls in pseudo-code to correctly invoke Virtual Link feature:

o Tunnel configuration
o addMac()
o virtLink = Pa_addVirtualLink().
o Outer IP Rule-> Call Pa_addIP2() with

 paParamDesc-> nextLink = virtLink
 paParamDesc->prevLink = NULL or L2 handle

o Inner IP Rule -> Call Pa_addIP2() with
 paParamDesc-> nextLink = NULL
 paParamDesc->prevLink = virtLink

 QoS based priority routing
This feature was added to facilitate QoS based priority routing using either VLAN or DSCP values
from individual packets. The new routing logic enables matched packets to be delivered to different
QoS queues derived by taking the base queue number added with either VLAN/DSCP. We provide
a new structure paRouteInfo2_t, which extends upon the original paRouteInfo_t, where the
parameter priorityType is used to specify packet routing priority mode. Valid values are:

o pa_ROUTE_PRIORITY_NONE = 0 (Default)
o pa_ROUTE_PRIORITY_VLAN, Route by using VLAN bits as priority
o pa_ROUTE_PRIORITY_DSCP, Route by using DSCP bits as priority

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00095408 Add IPv6 fragmentation and reassembly unit test

Release 1.3.0.2:
 Merged changes from release 1.2.3.2.

 Resolved IRs as listed below

 Provided as internal engineering drops

IR Parent/

Child Number

Severity

Level IR Description

00095730 Major PA LLD: Buffer leak through PASS

Release 1.3.0.1:
 Added IPv6 reassembly assistance to forward fragment packets to software reassembly stack

 Added IPv6 fragmentation support in firmware

 Added support for 48-bit transmit and receive timestamp.

 Added the following two counters as of PASS system statistics
o nIpv4PacketsInner: Number of Inner IPv4 packets
o nIpv6PacketsInner: Number of Inner IPv6 packets

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00093442 Major Provide 48-bit timestamp in descriptor

Release 1.3.0.0:

 Provided as internal engineering drops

Release 1.2.3.3:

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00095942 Minor PA_UnitTest_testProject fails on the simulator

Release 1.2.3.2:
 Add new post-classification command pa_CMD_SPLIT which is used to split the packet into header

and payload portion to be delivered to different destination queues with different CPPI flows.

Please note that the first 8-byte of psInfo area is reserved for this splitting operation, therefore, they
should not be updated by the pa_CMD_COPY_DATA_TO_PSINFO commands within the same
command set.

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00094669 Minor Update of packet length for incoming RX packets without CRC bytes

00095226 Major PA LLD: Add Packet splitting feature

Release 1.2.3.1:

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

IR Parent/

Child Number

Severity

Level IR Description

00094662 Minor PA LLD: Pa_resetControl(Query) returns wrong state

00094975
Major PA LLD: Invalid LUT1 entry may be added into LUT1 engine under race

condition

Release 1.2.3.0:

 Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00093638 Major UDP Lookup fails if the IPv6 packet contains extension headers

00094117
Minor PA LLD: PA LLD Bit-manipulation macros cause compiler warning at Linux

Kernel build

Release 1.2.2.2:
 Added new API Pa_getPDSPVersion() to query the version number of PDSP image to provide the

capability to verify the compatibility of the PA LLD and the PDSP image which may be downloaded
by another processor. The version number of the PDSP image should be identical to the version
number of the PA LLD.

 Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00091769 Minor PA LLD: Add API to query the version number of PDSP images

00092662
Major PA LLD: a_CMD_PATCH(delete) causes extra bytes to be deleted at

pa_CMD_REMOVE_TAIL operation

00092663
Major PA LLD:Some of IPv4 fragments are not delivered to the desired

destination queue

00092664 Major PA LLD: Invalid IPv4 header causes the CPSW stop receiving packets

Release 1.2.2.1:

 Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00091702 Major PA LLD: Enhanced Cache-related OSAL functions per Cache Advisory 12

00091767
Minor PA LLD: Enhance IPv4 fragmentation operation to support fragment

padding

Release 1.2.2.0:

Release includes additional feature enhancements as per PA 1.2.2 requirements. Details
of new feature and API changes from PA LLD 1.2.1.2 is highlighted below:

 System statistics enhancements
The PASS system statistics has been revised by removing unused statistics and adding some

useful statistics. The following system statistics are removed:

o Classify1.nNonIpPackets

o Classify1.nCommandFail

o Classify1.nInvalidComReplyDest

o Classify2.nParseFail

o Classify2.nInvldHdr

o Classify2.nCommandFail

o Classify2.nInvalidComReplyDest

o Common.nIdAllocationFail

 The following system statistics are added:

o Classify1.nSrioPackets

o Classify1.nTxIpFrag

o Classify2.nPackets

 Miscellaneous Packet Control enhancements

Replace the global configuration data structure paPacketVerifyConfig_t with

paPacketControlConfig_t to support general packet control in addition to the enhanced

protocol header verification for the specified protocol. New parameters are added to specify

the desired user-defined statistics of the rx padding error counter and the tx padding counter.

The parameters protoBitMap is replaced with ctrlBitMap as defined below:

 pa_PKT_CTRL_HDR_VERIFY_PPPoE: Enable/Disable enhanced error check for

PPPoE header

 pa_PKT_CTRL_HDR_VERIFY_IP: Enable/Disable enhanced error check for IP

header

 pa_PKT_CTRL_MAC_PADDING_CHK: Enable/Disable MAC (802.3) padding

error check

 pa_PKT_CTRL_IP_FRAGS_TO_EROUTE: Enable/Disable IP fragments routing

through exception route

 The next route command pa_CMD_NEXT_ROUTE is enhanced to support L2 padding

control in the to-network direction.

 Add command pa_CMD_VERIFY_PKT_ERROR to control the destination of the packet

with the specified checksum or CRC error.

 Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00090761 Major PA: Redirection of unsupported protocol through Next Fail route

0091012 Minor PA LLD: Buffer leak found at all examples

00091105 Minor PA LLD: Add Verify Checksum (Packet Error) Command

00091385 Major PA LLD: L2 (MAC) Padding Support

00091386 Major PA LLD: Provide IP Fragment counters

00091387 Major PA LLD: Enhance IP Fragments routing options

Release 1.2.1.2:

Release includes additional feature enhancements as per PA 1.2.1 requirements. Details
of new feature and API changes from PA LLD 1.2.1.1 is highlighted below:

 User-defined statistics enhancements
The user-defined statistics feature is enhanced to support up to 512 statistics consisting of

some 64-bit counters and some 32-bit counters whereas the total size of all counters cannot

exceed 2048 bytes. The parameter (num64bCounters) is added into the user-defined statistic

configuration data structure (paUsrStatsConfig_t) to specify the number of 64-bit counters.

The user-defined statistics query API Pa_requestUsrStats() is enhanced to provide the

user-defined statistics at return and the corresponding API Pa_formatUsrStatsReply() is

removed.

 IPSEC NAT-T packet detector

The IPSEC NAT-T detector identifies the IPSec NAT-T packets with UDP source port number

or UDP destination port number equal to the specified UDP port number such 500 or 4500.

o Identify the IPSec NAT-T negotiation packet (with SPI field equal to zero) and

forward it to the queue specified by exception route pa_EROUTE_NAT_T_CTRL

o Identify the IPSec NAT-T service packet (with SPI field does not equal to zero) and

forward it to the queue specified by exception route pa_EROUTE_NAT_T_CTRL

o Identify the IPSec NAT-T keepalive packet and forward it to the queue specified by

exception route pa_EROUTE_NAT_T_KEEPALIVE.

 The IPSEC NAT-T detector is disabled as PASS startups. The module user can call API

 Pa_control() with the NAT-T configuration data structure paIpsecNatTConfig_t to enable

 and configure this detector at PASS.

 802.1ag packet detector

The 802.1ag detector identifies the 802.1ag packet in ether draft or standard format per module

user configuration. The PASS delivers all 802.1ag packets to the queue specified by exception

route pa_EROUTE_802_1ag.

The 802.1ag detector is disabled by default since the 802.1ag packets may be detected and

routed by a general MAC rule with etherType set to 0x8902. The module user should call API

Pa_control() with the 802.1ag configuration data structure pa802p1agDetConfig_t to enable

and configure this detector at PASS.

 Protocol Header verification enhancements

The new global configuration data structure paPacketVerifyConfig_t is used to enable/disable

the enhanced protocol header verification for the specified protocol. PASS supports the

following two enhanced protocol verification. The error packet route is specified by the

corresponding exception route such as pa_EROUTE_PPPoE_FAIL and

pa_EROUTE_IP_FAIL:

o PPPoE header verification:

 Version = 1

 Type = 1

 Code = 0

o IPv4 header verification:

 Header length >= 20

 Total length > 20

 Source address is not broadcast

 Destination address is not 0

 TTL is not 0

 Please note that the enhanced protocol header verification will reduce the packet throughput.

 Therefore, it is recommended to be disabled.

 Protocol Indication within the packet information

The following MACROs are provided at pasahost.h to verify whether the received packets

contain the specific protocol header:

o PASAHO_LINFO_IS_MAC(x)

o PASAHO_LINFO_IS_802_3(x)

o PASAHO_LINFO_IS_WITH_VLAN(x)

o PASAHO_LINFO_IS_WITH_MPLS(x)

o PASAHO_LINFO_IS_PPPoE(x)

o PASAHO_LINFO_IS_IP(x)

o PASAHO_LINFO_IS_IPSEC_ESP(x)

o PASAHO_LINFO_IS_IPSEC_AH(x)

o PASAHO_LINFO_IS_UDP(x)

o PASAHO_LINFO_IS_UDP_LITE(x)

o PASAHO_LINFO_IS_TCP(x)

o PASAHO_LINFO_IS_GRE(x)

o PASAHO_LINFO_IS_GTPU(x)

o PASAHO_LINFO_IS_CUSTOM(x)

o PASAHO_LINFO_IS_SCTP(x)

o PASAHO_LINFO_IS_IPSEC_NAT_T(x)

 The patch command pa_CMD_PATCH_DATA is enhanced to support deletion operation

by adding the control bit definition pa_PATCH_OP_DELETE.

 Update the multi-route entry data structure to support optional swInfo0 update per entry.
o Add control bit definition pa_MULTI_ROUTE_REPLACE_SWINFO
o Add parameter swInfo0

 Resolved IRs as list below

IR Parent/

Child Number

Severity

Level IR Description

00088844
Major Enhance User Defined Statistics feature to support up to 512 32-bit

counters

00089460
Major Additional handling of alignment requirement in PA helper function

Pa_formatTxCmd() for creating Tx commands

00089901
Major pa_addMac() and pa_addIp() functions is not returning handle during valid

duplicate mac entry

00089978 Major PA LLD: Support IPSEC NAT-T detection

00089980 Major PA LLD: Support 802.1ag Packet Detection

00089993 Major PA LLD: Enhance PPPoE and IP Protocol Header Error Processing

00089997 Major PA LLD: Add more protocol indication bits in the Packet Information

00090132
Major PA LLD: Enhance multiroute operation to support optional swInfo0 update

per entry

00090134
Major PA LLD: Enhance PA command pa_CMD_PATCH_DATA to support

deletion

Release 1.2.1.1:

 Added support for Resource Manager LLD. For all existing applications there are
no API modifications required. The Pa_startCfg API has been added to configure
use of the RM LLD if desired.

Release 1.2.1.0:

 LUT1 configuration APIs are enhanced to allow application to specify the desired
LUT1 instance. This enhancement allows LUT1 re-entry to support some
advanced IP layer operation such as IPSEC ESP over IPSEC AH. The parameter

“ lutInst” is added to the following APIs

o Pa_addIp

o Pa_addCustomLUT1

 To maintain backward compatibility, set “ lutInst” to

 pa_LUT_INST_NOT_SPECIFIED.

 The message length patching command pa_CMD_PATCH_MSG_LEN is added to
instruct the PASS to update the message length field within some L2 protocol
header such as 802.3 and PPPoE after the potential IP fragmentation operation.

 Add new API Pa_getTimestamp() to query the 48-bit PASS system timestamp.

 Add the following MACROs to extract egress packet information:

o PASAHO_LINFO_READ_MAC_PKTTYPE():Extract the MAC packet
type(Unicast, Multicast or Broadcast)

o PASAHO_LINFO_READ_INPORT():Extract the (1-based) input EMAC
(SGMII) port number

 Redefine PA LLD OSAL functions to be consistent with the ones used at other
LLDs:

o Cache coherency protection: Pa_beginMemAccess() &
Pa_endMemAccess()

o Multi-core or Multi-thread access protection: Pa_osalMtCsEnter() &
Pa_osalMtCsExit()

 Resolved IRs as listed below

IR Parent/

Child Number

Severity

Level IR Description

00086799 Major Enhance LUT1 configuration API to support IPSEC ESP over AH operation

00086801 Minor Need to handle EMAC psFlags when routing destination is set to Host

IR Parent/

Child Number

Severity

Level IR Description

00087268 Major Record and report input SGMII port number

00087269
Major Enhance multi-route operation to allow one of the multi-route entry

forwarding the packet back to PASS for “continue parsing"

00087270 Major Support IP over PPPoE

00087778 Major PA LLD: Add API to read the current PASS timestamp

00087779 Major PA LLD: Define new OSAL function for multi-core protection

00087922 Major MAC packet type information required for incoming packet from PA

00088269
Minor Increasing the number of custom LUT2 types to enable core to core

communication

00088842 Major CRC + Patch Command enhancement

Release 1.2.0.3:

 Release adds examples and unit test code to demonstrate Linux User Mode LLD
usage for ARM processor. Support only applicable for devices with ARM
processor.

Release 1.2.0.2:

 Release includes modifications to support User Mode access for ARM processor.
Support only applicable for devices with ARM processor.

Release 1.2.0.1:

 Fix for IR: 00086230: PASS drops SCTP packets

Release 1.2.0.0:

Release includes additional enhancements as per PA 1.2 requirements. Details of new
feature and API changes from PA LLD 1.1.1.0 is highlighted below:

 User-defined statistics

The PA LLD and PASS maintain up to 256 user-defined hierarchical statistics which
consists of 64 64-bit counters and 192 32-bit counters. Each statistic is classified to a
level which can be linked to one of the next level statistics. When one counter is
incremented, all counters in its linking chain will be incremented, too. The following

APIs and data structures are added or enhanced to support this and other new
features:

o The parameter nUsrStats, which defines the maximum number of
user-defined statistics, is added to the data structure paSizeInfo_t.

The PA LLD will require a new buffer of the user-defined statistics link table
if nUsrStats is set to non-zero value.

 To maintain backward compatibility, set nUsrStats to zero.

o Call the new API Pa_control() with the user-defined statistics configuration
structure paUsrDefinedStatsConfig_t to update the number of user
statistics dynamically.

o Call the new API Pa_configUsrStats() to configure a list of user-defined
statistics for their type (byte counter or packet counter) and link (to the next
layer counter).

o Specify the index of the user-defined statistics of the new command
structure paCmdUsrStats_t or paCmdSetUsrStats_t which will be used as
part of the routing information (paRouteInfo_t).

o Call the new API Pa_requestUsrStats() and Pa_formatUsrStatsReply() to
inquire and format the user-defined statistics respectively.

 IPv4 Fragmentation

The IP fragment command pa_CMD_IP_FRAGMENT is added to instruct the PASS to
perform IPv4 fragmentation operation. Packets are sent to PASS PDSP5 with both IP
fragment command and next route command which specifies the final destination, the
entire packet or its fragments will be delivered to the final destination based on the
packet size and the MTU size specified at the IP fragment command. This operation
can be applied to non-IPSEC packets, inner IP prior to IPSEC encapsulation and outer
IP after IPSEC encapsulation.

For the inner IP fragmentation, follow the following procedure:

1. Host sends packets with the IP fragment command and the next route destination queue

set to a host queue to PASS PDSP5 for IP fragmentation operation.

2. All fragments will be delivered to the specified host queue.

3. Host adds the outer MAC/IP header, invokes the SA LLD API sendData () and then

sends the fragments to the SA queue.

4. Each fragment will be encrypted, authenticated and forwarded to the final destination.

 For the outer IP fragmentation, the overall operation is stated below:

1. Packet is delivered to SASS for IPSEC operation

2. Packet is delivered to PASS for IP Fragmentation operation

3. The entire packet or its fragments are delivered to the network.

 The next route command is required for step 2.

 PASS-assisted IP Reassembly

The current version of PASS does not support IP reassembly; all the IP fragments are detected,

forwarded to and reassembled at host. The reassembled IP packet may be forwarded back to

PASS for continuous classification. The drawback of this approach is that the order of the

incoming packets is not guaranteed to be maintained.

To provide better support for IPv4 reassembly, the PA-assisted IP Reassembly operation is

introduced and summarized below:

 Array of traffic flows which consist of source IP, destination IP, protocol and counter

are maintained at PASS.

 Traffic flow is activated by the PASS when the first IP fragment is detected and

forwarded.

 Traffic flow is freed when its packet count reaches 0

 All packets belong to any active traffic flow will be forwarded to the host so the packet

order will be maintained.

 Number of active traffic flow is configurable [0, 32]

 IP fragments is forwarded to host with “none” traffic flow id if no traffic flow is

available. In this case, the packet order is not guaranteed to be maintained.

The host IP reassembly module, which is not part of PA LLD, should interact with the
PASS and perform the full IP reassembly operation. An IP Reassembly sample code,
which demonstrates how to interact with the PASS to perform IPv4 reassembly, is
available for reference at ti\drv\pa\example\reassemLib.

The PASS-assisted IP reassembly feature is disabled by default. To enable and
configure this feature, call the new API Pa_control() with IP reassembly configuration
structure paIpReassmConfig_t to prepare and send the command packet to the
corresponding PDSP. The outer IP (PDSP1) and inner IP (PDSP2) can be configured
independently.

 Atomic queue diversion operation per LUT2 entry replacement

This feature is provided to support handover operation. Enhance the API Pa_addPort()
and Pa_addCustomLUT2() to support the atomic queue diversion operation, which
means that the QMSS moves the entries in the diverted queue to the destination
queue, if the divertQ is specified and fReplace flag is set. In this case, the PASS will
complete the LUT2 update, wait for the queue diversion to be complete and then
resume processing incoming packets. Following is the additional parameter at both
APIs:

o divertQ: specify the source queue for atomic queue diversion with LUT2
update

To maintain backward compatibility, set

 “ divertQ” to pa_PARAMS_NOT_SPECIFIED

 Post-classification command set enhancements

The PASS will support either 64 of 64-byte command sets or 32 of 128-byte command
sets. It support 64 command sets by default. To change the number of command sets,
call the new API Pa_control() with the command set configuration structure
paCmdSetConfig_t to format and send the configuration command packet to PASS.

 The EMAC classification data structure paEthInfo_t is enhanced to include the
input EMAC port (inport) as an optional classification criterion.

To maintain backward compatibility, set inport to 0.

 Enhance the blind patch command structure to support MAC header replacement
operation: replace the single Boolean parameter “write” with “ctrlBitfield”.

 Resolved IRs as listed below:

IR Parent/

Child Number

Severity

Level IR Description

00083432 Major PA LLD: CRC operation enhancement by allowing lenOffset to be negative

00083010 Major PA LLD: Classification based on ingress port number

00083375
Minor PA LLD: Additional defines to avoid using hard coded values in PA

interfaces

Release 1.1.1.0:

 Documentation (pa.h)

o paCrcConfig_t: Add example for 16-bit CRC

o paCmdNextRoute_t: Clarify how the next route command is used in the
from-network direction.

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00083715 Major PA LLD: CRC does not work

00083377 Minor Mismatch between the OSAL begin and end tags

Release 1.1.0.10:

 Update OSAL functions Osal_paBeginMemAccess() and
Osal_paEndMemAccess() at examples and unit tests

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00081280
Major Packets not received when Udp port entry with destination port 2152

(GTPU port number)

00081493 Minor Enhance PA Multicore example with cache enabled

Release 1.1.0.9:

 Cleanup OSAL functions at examples and unit tests

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00080511
Major Pa_resetControl() API may block forever when called while receiving

incoming packets

Release 1.1.0.8:

 Support C66 ELF only

 Add multicore example

 Both the next route data structure paCmdNextRoute_t and the routing info data
structure paRouteInfo_t are enhanced to support EMAC port control when the
packet destination is set to pa_DEST_EMAC.

To maintain backward compatibility, search and replace pktType with
pktType_emacCtrl.

 The data structure of CRC operation command paCmdCrcOp_t is enhanced to
include new parameter frameType.

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00071334 Major Add PA example for multicore routing of packets

00080279 Major PA LLD: Enhance ETH routing to specify the destination EMAC port

00080280

Major
PA LLD: Enhance CRC operation to support variable payload length and
offset for supported frame types such as WCDMA FP HS-DSCH Data
Frame type 2 and type 3

Release 1.1.0.7:

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00078735
Major Duplicate MAC entry puts the route in pending state. Request to change it

to Active while in transition

00078888 Major IP Fragmentation Problem on NetCP

Release 1.1.0.6:

Release includes additional enhancements as per PA 1.1 requirements. Details of API
changes from PA LLD 1.1.0.5 is highlighted below:

 LUT1 configuration APIs enhanced to support LUT1 index configuration from

application. The parameter “ index” has been added to the following APIs

o Pa_addMac

o Pa_addIp

o Pa_addCustomLUT1.

 To maintain backward compatibility, set “ index” to

 pa_LUT1_INDEX_NOT_SPECIFIED.

 Enhance the API Pa_addPort() to support both 16-bit UDP/TCP port and 32-bit
GTPU Tunnel ID. Following are two additional parameters :

o Port size: specify the LUT2 classification parameter size as 16-bit or 32-bit

o Replace flag: indicate whether the LUT2 entry exist or not

To maintain backward compatibility, set

 “ Port size” to pa_LUT2_PORT_SIZE_16

 “ Replace flag” to 0.

 Additional API Pa_addSrio() to support SRIO L0-L2 classification.

 Rename and enhance the following APIs to support the enhanced Custom LUT1
and LUT2 classification per PA 1.1 requirements.

o Pa_setCustomL3 Pa_setCustomLUT1

o Pa_addCustomL3 Pa_addCustomLUT1

o Pa_setCustomL4 Pa_setCustomLUT2

o Pa_addCustom Pa_addCustomLUT2

 API Pa_configRouteErrPacket() renamed to Pa_configExceptionRoute() and
includes support for general exception routes including the error routing.

 Following new APIs are added for the multi-route, CRC engine and system
timestamp configuration respectively:

o Pa_configMultiRoute

o Pa_configCrcEngine

o Pa_configTimestamp

 Following new APIs are added for to-network and from-network post-match
command processing:

o Pa_formatTxCmd

o Pa_configCmdSet

 The type of parameter cmdSize in the following two APIs is changed from int to
uint16_t to be consistent with all other APIs.

o Pa_formatTxRoute

o Pa_formatRoutePatch

 PA system APIs Pa_resetControl and Pa_downloadImage are updated to include
the Pa_handle as input parameter. With this enhancement, the PA LLD supports
multiple PA instance.

 The parameter handle in the API Pa_delHandle is changed from paHandleL2L3_t
o a pointer to the entry handle so that the entry handle can be set to NULL to
indicate that it has been deleted.

 PA initialization configuration structure is enhanced to include the following two
parameters:

o initDefaultRoute: specify whether the default traffic flow should be initialized

o baseAddr: specify the PASS base address which is defined at

“ ti/csl/cslr_device.h”

 The data structure paHandle_t is renamed to paEntryHandle_t to clarify its usage
and avoid the confusion with Pa_handle. The paEntryHandle contains either the
l2l3Handle or the l4handle when the API call Pa_forwardResult returns in
response to an LUT1/LUT2 entry insertion request. Please note that the original

structure paHandle_t contain the pointer to the l4handle in stead of the l4handle
itself.

 IP Lookup Information data structure paIpInfo_t is enhanced to support SCTP
(Stream Control Transmission Protocol) parsing and classification.

o Replace parameter “ enCustUdp” with “ sctpPort” where the

“ enCustUdp” is no longer required by the enhanced custom LUT2

operation.

To maintain backward compatibility, set “ sctpPort” to 0. It is not required to

update the tables with multiple paIpInfo_t entries unless “ enCustUdp” is

used.

 Packet routing configuration data structure paRouteInfo_t is enhanced to support
enhanced custom lookup operation, SRIO routing and optional post-classification
command processing by adding following parameters:

o Custom Type and Custom Index

o SRIO packet type

o Optional command pointer

To maintain backward compatibility, all the new parameters should be set to 0. If
there are some tables with one or more paRouteInfo_t entries in the application, it
is desired to add four extra 0s into each entry to avoid unexpected behavior.

 Clarify the packet destination definitions for “ continue parse” by replacing

“ pa_DEST_CONTINUE_PARSE” and

“ pa_DEST_CONTINUE_PARSE_C1” with the following two definitions:

o pa_DEST_CONTINUE_PARSE_LUT1: Packet remains in PA sub-system
for more parsing and LUT1 classification

o pa_DEST_CONTINUE_PARSE_LUT2: Packet remains in PA sub-system
for more parsing and LUT2 classification

To maintain backward compatibility, replace

“ pa_DEST_CONTINUE_PARSE_C1” with

“ pa_DEST_CONTINUE_PARSE_LUT1” and replace

“ pa_DEST_CONTINUE_PARSE” with

“ pa_DEST_CONTINUE_PARSE_LUT2” if the next classification is

UDP/TCP/GTP-U (LUT2).

 The command buffer size requirement definition group cmdMaxBufSize has been renamed

to cmdMinBufSize which defines the minimum buffer size required to contain the

configuration command packets as defined below:

o pa_ADD_MAC_MIN_CMD_BUF_SIZE_BYTES

o pa_DEL_HANDLE_MIN_CMD_BUF_SIZE_BYTES

o pa_DEL_L4_HANDLE_MIN_CMD_BUF_SIZE_BYTES

o pa_ADD_IP_MIN_CMD_BUF_SIZE_BYTES

o pa_ADD_PORT_MIN_CMD_BUF_SIZE_BYTES

o pa_CONFIG_EXCEPTION_ROUTE_MIN_CMD_BUF_SIZE_BYTES

o pa_REQUEST_STATS_MIN_CMD_BUF_SIZE_BYTES

Release 1.1.0.5:

 PA examples have compile option: SIMULATOR_SUPPORT. In case if example
needs to be executed in simulator please compile with define
SIMULATOR_SUPPORT. Alternatively set following variables at run time:

o cpswSimTest = 0

o cpswLpbkMode = CPSW_LOOPBACK_PA

 PA examples have compile option: SIMULATOR_SUPPORT. In case if example
needs to be executed in simulator please compile with define
SIMULATOR_SUPPORT.

 Added support for additional PDK packages

 Enhanced all examples and unit tests to run on both the simulator and the real
silicon.

Release 1.1.0.4:

 Support C66 ELF

 Added PA LLD version related APIs

 Update PA examples and Unit Tests per Keystone C6616 PDK 1.0.0.9

Release 1.1.0.3:

 Support both COFF and ELF

 Update PA examples and Unit Tests per Keystone C6616 PDK 1.0.0.8

Release 1.1.0.2:

 Support ELF

Release 1.1.0.1:

 Added EMAC test example

 Added build option to support both Keystone C6616 and C6608 release package

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00068852 Major PA Firmware Error on QT (Burst packets handling in PA)

Release 1.1.0.0:

 Modified types from XDC to C99

 Changed all source, header, and example code to reflect CSL include path change in

Keystone C6616 CSL version 1.0.0.14

 Changed XDC tool version to 3.16.02.32 in example and test projects

 Modified the PA LLD APIs to remove the TI XDIAS dependency

o Pa_numAlloc() is removed. The constant pa_N_BUFS should be used to define the

number of memory buffers required by PA LLD instead.

o Pa_alloc (const IALG_Params*, struct IALG_Fxns **, IALG_MemRec *) is

replaced with the new API Pa_getBufferReq(paSizeInfo_t *, int size[], int align[]).

 The ILAG_Params type of configuration information is replaced by

paSizeInfo_t.

 The optional struct IALG_Fxns pointer is removed

 The IALG_MemRec is replaced with the memory size and alignment

requirement arrays.

o Pa_init (IALG_Handle , const IALG_MemRec *, IALG_Handle , const

IALG_Params *) is replaced with the new API Pa_create (paConfig_t *cfg, void*

bases[], Pa_Handle *pHandle).

 The ILAG_Params type of configuration information is replaced by

paConfig_t.

 This API should be called with the allocated memory buffer base addresses

in stead of the IALG_MemRec.

 This API will return the PA LLD handle which identifies the PA LLD

instance and should be used for all other PA LLD API calls.

o Pa_free (IALG_Handle , IALG_MemRec *) is replaced with the new API Pa_close

(Pa_Handle handle, void* bases[])

 This function returns the allocated memory buffer base addresses in array

bases[] so that the application can free the buffers.

 Modified the PA LLD to remove unnecessary source level dependencies

o Replace the local CSL file src/cslr_pass.h with the cslr_pa_ss.h in the CSL

package.

o Move the PA system statistics related definitions from src/pafrm.h to pa.h and

rename sysStats_t to paSysStats_t.

 The application code no longer needs to include “src/pafrm.h”

 Need to search and replace sysStats_t with paSysStats_t at the application

code.

o Rename pasahost_temp.h to pasahost.h

 Need to search and replace “pasahost_temp.h” with “pasahost.h”

o The application no longer needs to declare the global variable passRegs.

 Resolved IRs

IR Parent/

Child Number

Severity

Level IR Description

00068460 Critical PA firmware not accepting the ARP ethertype

00068119 Minor PA LLD to use PA CSL from the CSL package

00067721 Major Remove dependency of external variables

00061217 Minor Big endian library mis-named

Release 1.0.0.7:

 Modifications to the examples and unit tests to be compatible with the latest CPPI and

QMSS LLD (version 1.0.0.5).

Release 1.0.0.6:

 Modifications to the PDSP firmware to support the latest Keystone C6616/C6608

simulator (0.8.0)

 Added Custom Lookup support

Release 1.0.0.5:

 Modifications to the examples and unit tests to support the new CPPI specification (4.2.9)

Release 1.0.0.4:

 Internal Release only

Release 1.0.0.3:

 Modifications to the examples and unit tests to support the new CPPI specification (4.2.7)

Release 1.0.0.2

Release 1.0.0.1:

 Internal Release only

Release 1.0.0.0:

 Initial Release

Licensing

Please refer to the software Manifest document for the details.

Delivery Package

There is no separate delivery package. The PA LLD is being delivered as part of PDK within the

MCSDK.

Installation Instructions

The LLD is currently bundled as part of Platform Development Kit (PDK) within the MCSDK.

Refer installation instruction to the release notes provided for PDK.

Directory structure

After installation the PA LLD has the following directory structure:

The following table explains each individual directory:

Directory Name Description

ti/drv/pa

The top level directory contains the following:-

1. Environment configuration batch file

The file “setupenv.bat” is used to configure the build environment

for the PA low level driver.

2. XDC Build and Package files

These files (config.bld, package.xdc etc) are the XDC build files

which are used to create the PA package.

3. Exported Driver header file

Header files which are provided by the PA low level driver and

should be used by the application developers for driver

customization and usage.

ti/drv/pa/build The directory contains internal XDC build related files which are used to

create the PA low level driver package.

ti/drv/pa/docs The directory contains the PA low level driver documentation.

ti/drv/pa/example The “example” directory in the PA low level driver contains a simple

example and an EMAC example.

ti/drv/pa/test The “test” directory in the PA low level driver contains various unit tests

ti/drv/pa/fw C data files required to configure the PA hardware sub-system.

ti/drv/pa/lib The “lib” folder has pre-built Big and Little Endian libraries for the PA low

level driver along with their code/data size information.

ti/drv/pa/package Internal PA low level driver package files.

ti/drv/pa/src Source code for the PA low level driver.

Customer Documentation List

Table 4 lists the documents that are accessible through the /docs folder on the product installation

CD or in the delivery package.

Table 4 Product Documentation included with this Release

Document # Document Title File Name

1 API documentation (generated by Doxygen)
docs/paDocs.ch

m

2 Release Notes (this document)
docs/ReleaseNot

es_PA_LLD.pdf

3 Software Manifest document

docs/PA_LLD_

SoftwareManife

st.pdf

