

SRIO Driver

Release Notes

Applies to Product Release: 02.00.00.01

Publication DateMay 02,2012

Texas Instruments, Incorporated

20450 Century Boulevard

Germantown, MD 20874 USA

VP00102-Form-1

Revision D

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/

Contents

Overview... 1

LLD Dependencies ... 1

New/Updated Features and Quality .. 1

Resolved Incident Reports (IR) .. 5

Known Issues/Limitations .. 5

Licensing... 5

Delivery Package .. 5

Installation Instructions... 5

Test and Example.. 6

SRIO Loopback Test .. 6

SRIO Example.. 7

Customer Documentation List .. 8

SRIO Driver version 02.00.00.01

Overview

This document provides the release information for the latest SRIO driver which should be used by

drivers and application that interface with SRIO IP.

SRIO Driver module includes:

• Compiled library (Big and Little) Endian of SRIO Driver.

• Source code.

• API reference guide

• Design Documentation

LLD Dependencies

LLD is dependent on following external components delivered in PDK package:

- CSL

- CPPI LLD

- QMSS LLD

New/Updated Features and Quality

This is an engineering release, tested by the development team.

Release 2.0.0.1:

• Modification for single LLD library to work for all platforms. Moved the default location

of C66x libraries to lib\c66x inside component directory

Release 2.0.0.0:

• Additional Keystone 2 device support

Release 1.0.1.3:

• Fix for driver not performing writeback of descriptor sitting in cache when using App

Managed config

Release 1.0.1.2:

• SRIO modes (Type11, Type9 and DIO) specific code in common functions are separated

into individual mode specific functions

• Enhanced driver to support processing of DIO ISR to get transaction completion code

Release Notes

Release 1.0.1.1:

• Driver support for hardware assigned Letter field for Type11 message

• Support for same TX queue for multiple driver instances

• Added #pragma CODE_SECTION to driver functions to allow code placements in

different memory sections

Release 1.0.1.0:

• Added a new example demonstrating interrupt at the end of Direct IO write/read

• Bug fixes (refer Resolved IRs section)

Release 1.0.0.14:

• Build Infrastructure support for Makefiles.

Release 1.0.0.13:

• Deprecated support for C64P ELF and COFF. Only C66 ELF is supported now.

• Extended DIO socket support

o Deprecated the Srio_sockSendDoorbell API. Use the Srio_sockSend API for

DIO sockets to send doorbells

o Use the Srio_sockRecv API to receive doorbells.

o Added a new handler for handling DIO completion interrupts

Srio_dioCompletionIsr. Applications need to ensure that this is plugged with

their interrupt managed routines or can be called in polling mode.

o Blocking and Non-blocking support for DIO sockets.

o New socket options Srio_Opt_DIO_SOCK_COMP_CODE &

Srio_Opt_REGISTER_DOORBELL are added.

• OSAL extensions to ensure descriptors are invalidated & written back if they are modified.
o Srio_osalBeginDescriptorAccess

o Srio_osalEndDescriptorAccess

• Changes for limiting doxygen requirement only during the release

• Copyright modification to TI BSD

• SIMULATOR_SUPPORT is disabled by default for the library being included for

examples to run on EVM.

Release 1.0.0.12:

• Renamed the test and example project files to be compliant to execute with the PDK

Project creation script.

• OSAL Fixed in the Test and Example to ensure that BIOS Memory_alloc is not invoked

from ISR context.

• Fixed a bug in the DIO socket binding to ensure that the correct status flag was updated.

Release 1.0.0.11:

• The definition SIMULATOR_SUPPORT has been added to differentiate between the

driver dependencies between the simulator and the device. Please ensure that all test and

example code is built with this definition. All pre-built libraries are compiled with this flag

switched off so they will work by default on the simulator.

Release 1.0.0.10:

• The csl_srioAuxTundra.h was renamed to csl_srioAuxPhyLayer.h.

• The function Srio_processReceivedBD has now been exposed to the application and can

be now used by applications which handle SRIO interrupt by themselves.

Release 1.0.0.9:

• C66 Target support

• SRIO Driver has been validated on QT for the following features

o Type11

o Type9

o DIO

The driver should be recompiled with the QT_DEBUG compilation flag to build the SRIO

driver for QT.

• Modifications to support the new CPPI (1.0.0.11) and QMSS (1.0.0.11) LLD

Release 1.0.0.8:

• Added ELF & COFF support.

• OSAL API have been extended:

o Cache Hooks added to the driver for CX Simulator

o Critical Section Hooks have been modified to differentiate between

� Single Core

This OSAL hook is required to protect the resources from access on a single

core but between multiple threads.

� Multi Core

This OSAL hook is required to protect shared resources from access across

multiple cores.

o Memory Allocation/Cleanup hooks have been modified to differentiate between

� Control Path

These allocations are done during initialization and control path

� Data Path

This is applicable only for Driver Managed configuration and is used in the

data path

The hooks will allow application developers to plug a fast OSAL implementation

for data path allocations.

• Driver Managed Configuration now exposes the accumulator configuration to the

application.

• Added new RAW exported cleanup API in the Application Managed Configuration which

needs to be provided by the application to free received data.

• SRIO Device Initialization code has been removed from the prebuilt library. Applications

now need to ensure that they initialize the SRIO IP block before calling the SRIO driver

API’s.

• Test and Example code updated to use the Cache hooks for the CX Simulator.

• Updated to use the new CPPI and QMSS Library 1.0.0.10

Release 1.0.0.7:

• Added ELF support. Prebuilt driver libraries are ELF only.

• Fixed compilation warnings in the test project.

• Fixed compilation error in SRIO Initialization sequence for QT builds.

Release 1.0.0.6:

• Direct IO Support added

o The SRIO driver is extended to handle the DIO sockets. The support has NOT been

tested since the simulator does not support this functionality. DIO support in the

driver is experimental and is subject to change in the future.

• Type9 Support added

o The SRIO driver is extended to handle the Type9 sockets. The support has NOT

been tested since the simulator does not support this functionality. Type9 support in

the driver is experimental and is subject to change in the future.

• C99 Types

o The SRIO driver has been modified to use the C99 types from the previous

implementation which used XDC types.

• SRIO Driver modified to reflect CSL include path change

• Modifications to support the new CPPI & QMSS Version 1.0.0.8 Libraries.

• Updated SRIO Driver Initialization sequence for QT.

• SRIO Driver was tested on QT. The driver test works in polled mode. The driver has not

been verified for interrupt support & Multicore.

• Fixed IR - SDOCM00068684 NySh SRIO LLD: Receive configuration errors in
srio_drv.c

Release 1.0.0.5:

• Modifications to support the new CPPI & QMSS Version 1.0.0.5 Libraries.

Release 1.0.0.4:

• Modifications to the “test” & “example” configuration files to support the whole program

build profile.

Release 1.0.0.3:

• Modifications to the driver to support the new CPPI specification (4.2.9)

• Support for RAW Sockets.

• Support for Interrupts.

• Extended configuration support for applications.

Release 1.0.0.2:

• Modifications to the driver to support the new CPPI specification (4.2.7)

Release 1.0.0.1:

• Multi-core support

Release 1.0.0.0:

• Initial Release

Resolved Incident Reports (IR)

Table 1 provides information on IR resolutions incorporated into this release.

Table 1 Resolved IRs for this Release

IR Parent/

Child Number

Severity

Level IR Description

Known Issues/Limitations

Table 2 Known Issue IRs for this Release

IR Parent/

Child Number

Severity

Level IR Description

SDSCM00036978

Major

The SRIO driver test and example projects do not work correctly with the CX simulator.

There is an issue with the CX simulator where on reception data from one core is placed

into the receive queue of another core.

Licensing

Please refer to the software Manifest document for the details.

Delivery Package

There is no separate delivery package. The SRIO Driver is being delivered as part of PDK.

Installation Instructions

The LLD is currently bundled as part of Platform Development Kit (PDK). Refer installation

instruction to the release notes provided for PDK.

Directory structure

The following is the directory structure after the SRIO driver package has been installed:

The following table explains the contents of the SRIO package:-

Directory Name Description

ti/drv/srio The top level directory contains the following:-

1. XDC Build and Package files

These files (config.bld, package.xdc etc) are the XDC build

files which are used to create the SRIO package.

2. Exported Driver header file

Header files which are provided by the SRIO driver and should be

used by the application developers for driver customization and

usage.

ti/drv/srio/build The directory contains internal XDC build related files which are used to

create the SRIO Driver package.

ti/drv/srio/device The directory contains the device specific files for the SRIO device driver.

ti/drv/srio/docs The directory contains the SRIO driver documentation.

ti/drv/srio/example The “example” directory in the SRIO driver has a usage example which

explains how the SRIO driver API’s are used to send and receive data.

ti/drv/srio/include The “include” directory has private SRIO driver header files. These files

should not be used by application developers.

ti/drv/srio/lib The “lib” folder has pre-built Big and Little Endian libraries for the SRIO

driver along with their code/data size information.

ti/drv/srio/package Internal SRIO driver package files.

ti/drv/srio/src Source code for the SRIO Driver.

Test and Example

The section documents information about the test and example code located in the SRIO driver.

SRIO Loopback Test

The unit test project provided in the SRIO driver is used by the development teams for validating

the SRIO driver. The test code runs on all 4 cores and executes on a single Nyquist by configuring

the SRIO to operate in loopback mode.

The test code tests the following functionality of the SRIO driver

• Non Blocking RAW Sockets in polled mode

The test case verifies data transfers using Type11 messages over RAW sockets in

non-blocking mode. The driver instance is configured to be operating in polled mode. The

test case polls for received data and validates the data to ensure correctness.

• Normal Non blocking Sockets in interrupt mode

The test case verifies data transfers using Type11 messages over Normal sockets in non

blocking mode. The driver instance is configured to be operating in interrupt mode. The

test case ensures that the data is received and validated to ensure correctness.

• Normal Blocking Sockets in interrupt mode

The test case verifies data transfers using Type11 message over Normal sockets configured

in blocking mode. The test case starts a producer and consumer thread in which the

consumer thread is blocked waiting for data to be received. The producer thread sends a

block of data using Type11 message and the test case ensures that the driver wakes up the

consumer thread on the reception of the data. The consumer is responsible for data

verification.

• Multicore test

The test case runs on 4 cores. Each core is executing a SRIO driver instance and

participates in sending and receiving data. Data is sent as per the following chain

CORE 1 � CORE 2 � CORE 3 � CORE 0 � CORE 1

The test case ensures that the SRIO Driver API can be used across multiple cores. The test

case uses Normal Non-blocking sockets in interrupt mode & Type11 messages for data

transfers. Each core ensures that the received data is validated.

Multicore tests are selected by ensuring that the TEST_MULTICORE option is defined in the

pre-defined symbols. Multicore tests can only be run if 4 cores are synchronized and the resulting

image file is loaded on 4 cores.

Note: To execute on the EVM; please ensure that you power cycle the EVM for every run of the

test.

SRIO Example

The example project is provided to test the pre-built libraries which are provided by the SRIO LLD

and to ensure that these libraries are validated.

The example project runs on 4 cores. Each core is executing a SRIO driver instance and

participates in sending and receiving data. Data is sent as per the following chain

CORE 1 � CORE 2 � CORE 3 � CORE 0 � CORE 1

The test case ensures that the SRIO Driver API can be used across multiple cores. The test case

uses Normal Non-blocking sockets in interrupt mode & Type11 messages for data transfers. Each

core ensures that the received data is validated.

Note: To execute on the EVM; please ensure that you power cycle the EVM for every run

of the example.

Customer Documentation List

Table 3 lists the documents that are accessible through the /docs folder on the product installation

CD or in the delivery package.

Table 3 Product Documentation included with this Release

Document # Document Title File Name

1 API documentation (generated by Doxygen) docs/srioDocs.chm

2 Design Document docs/SRIO_SDS.pdf

3 Software Manifest document Docs/ SRIO_LLD_SoftwareManifest.pdf

