

20450 Century Boulevard
Germantown, MD 20874
Fax: (301) 515-7954

TCP3D Driver

Software Design Specification (SDS)

Revision B

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page ii

Revision Record

Document Title: Software Design Specification

Revision

Description of Change
A 1. Initial Driver using Swi & List Modules – Code Drop Eng1

2. Driver re-designed using pseudo PaRAM approach – Code Drop Eng2
3. Packaged with version tracking, tested with BIOS CPINTC – Code

Drop 1.0.0.0
4. Second TCP3D instance support added, not tested – Code Drop

1.0.0.1
5. Wrap-around mode and Split mode supported, Export name

compliance added – Code Drop 1.0.0.2
6. EDMA channels optimization – Code Drop 1.0.0.3 eng
7. Wrap-around mode working after channel optimization, Notification

Event support added – Code Drop 1.0.0.4
8. Run-time selection of optional outputs, Enqueue API optimization,

New deinit API, Race condition fixes added – Code Drop 1.0.0.5
9. Instance parameters clean-up, few parameters renamed, API

description updates – Code Drop 1.0.0.6.
10. Driver types changed to C99, support for mini package, minor bug

fixes to the test code – Code Drop 1.0.0.7.
11. Added cache coherency hooks to example and test code. Changed the

memory allocation to align with cache line size. – Code Drop 1.0.0.10.
12. Updated the enqueue and start API flow diagrams to reflect the latest

changes and description at various places are updated. Also, update the
test function flow diagrams according to the new testing sequences. –
Code drop 1.0.0.12

B 1. Updated document to reflect the addition of next code block dummy
and next code block dummy notification PaRAM entries to avoid a
race condition for the current block when updating OPT and LINK
fields.

Note: Be sure the Revision of this document matches the QRSA record Revision letter. The
revision letter gets incremented only upon approval via the Quality Record System.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page iii

TABLE OF CONTENTS

1 SCOPE .. 1

2 REFERENCES ... 1

3 DEFINITIONS ... 1

4 OVERVIEW ... 1

5 DESIGN .. 5

5.1 GOALS .. 5
5.2 TCP3D DRIVER ... 5

5.2.1 Decoding process in the uplink bit processing chain .. 5
5.2.2 Pseudo PaRAM Input List Approach ... 7
5.2.3 Driver States .. 9
5.2.4 EDMA Channel & PaRAM entry usage ... 10

5.2.4.1 Data PaRAM Entries ... 10
5.2.4.2 Control PaRAM entries... 11

5.2.5 Resource Requirements .. 14
5.2.5.1 EDMA Channels requirements ... 14
5.2.5.2 Memory requirements ... 14

5.2.6 Input Configuration registers preparation .. 14
5.2.7 Notification Mechanism ... 16

5.3 TCP3D DRIVER INTERFACE ... 17
5.3.1 Initialization Sequence ... 17
5.3.2 Enqueue Function .. 19
5.3.3 Start Function .. 23
5.3.4 Status & Control Functions ... 26

5.4 OSAL .. 26
5.4.1 Logging API ... 27

6 TESTING .. 28

7 INTEGRATION ... 34

7.1 PRE-BUILT APPROACH .. 35
7.2 REBUILD LIBRARY .. 35

8 FUTURE EXTENSIONS ... 36

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 1

1 Scope
This document describes the functionality, architecture, and operation of the TCP3D Driver.

2 References
The following references are related to the feature described in this document and shall be
consulted as necessary.

No Referenced Document Control Number Description
1 <Name & Version> PRD Product Requirements
2 Nyquist/Shannon SAS Version 0.5 Software Architecture

Specification
3 TCP3D Users Guide Version 1.0.0.0 User guide for 3rd Generation

Turbo Coprocessor
Peripheral for Decoding

Table 1. Referenced Materials

3 Definitions

Acronym Description

API Application Programming Interface

TCP3D 3rd Generation Turbo-Decoder Coprocessor Peripheral

DSP Digital Signal Processor

OSAL OS Abstraction Layer

LTE Long Term Evolution

WiMax Worldwide Interoperability for Microwave Access

Table 2. Definitions

4 Overview
The third generation Turbo Coprocessor (TCP3) is a programmable peripheral for decoding turbo
codes used in 3G wireless systems like 3GPP, LTE, WiMax in an iterative manner. This
peripheral, with two Maximum A-posteriori Probability (MAP) decoders, is integrated into
Texas Instruments' DSP devices for use in wireless base stations and/or in user equipments.

Input to the TCP3 decoder (TCP3D) is channel soft decisions for systematic and parity bits
(LLRs) and the outputs are hard decisions. Some applications may require the soft bit
information for all the bits (systematic and parity) at the end of turbo decoding process. This

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 2

information can be used as a feedback between turbo decoder and equalization block in the
receiver. TCP3D can output these bits as programmed in the input configuration parameter.

The TCP3D co-processor consists of the following blocks:

1. Control registers:

Useful for specifying the general use of the decoder to tell the decoder about the
technology (LTE, WiMax or 3GPP) and system configuration for which it will be used.

2. Input configuration registers (INCFG):

Useful for specifying the configuration to be applied for performing the Decoding on
input code block data, specifying the input and output formats, etc.

3. Input data memory (LLR, INTLVR):

Used for transferring the channel soft bits (LLRs) and optional interleaver from the DSP
for decoding.

4. Output data memory (HD, SD):

Used for storing the hard decisions (HD) from the decoder engine and optional soft bits
(SD).

5. Output Status registers (STS):

Status of decoding will be stored in these registers and could be read by application if
needed.

6. Decoder Engine:

Performs the actual decoding on the LLRs and an event is generated at the end to notify
the DSP.

This document assumes that the reader has familiarized him/herself with the TCP3D User’s
Guide and understands the programming of EDMA3 for data transfers.

The data transfer between DSP and TCP3D is best performed via EDMA transfers. The TCP3D
has two synchronization events, REVT0 and REVT1 for Ping and Pong engines, connected to
EDMA channel controller as shown in Figure 1. TCP3D requires a set of input configuration
parameters (packed 15 registers) describing the code block to be decoded.

The basic decoding process requires minimum of two input transfers and one output transfer.
These transfers are best done by using EDMA PaRAMs. There are optional input and output
transfers that could be done depending on the system requirement/configuration.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 3

INCFG Input LLR

DECODE

TRIG INTLVR HD

 REVT0

SD STS

ISR

DSP Initiates

TCP3 Decoding

EDMA Transfer

DSP Processing

Time

INT

DSP / Application TCP3 DecoderEDMA3 Controller

REVT0/1

Configuration
Registers

LLR data

Hard
Decisions

Soft Decisions

Status
Registers

TCP3D memory

Interleaver MAP Decoder

Configuration
Registers

LLR data

Hard
Decisions

Soft Decisions

Status
Registers

Memory

Interleaver

Preparation

ISR

INT

Config Registers

PaRAMs

LLR data

Interleaver

Hard Decisions

Soft Decisions

Status Registers

Input Channels

Output Channels

Figure 1 - Basic Decoding process for single code block

The decoding processing can be described as below and is repeated for every code block.

1. inputs transfer
- DSP/Application initiates the process by manually triggering the EDMA input channel to

start the input transfers via EDMA.

- The EDMA transfers the input configuration registers to TCP3D memory first and then links
in the PaRAM entry which transfers the input data (systematic and parity bit streams) for
decoding to TCP3D memory.

- If the optional inputs are used in the system they will be chained to LLR PaRAM.

2. triggering the decoder
- If the mode control register bit for auto trigger is enabled, then the decoding starts

automatically when the expected number of input bytes transferred into TCP3D
configuration registers and then into the LLR memory successfully. This is the most
preferred method for performance reasons and ease of use.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 4

- If the auto trigger is disabled, TCP3D requires that after input data transfers, the trigger
register must be written to start the decoding. This option was provided mostly for legacy
reasons.

3. outputs transfer
- After the decoding is complete, TCP3D issues the REVT signal to EDMA controller. This

could be used to trigger the output channel to initiate the decoded output data (packed bits)
transfer from TCP3D memory to DSP memory.

- The optional outputs are transferred depending on the configuration bits set in the input
configuration register by the DSP/Application.

- After the transfer is completed, the EDMA controller can be set to generate an interrupt for
DSP to signal the end of the decoding process for the code block.

- The next code block input data to TCP3D memory cannot be transferred until the outputs for
the previous code block were read from the TCP3D output memory. It calculates the number
of bytes must be read from all the output memories from the configuration register values
and waits until all of them are read to switch its internal state machine.

The above illustration gives the user the basic understanding of the data flow; however for all
practical purposes, it may not yield the throughput requirements in a given system. To meet such
requirements, the EDMA PaRAM linking and chaining features must be used and also efficient
use the following TCP3 decoder features is needed:

• Two memories (PING and PONG) could be used to pipeline the input data while decoder
engine is working on other memory.

• Depending on the mode (double buffer mode or split mode) the REVTs would be issued by
the TCP3D different times and actions to be taken based on that would be different. Also, the
complexity of programming the EDMA varies based on the mode.

The challenge lies in preparing the input configuration registers as fast as possible and get the
input code block data to the TCP3D memory as soon as possible so the decoder engine could be
engaged fully. The code blocks arrival for decoding may be in bursts and random depending on
the system. To support any arrival pattern, the driver needs to support some kind of queuing
mechanism so that the decoding can continue without DSP intervention and should have a
programmable notification mechanism to wake-up DSP when a set of code blocks are decoded.
This method helps if the TCP3D is slower than the input data ready.

This document is not intended to cover the details about the TCP3 decoder features and their
usage such as modes and how to use them, details about various registers, etc. It is highly
recommended to the user to refer to the user guide [3] for details.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 5

5 Design

5.1 Goals
TCP3D driver design goals are listed below:

1. Driver runs in continuous mode, unaware of the frame boundary.
2. Driver involves minimum CPU intervention, minimum context switching.
3. Driver receives code block decoding requests at random times or in bursts.
4. Minimum latency completion notification and programmable.
5. Support multiple instances to use each peripheral instance independently.
6. Driver supports multi core input and multi core output destinations.

5.2 TCP3D Driver
This section describes one TCP3D driver design approach that is selected as a candidate that best
satisfies the required design goals.

5.2.1 Decoding process in the uplink bit processing chain
The position of the TCP3D driver in the LTE uplink bit processing chain is illustrated in Figure 2
as an example.

The pre-processing involves more intensive calculations and it includes soft slicing, de-
scrambling, de-multiplexing, code block segmentation and rate de-matching. At the end of rate
de-matching, three bit streams (one systematic and two parity bits) will be ready for a code block
along with the tail bits. These tail bits are used to calculate the initial beta state values which go
into the packed input configuration registers and are transferred first to the TCP3D before
transferring the data bit streams for decoding.

The post-processing mainly consists of the code block concatenation and CRC checking. TCP3D
can internally calculate CRC (type B) for the code blocks. This would be sufficient for the
transport blocks with one code block and if the transport block consisting of more than one code
block, the transport block CRC (type A) has to be calculated by DSP.

Staging of pre-processing is the key to the system design. If the pre-processing is faster than
TCP3 decoder, the code blocks have to be parked before the TCP3D is free. In case of LTE,
availability of PING and PONG memories helps in pipelining one code block while the decoder
engine is busy. However, this would not be sufficient in a typical application use, so the driver
should be capable of queuing the code blocks in a non-blocking manner and should be able to
work on the queue without DSP intervention. Current driver uses a method for staging the code
blocks as soon as they are available into an input list while the decoder is busy working on
previous code blocks. This can be viewed as an input queue to the TCP3 decoder and driver takes
the code blocks from this queue and sends for decoding as soon as the decoder is free. Details of
this method are discussed in the following chapters.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 6

Soft Slicer, De-scrambling,
Channel De-interleaver, De-

multiplex

Code Block Segmentaion

Rate De-Matching

TCP3D Driver

Code Block Concatenation

LTE Uplink Bit
Processing Chain

TCP3D

P
re

-p
ro

ce
ss

in
g

P
os

t-p
ro

ce
ss

in
g

CRC check

Figure 2 - TCP3D driver in the LTE uplink bit processing chain

Figure 3 shows the TCP3D driver usage example showing the pre and post processing task loads
distributed among the multiple cores. Since the current TCP3D driver is not supporting the muti-
core interface; the decoding requests are always sent from the master-core while the requests
from other-cores can be routed through the use of queues.

The pre-processing task can be started when the soft data is ready from symbol processing task
(not shown in the diagram) which could be done on different threads or on different cores for
load balancing. At the end of rate de-matching, the code blocks are ready to be sent to TCP3D for
decoding. The pre-processing task on the master core loads the code blocks prepared either on
the same core or from the other core into the driver input list by using the Enqueue API as shown
in the diagram.

For each code block, the TCP3D requires the input configuration registers to be loaded with the
right values. These values range from specifying the input and output formats, flags to be set if
any optional inputs or outputs are present to be transferred, to filling the beta state values. Refer
to the user guide for detailed list of parameters. Enqueue function prepares a set of required
EDMA PaRAMs for each code block and stored in the input list memory. Preparing all the 15

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 7

registers at run-time impacts the throughput performance and the current driver design defines
some optimization tricks in the later chapters and the supporting utility functions for preparing
the registers are also provided to do the minimum preparation at run-time.

Pre processing
Task (Slave core)

Pre processing
Task (Master core)

Post processing Task
(core a)

Post processing Task
(core b)

Free
Queue

Input
Queue

TCP3D Driver

Completion
Interrupt

Pong ListPing List
Enqueue

Pre processing
Task (Slave core)

Figure 3 - Multi-task/Multi-core usage example for TCP3D driver

When the Driver is started, it transfers one code block data to TCP3D memory using one such
EDMA PaRAM set and when the decoding is complete the output(s) are read from TCP3D
memory using EDMA and the next block data is transferred. If the optional notification flag is set
for any given code block, the event configured during init time will be generated by the driver.
Application can use this event to trigger the post-processing tasks.

5.2.2 Pseudo PaRAM Input List Approach
For each code block, one set of EDMA PaRAMs are required for doing input and output transfers
to and from the TCP3 decoder. They are prepared and stored in the input list first and when the
decoder is free to take one, these PaRAMs are used for execution. There are two possibilities for
where to keep these prepared PaRAM sets:

1. one approach is to store them in the EDMA PaRAM memory directly
2. another approach is to keep them in the DSP layer-2 (L2) memory and copy them to

EDMA PaRAM memory during run-time

The second approach was chosen mainly for the following reasons while it requires some
additional EDMA channels for run-time operations. The name pseudo PaRAM is used to
represent that the list is used for placing the actual EDMA PaRAMs in another memory area.

- it costs less system resources - less EDMA PaRAMs

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 8

- gives more freedom to choose the input list size, not restricted by EDMA PaRAMs
capacity but limited by DSP memory capacity

- run-time cycles for preparing and linking the PaRAMs will be much lesser compared
to the other approach

Figure 4 gives the high-level flow diagram for the approach using two lists for PING & PONG
separately. As you can see in the diagram, there are few optional features, represented as dotted
boxes, supported by the driver for selectively reading the outputs and also for generating the
notification event which could be programmed for each code block with Enqueue API.

The driver is designed to provide the user ease of use and less programming hassle to build the
input queue using the EDMA PaRAMs through linking and chaining. The main features of this
approach are listed below:

• TCP3D driver uses the input list as two pseudo PaRAM lists (as interleaved) for using with
the PING and PONG memories separately.

• Maximum number of code blocks that could be queued is programmable during driver
initialization (shared between the two lists).

• Driver builds the input list independent of the decoder running or not.

• Both the reserved EDMA channels for PING & PONG are used for transferring the code
block data to/from the TCP3D memories. Allows the input transfers to be done while the
decoder is working on the other memory.

• EDMA chaining feature is used to keep the TCP3 decoder engaged continuously until the
end of input list.

• Two more EDMA channels are used for transferring the pseudo PaRAM sets into the EDMA
PaRAM memory and triggering of these channels are done using the transfer completion
chaining feature. This allows the application to fill the input list independently of the
execution.

• Completion notification through the system event can be requested by the application per
code block basis. Application can use this feature to start the post-processing upon decoding
a specific code block and also to track the last block decoding.

• Driver provides a means to support the continuous decoding even if the input list is full. This
feature is referred as wrap-around mode for driver.

• It has also the optional reset function to clear the input list and start using from the beginning
of the list. This is useful for frame-based applications like LTE & WIMAX.

• Driver runs on a single core. Requests from other cores can be received via some queue
mechanism and passed to the driver.

• Driver allows the application to choose when to start executing from the list. Once started,
the driver keeps running as long as the list is not-empty and gets restarted from Enqueue if
paused.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 9

Copy one pseudo
PaRAM set to Link

PaRAM space

REVT0 REVT1

Start Ping Start Pong

Input Config
Register Transfer

Input LLR Data
Trasfer

Status Read

Hard Decision
Read

TCP3 Decoder

Status Read

Hard Decision
Read

Copy one pseudo
PaRAM set to Link

PaRAM space

Input Config
Register Transfer

Input LLR Data
Trasfer

End of Chain? End of Chain?

Pause Pause

Soft Decision
Read

Soft Decision
Read

Generate Event Generate Event

NoNo

Yes Yes

Figure 4 - High-level Flow diagram using the Input List approach

5.2.3 Driver States
TCP3D driver has very simple state machine as shown in Figure 5. When the driver is first
started, it will transition from INIT to RUNNING after starting (one of the lists) and it will
continue to be in this state as long as the chain to the next code block exists (in both the input

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 10

lists). If the chain to the next code block (in any one of the lists) is not available, the driver
reaches the PAUSE state. There are few possibilities for this state and driver needs to detect the
same and restart if needed.

1. There are no more code blocks in the list for execution (end of list).
2. Next code block was not available when the current code block was taken for execution

from the list. But added to the list later.

If the second case, the driver needs to be started again, restart, to process the remaining blocks
from the list. It can be done using start API which brings the driver state to RUNNING. This
condition checking is done from the enqueue function if there are more blocks being enqueued or
else the application has to do the checking while waiting for the last code block to be decoded.

INIT

RUNNING PAUSE

Figure 5 - Driver state diagram

5.2.4 EDMA Channel & PaRAM entry usage
Figure 7 illustrates the details of the various PaRAM entries used in the driver flow. The red
arrows represent the trigger path, while blue arrows represent the link path.

5.2.4.1 Data PaRAM Entries
Each code block is handled with five pseudo PaRAM entries which are copied to the reserved
EDMA PaRAM area for code block decoding using control channel, i.e. Ch L2P:

1) “Cfg_n” – This entry transfers the TCP3D input configuration registers (n: CB index). It
is executed on the REVT channel, i.e. Ch Revt.

2) “Llr_n” – This entry transfer the three input data streams from DSP memory to TCP3D
memory. It is executed on the Ch Revt triggered through chaining from “Cfg_n”entry.

3) “Hd_n” – This entry transfers the output decoded bits from TCP3D memory to DSP
memory. It is executed on the Ch Revt triggered by the REVT event generated by TCP3D
upon decoding the code block.

4) “Sts_n” – This entry transfers the three status register values from TCP3D memory to
DSP memory. It is executed on the Ch Revt triggered through chaining from
“Hd_n”entry.

5) “Sd_n” – This entry transfers the output soft decision values from TCP3D memory to
DSP memory. It is executed on the Ch Revt triggered through chaining from
“Sts_n”entry.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 11

5.2.4.2 Control PaRAM entries
Several EDMA PaRAM entries and one physical EDMA channel, i.e. Ch L2P, is dedicated for
each path execution and control operation as shown in Figure 7. The control PaRAM entries are
listed below:

1) “Dummy” – Each code block execution starts with this entry. As the name indicates, it
does nothing but links in the first link PaRAM of the code block, i.e. "Cfg_n", and
triggers the Ch Revt (see Figure 7). This is the PaRAM entry sitting on the Ch Revt after
driver initialization.

2) “Pause” – It copies the “stop” flag to the driver stop variable and also copies the
"PAUSE" state value to the driver state variable, links in the “Dummy” entry. This halts
the driver from executing in that path until started again. It is set to generate completion
interrupt all of the time and passing the interrupt to the DSP must be controlled by using
the TPCC_IER/TPCC_IERH bits to enable or disable as needed. It is disabled during
initialization and is controlled at run-time using driver control function.

3) “Notify” – It copies the notification event number from the driver instance to the
CP_INTC0 set index register thus generating a system interrupt to CP_INTC0. This entry
links and triggers the "Pause" entry.

4) “NotifyD” – The operation of this entry is same as "Notify" except for the linking. It links
in the “Dummy” entry and triggers to start the execution of the next code block.

5) “NextCBDum_n” – This entry is used if there is another code block to decode in the list,
and links to the next code block’s “Dummy” entry. It chains to Ch L2P on completion.
It is executed on the Ch Revt triggered through chaining from the “Sd_n” entry.

6) “NextCBNtfd_n” – This entry is used if there is another code block to decode in the list,
and notification is required before decoding the next code block. This entry links to the
“NotifyD” entry. It is executed on the Ch Revt triggered through chaining from the
“Sd_n” entry.

7) “WrapCnt” – It copies the path count value to a driver variable that is used in determining
the output execution status which is needed in wrap-around case for proper functionality.
By default this links in the "Pause" entry and triggers the corresponding Ch Revt. If the
link to the next block is established it links in the "Dummy" entry and triggers the Ch L2P
to start the next code block.

8) “L2P” – It copies one set of PaRAM entries from the L2 memory (pseudo PaRAM buffer)
to the reserved link PaRAM area and triggers the corresponding "REVT" channel for
execution. When the end of list is reached, links in the "L2PReload" entry. This is the
PaRAM entry sitting on the Ch L2P after driver initialization. In the wrap-around mode,
this PaRAM could be used for generating interrupts as needed by application to get
notified when an entry is taken out of input list. This could be useful in the LIST FULL
case.

9) “L2PReload” – Copy of the Ch L2P PaRAM entry "L2P" used for wrap-around case.

Pseudo PaRAM entries 5) and 0 above are present in the list, though only one of them will be
executed, as determined by the notification indication request in the Enqueue API call. Figure 6
depicts the use of “NextCBDum” and “NextCBNftd”. Depending on the need for notification
from the previous code block, the LINK address for that code block is updated to link to either
“NextCBDum” or “NextCBNftd”. Keeping the linking channel the same for either PaRAM

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 12

means that the last code block PaRAM doesn’t require an update to its transfer options, therefore
an 1 word update to the LINK field can be made to the PaRAM for the next code block
enqueued, without fear of running into a race condition of needing to update 2 words.

In the case where no further code blocks are present in the list, the “Notify” PaRAM entry can be
optionally enabled.

HD / SD / STS /
WrapCnt

(Last output PaRAM)
(Always chains to REVT)

NextCBDum
(Link to Dummy, Chain to L2P)

Pause

Dummy

CodeBlock N-1 Code Block PARAMs in List

Configured during Code Block N Enqueue
function call:

DSP optionally changes Code Block N-1
LINK field to point to NextCBDum PaRAM

or NextCBNtfd PaRAM
Default:

No blocks remaining

Notify

NotifyD

NextCBNtfd
(Link to NotifyD, Chain to L2P)

Figure 6 - Next Code Block Handling

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 13

Dummy

Cfg_0

Llr_0

Cfg_1

Llr_1

Cfg_2

Llr_2

Dummy

Ch Revt
(Chain)

Hd_2

Hd_0

Hd_1

Sts_0

Sts_1

Sts_2

Sd_0

Ch Revt
(TCP3D Event)

Sd_1

Dummy

Sd_2

Ch L2P

L2P

Ch L2P
(Manual or Chain)

L2P Reload

Ch Revt

Ch Revt

Cfg_3

Notify

Pause

Chain
Link WrapCnt

NotifyD

NextCBDum
NextCBNtfDOR Ch L2PCh L2P

Dummy
NotifyD

NextCBDum
NextCBNtfDOR Ch L2PCh L2P

Figure 7 - Linking and triggering details of the driver Channels and PaRAM entries

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 14

5.2.5 Resource Requirements

5.2.5.1 EDMA Channels requirements
The EDMA channels required by the driver are summarized in Table 3. The number of required
physical and linked (PaRAMs) channels for using different TCP3D instances is listed separately.

Resource Description TCP3D_A/TCP3D_0 TCP3D_B/TCP3D_1
Revt0 Channel 0 34
Revt1 Channel 1 35
L2P Channel 0 Any Channel Any Channel
L2P Channel 1 Any Channel Any Channel
of linked Channels (PaRAMs) 2 * (5 + 6 + 2) 2 * (5 + 6 + 2)

Table 3 - EDMA Channel requirements

5.2.5.2 Memory requirements
The TCP3D driver memory requirements are summarized in Table 4. The maximum number of
code blocks is denoted as M.

Resource Description TCP3D_A/0 or TCP3D_B/1
Instance Memory 644
Pseudo PaRAM Buffer Size (Bytes) 32 * 5 * M

Table 4 - Memory requirements

The TCP3D driver instance memory includes
a. Driver instance related data parameters
b. Variables used for run-time control operations
c. Array to keep the EDMA specific data – Channels, PaRAM physical addressed, Control

register pointers
d. Debug flags

5.2.6 Input Configuration registers preparation
TCP3D requires all the 15 input configuration registers to be transferred for each code block
before transferring the input data (LLR) streams to its memory. Preparing all these registers with
all the bit-fields at run-time would be expensive and some of registers does not change for a
given system configuration, some of them are known upfront at the frame boundary, etc. Figure 8
gives details on each register and its dependency for LTE or WIMAX modes and Figure 9 gives
details for 3GPP mode.

For all modes, the registers IC2, IC3, IC8-IC11 are typically fixed at the system initialization
time and so these registers are not required to be prepared during run-time. For 3GPP modes,
IC12, IC13, IC14 are not at all used, so these registers become don't cares. These registers are
represented with mesh boxes in the figures.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 15

We are left with few registers that have to be prepared after initialization. Another thing to note
here is that all of these registers depend on the block size, so if you know the block sizes upfront
these registers can be prepared in advance.

- IC0, IC1, IC4-IC7, IC12-IC14 for LTE and WIMAX modes
- IC0, IC1, IC4-IC7 for 3GPP modes

Last thing to note is that the registers IC4-IC7 depend on the actual input data (tail bits) for each
code block, so those registers can only be prepared after the input data is available and beta state
values are computed as described in the user guide [3].

TCP3D driver has bunch of utility functions for preparing these registers for different
combinations as described here depending on user needs ranging from preparing all registers,
prepare only fixed registers, prepare block size dependent, prepare beta state registers, etc.

IC0

IC1

IC2

IC3

IC4

IC5

IC6

IC7

IC8

IC9

IC10

IC11

IC12

IC13

IC14

Beta State Values

Extrinsic Scale Values

ITG Initial Params
(for LTE & WiMAX only)

Typically
FIXED
at INIT

Typically
FIXED
at INIT

- NUM_SW0
- BLK_LN

- SW0_LN_SEL
- SW2_LN_SEL
- SW1_LN

- INTER_LOAD_SEL
- MAXST_EN
- OUT_FLAG_EN
- OUT_ORDER_SEL
- EXT_SCALE_EN
- SOFT_OUT_FLAG_EN
- SOFT_OUT_ORDER_SEL
- SOFT_OUT_FMT
- MIN_ITR
- MAX_ITR
- SNR_VAL
- SNR_REP
- STOP_SEL
- CRC_ITER_PASS
- CRC_SEL

- MAXST_THOLD
- MAXST_VALUE

Computed for each
Code Block

(values depend on
block length K)

Figure 8 - Input Configuration Registers - LTE/WIMAX mode

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 16

IC0

IC1

IC2

IC3

- NUM_SW0
- BLK_LN

- SW0_LN_SEL
- SW2_LN_SEL
- SW1_LN

- INTER_LOAD_SEL
- MAXST_EN
- OUT_FLAG_EN
- OUT_ORDER_SEL
- EXT_SCALE_EN
- SOFT_OUT_FLAG_EN
- SOFT_OUT_ORDER_SEL
- SOFT_OUT_FMT
- MIN_ITR
- MAX_ITR
- SNR_VAL
- SNR_REP
- STOP_SEL
- CRC_ITER_PASS
- CRC_SEL

IC4

IC5

IC6

IC7

IC8

IC9

IC10

IC11

IC12

IC13

IC14

- MAXST_THOLD
- MAXST_VALUE

Beta State Values

Extrinsic Scale Values

ITG Initial Params
(for LTE & WiMAX only)

Typically
FIXED
at INIT

Typically
FIXED
at INIT

Always
set to
ZERO

Computed for each
Code Block

(values depend on
block length K)

Figure 9 - Input Configuration Registers - 3GPP mode

5.2.7 Notification Mechanism
The notification mechanism used in the driver design is to generate a system event using an
EDMA transaction. Application provides the system event number that goes to the interrupt
controller (CP_INTC0) during the initialization time and driver stores the same into the instance
memory.

The interrupt controller has a feature where writing the event number word into the register
STATUS_SET_INDEX_REG causes a system event. Driver relies on this fact and used a control
PaRAM to write the stored event number into this register as programmed during enqueue
function.

It is the responsibility of the application to handle the registration, de-registration of an ISR for
the event with the operating system and take necessary actions. Figure 10 gives an example how
the event is caused by Channel 0 or Channel 1 and possible connections up to GEM cores for a
chosen event number 7.

We use separate notification PaRAMs for each path. There is a possibility in the Split Mode,
where both the PING and PONG engines run independently, both the PaRAMs might issue
writes to the INTC0 register at close proximity in time. In such case, one event could be lost and
so it is recommended to check the output memories to determine if the expected block is decoded
or not when waiting for notification events.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 17

0 1 2 3 4 159

70 70

System Interrupts

0 1 2 3 4 89

CP_INTC (outputs)
Host Interrupts

CP_INTC0

NTF / NTFD
PaRAM

7

STATUS_SET_INDEX_REG

src

dst

Notification from PING

Sets the bit

Ch 0

237

Fixed
mapping

CPINTC Host Intr - (70 + 10 * coreID)

GEM0 Core

INTC

…...

…...

Same Event ID to all Cores

GEM3 Core

INTC

…...

70

NTF / NTFD
PaRAM

7

STATUS_SET_INDEX_REG

src

dst

Notification from PONG

Ch 1

Figure 10 – Notification Mechanism Example

5.3 TCP3D Driver Interface
This chapter covers the details about the important interface features and usage. For specific
details about all the APIs and its description can be obtained from the Doxygen generated API
document in the driver installation. Some of the APIs are briefly addressed in the following
sections as necessary for the illustration.

5.3.1 Initialization Sequence
Before using the driver the application performs several initialization steps as given below:

1) Initialize the EDMA low level driver including the registration of interrupts.
2) Open EDMA physical and linked channels required by driver.
3) Register call back functions associated with the REVT channels for control purposes.
4) Allocate memory for the driver by calling the driver APIs.
5) Initialize all the required configuration parameters in the driver initialization structure for

the given instance.
6) Call driver initialization function.
7) Register the notification event with a call back function for CP_INTC0.

This is illustrated in Figure 11. These steps have to be done for using each TCP3D peripheral
instance. Test application shows how to use the TCP3D initialization functions in a sample init

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 18

function to initialize either TCP3D_N peripherals, where N can be A, B, 0, 1, 2 etc. depending
on which device is being used.

Application can use the two APIs, shown below, defined by the driver for querying the memory
requirements of the driver and then allocate them as requested. The parameters passed by the
structure Tcp3d_SizeCfg to the driver are used by the driver in computing the requirements.

Tcp3d_Result Tcp3d_getNumBuf (IN Tcp3d_SizeCfg *cfg,
 OUT Int16 *nbufs)

Tcp3d_Result Tcp3d_getBufDesc (IN Tcp3d_SizeCfg *cfg,
 OUT Tcp3d_MemBuffer bufs[])

The allocated buffers are passed to the driver with Tcp3d_init() API using the buffer description
structure Tcp3d_MemBuffer.

Tcp3d_Result Tcp3d_init(IN Tcp3d_MemBuffer bufs[],
 IN Tcp3d_InitParams *drvInitParams)

Some of the important things done in the TCP3D driver initialization function are listed below:

• It does various checks and returns with appropriate messages defined by the Tcp3d_Result
enum structure.

• Most of the pseudo PaRAM fields are pre-filled during initialization based on the parameters
provided by the application. This minimizes the time to update the pseudo PaRAM set in the
enqueue function.

• It resets and starts the TCP3D peripheral state machine by writing into its control registers
with the prepared values.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 19

EDMA3 LLD Init

MemAlloc memBuf

Need 2 memBuf

Max Code Blocks

Instance size,
pseudo param Buf Size

Allocate memory for
Instance & Pseudo

param Buffer

bufs, InitParams

Result status,
Instance pointer

Tcp3d_init()

Tcp3d_getBufDesc()

Tcp3d_getNumBuf()

Application

Driver functions
Open EDMA channels,
Register CallBack Func

Fill peripheral instance
specific configuration

values in the init
parameters structure

Register call back
function for the

Notification Event in
CP_INTC0

Figure 11 - TCP3D driver initialization sequence

5.3.2 Enqueue Function
Figure 12 shows the high-level flow diagram of the tasks done in the enqueue function and the
PaRAM Update, Link and Chain operations are expanded in the Figure 13. Refer to the doxygen
generated API documentation for function description with respect to the parameters.

This function primarily has two modes:

1) “Normal mode” – this is the mode where the function is called less than the allocated list
capacity. It always returns with status TCP3D_DRV_NO_ERR in this mode.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 20

2) “Wrap-around mode” – this is the mode where the function is called more than the
allocated list capacity. It is possible that the function might return with status
TCP3D_DRV_INPUT_LIST_FULL in this mode when the expected list does not have
free entries.

Irrespective of the mode, the function tries to call the Tcp3d_start() function at the end when
required flags are set at the time of the check.

As shown in Figure 12, this function has mainly two decision points. First check is done to find
availability of free entry (altered between ping or pong lists) and the second one is for calling the
Tcp3d_start() function. When a free entry is available, the main enqueue operations are done as
illustrated in the flow diagram shown in Figure 13. These operations include pseudo PaRAM set
updates for the given code block, linking the optional output PaRAMs, chain notification
PaRAM and any required chaining to the previous block, storing necessary flags, updating
counters, etc.

The API syntax is given below.

Tcp3d_Result Tcp3d_enqueueCodeBlock(IN Tcp3d_Instance *tcp3dInst,
 IN UInt32 blockLength,
 IN UInt32 *inputConfigPtr,
 IN Int8 *llrPtr,
 IN UInt32 llrOffset,
 IN UInt32 *hdPtr,
 IN Int8 *sdPtr,
 IN UInt32 sdOffset,
 IN UInt32 *statusPtr,
 IN UInt8 ntfEventFlag)

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 21

ENQUEUE FUNCTION

Yes(pathFlag == 0) &&
pingFreeCnt

Status = LIST_FULL
PARAM UPDATE,

LINK & CHAIN

startFlag != NULL

(pingStop != NULL) ||
(pongStop != NULL)

Yes

TCP3D DRV: Call the
Tcp3d_start with AUTO

mode

Return

pathFlag = (blockIdx & 0x1)

(pathFlag == 1) &&
pongFreeCnt

Yes

Figure 12 - Enqueue function flow diagram - high level

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 22

Update the pseudo
PaRAM addresses with

the input and output
addresses

Update the block size
dependent counts &

indexes

hdPrmOpt = hdOptReset

statusPtr !=
NULL

Yes

sdPtr != NULL

Yes

hdPrmLink = statusLink

stsPrmOpt = stsOptReset

sdPtr != NULL
Yes

stsPrmLink = sdLink

sdPrmOpt = sdOptReset

sdPrmLink = sdLinkReset

stsPrmLink = stsLinkReset

hdPrmLink = sdLink

sdPrmOpt = sdOptReset

sdPrmLink = sdLinkReset

hdPrmLink = stsLinkReset

Update lastOutPrm Ptr

lastListEntry?
lastOutPrmlink = wrapLink

Yes

notifyFlag ==
TRUE

lastOutPrmLink = ntfyLink

Yes

lastOutPrm = wrapPrm

Get prevLastPrm

prevNotifyFlag
== NULL

prevLastPrmLink =
NextCBDummyLink

prevLastPrmLink =
NextCBNtfyDummyLink

YesNo

Store the notifyFlag

Get prevNotifyFlag

PARAM UPDATE,
LINK & CHAIN

ENQUEUE

Increment the blockIndex,
loadCnt, nextInIdx

Decrement FreeCnt

chain2prev
required?

Yes

Store the lastOutPrm

Reset nextInIdx and
blockIndex when reached

maximum

Figure 13 - Enqueue function flow diagram - PaRAM Update, Link & Chain

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 23

5.3.3 Start Function
After initialization the driver is in IDLE state. The start function can be used for doing two things
which could affect the driver state.

1) Used first time after Enqueuing at least one code block to the input list by the application
to bring the driver from IDLE to RUNNING state.

2) Used from bringing the driver state from PAUSE to RUNNING if there are more code
blocks to be decoded in the input list.

The first condition happens only once after the driver initialization and the second condition can
occur in two scenarios:

1) the application is enqueuing more code blocks and driver reached PAUSE state. In this
case the start function gets called from the enqueue function with AUTO mode;

2) the application finished enqueuing all its code blocks and waiting for all the code blocks
to be decoded and driver reached PAUSE state before completing the list. In this case the
start function is called from the channel call back function, also referred to as the pause
ISR.

The TCP3D driver will be in the RUNNING state as long as the input list has chained code
blocks. If the decoding process is running at faster pace than the pre-processing, the driver will
go to PAUSE state, and it will have to be restarted from the next call to the enqueue function.

The flow diagram of the start function is shown in Figure 14, Figure 15 and Figure 16. Its
functionality mainly depends on the input parameter (startMode) and also depends on the stop
flags (pingStop or pongStop). Table 5 gives the details about the various modes and their
operations.

The start function syntax is given below.

Tcp3d_Result Tcp3d_start (IN Tcp3d_Instance *inst,
 IN UInt8 startMode);

Mode Description
AUTO START 1) Checks both PING & PONG input lists to see if any more code blocks are there for

decoding. Also update the list variables.
2) If the corresponding stop flag is set, then trigger the associated L2P channel to take
the next code block from the list for decoding.
3) If any path is triggered, associated stop flag is cleared.
4) If any path is triggered; the state is changed to RUNNING.

PING START 1) No checking done inside. Application must determine there are more code blocks in
the list.
2) If the pingStop flag is set, triggers the ping L2P channel to take the next code block
from the ping list for decoding.
3) If triggered, clears the pingStop flag.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 24

4) If triggered, the state is changed to RUNNING.
PONG START 1) No checking done inside. Application must determine there are more code blocks in

the list.
2) If the pongStop flag is set, triggers the pong L2P channel to take the next code block
from the pong list for decoding.
3) If triggered, clears the pongStop flag.
4) If triggered, the state is changed to RUNNING.

Table 5 - Start Modes and their operations

Note: It is required that the application must call this function first time to set the startFlag which
enables the start function to be called from the enqueue function as needed.

(startFlag == NULL) &&
(startMode == AUTO)

START FUNCTION

Yes

YesstartMode ==
AUTO

startFlag == TRUE

(startMode == PING)
&& (pingStop != NULL)

((pingStop == NULL) &&
(pongStop == NULL)) ||

(startFlag == NULL)

Yes

State = RUNNING

Return

EDMA LLD
Status == OK

Status = OKStatus = Failed

YesNo

(StartNeeded) &&
(EDMA LLD

Status == OK)

Return

(startMode == PONG)
&& (pongStop != NULL)

pingOutIdx <
nextPingInIdx

Get PING & PONG out
indexes using

L2P PaRAM pointers

Yes
pingStop != NULL

pongStop != NULL

Yes

Yes

Yes

Yes

UPDATE LIST
VARIABLES

pingLoadCnt > 0

Yes

StartNeeded |= 0x1

pongOutIdx <
nextPongInIdx

Yes

Yes
pongLoadCnt > 0

Yes

StartNeeded |= 0x2

StartNeeded |= 0x1

StartNeeded |= 0x2

MANUAL START AND
UPDATE WRAP

VARIABLES

Figure 14 - TCP3D driver start function

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 25

UPDATE LIST
VARIABLES

indexDiff1 = (pingOutIdx -
prevPingOutIdx)

pingLoadCnt -= indexDiff1

pingWrapCheck(indexDiff1 < 0) ||
(pingLastOutFlag)

Yes

pingLoadCnt -=
maxPingCbCnt

pingWrapCheck = NULL
indexDiff2 = (pongOutIdx -

prevPongOutIdx)

pongLoadCnt -= indexDiff2

pongWrapCheck(indexDiff2 < 0) ||
(pongLastOutFlag)

Yes

pongLoadCnt -=
maxPongCbCnt

pongWrapCheck = NULL

Yes

Yes

START

pingFreeCnt =
(maxPingCbCnt -

pingLoadCnt)

pingFreeCnt =
(maxPingCbCnt -

pingLoadCnt)

prevPingOutIdx =
pingOutIdx

prevPongOutIdx =
pongOutIdx

Figure 15 - TCP3D driver start function – Update list variables

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 26

pongStop = NULL

EDMA LLD: Manual
Trigger Pong L2P Channel

pingStop = NULL

EDMA LLD: Manual
Trigger Ping L2P Channel

Yes

Yes

StartNeeded & 0x1

StartNeeded & 0x2

pingLastOutFlag

pingLastOutFlag = NULL

pingWrapCheck = 1

pongLastOutFlag

pongLastOutFlag = NULL

pongWrapCheck = 1

MANUAL START AND
UPDATE WRAP

VARIABLES

Yes

Yes

START

Figure 16 - TCP3D driver start function – Manual Start and update wrap variables

5.3.4 Status & Control Functions
These functions are used for making changes to the driver operations at run-time. Both of the
functions have some commands defined for use with the current design and could be extended in
future. Refer to the doxygen documentation for the list of supported commands and the
associated data structure descriptions.

In the current implementation, the control function is used mainly to control the EDMA
completion interrupts during the driver execution. Refer to section 5.2.4.2 to know which
PaRAMs are changed in run-time.

5.4 OSAL
The OSAL is the operating system abstraction layer which is used to port the TCP3D driver to a
specific OS. The OSAL callouts are implemented in the “tcp3d_osal.h” header file and need to
be ported by the application developers to their specific operating system.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 27

5.4.1 Logging API
Internally the TCP3D driver uses the Tcp3d_osalLog macro to perform all logging operations.
The OSAL adaptation layer ports this macro to the following API prototype:

void Osal_tcp3dLog(String fmt, ...)

The parameter ‘fmt’ is a printf style formatted string. This should only be defined and used for
debugging purposes.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 28

6 Testing
TCP3D driver testing is done with pre-generated input and reference outputs. Various test cases
are defined for LTE, WIMAX & WCDMA (3GPP) modes with different combination of
parameters and block sizes.

The following table gives the description of various test cases used for regression test for the
driver. In all tests, the optional outputs (STS & SD) are randomly selected otherwise noted.

Mode Test Folder Name # of

tests
Description

LTE &
Dual Map

Test1_lte 6 Mid range block sizes, smallest and largest block sizes.
Test2_lte 4 Mid range block sizes, no optional outputs (STS & SD).
Test3_lte 6 All Max Block sizes.
Test4_lte 6 Mid range block sizes.
Sim_config\LTE 20 All Tests taken from SIMULATOR test bench.
LTE 100 Test cases generated using matlab script with random

parameters used. Aimed for testing the wrap-around mode.
WiMax &
Dual Map

Test1_wimax 5 Lower range block sizes and largest block size.
Test2_wimax 4 Mid range block sizes, no optional outputs (STS & SD).
Test3_wimax 5 Mid range block sizes.
Sim_config\WIMAX 13 All Tests taken from SIMULATOR test bench.
WIMAX 100 Test cases generated using matlab script with random

parameters used. Aimed for testing the wrap-around mode.
WCDMA
& Split
Mode

Test1_wcdma 32 Block sizes around 100 & 800 and few larger block sizes
around 2000. Repeated tests to cover liner increase or
decrease of sizes.

Test2_wcdma 6 Lower blocks in steps of 100 from 100 & Upper range block
sizes around 5000.

Test3_wcdma 9 Lower range block sizes around 50 and larger block sizes
around 1000 & 2000.

Sim_config\WCDMA 28 All Tests taken from SIMULATOR test bench.
WCDMA 100 Test cases generated using matlab script with random

parameters used. Aimed for testing the wrap-around mode.

Table 6 – Test Cases Used

Note: There are no test cases defined for Single Map decoder mode since the driver does not
support this mode.

Testing of this driver is done using BIOS and all OSAL APIs including those of the dependent
packages are mapped for it. The Tester task is the main task used for running in a while loop for
all test cases after setting some global test parameters such as testMaxCodeBlocks and instNum
(for selecting the TCP3D peripheral instance) that are used for all test cases. Also, the instNum
used for running the tests is chosen based on which core the test is loaded. Figure 17 shows the

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 29

tasks and the drivers with their execution sequence – test #1 is normal case and test #2 is
LIST_FULL case.

main

tester tester

Send task (I)

Receive task

EDMA + TCP3

TCP3D Driver

Test #1
(Normal case)

Test #2
(LIST_FULL case)

Tester Task

Send Task

Receive Task

Notify Event ISR

…

(II)

tester

Send task (I)

Receive task

…

start start

Revt Ch ISR

enqueue

enable int

(II)

(I)

Figure 17 - TCP3D driver test sequence diagram

As you can see from the Figure 18, Tester task initiates the test by calling appropriate
initialization functions and then posts a Semaphore to wake the Send Task and wait for Receive
task completion. Send task has two parts and in the first part all of the code blocks to be decoded
are sent to the input list using the Tcp3d_enqueueCodeBlock() driver API and also the driver is
started using the Tcp3d_start() API. When the driver is used in wrap-around mode, the
LIST_FULL return error is handled in the first part of the send task. In the LIST_FULL case, the
test bench is setup such that the enqueue function is called again and again until successful. See
Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23 for details on various tasks used in the
test framework.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 30

TESTER TASK

Semaphore
RCV DONE?

No

Yes

Yes

Exit

Last Test Case?

No

Create SEND TASK &
RCV TASK

Read test vectors for
the current test case

Initialization Functions

Post Semaphore
(SEND BLOCK)

Free test vectors
memory

De-Initialization
Functions

Compute Throughput &
Print Test Summary

Prepare Fixed input
configuration registers

Create SEND & RCV
Semaphores

Delete SEND & RCV
Semaphores

Set Maximum test
CodeBlocks

Choose the TCP3D
instance to use

(based on coreID)

Figure 18 - TCP3D driver test – Tester Task flow diagram

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 31

Last Block ?
Yes

Enqueue Block
(with notifyFlag)

EnqueueResult
== LIST_FULL?

YesNo

No

Last Block?

Yes

No

SEND TASK - I

Semaphore
SEND BLOCK?

No

Yes

notifyFlag = 1notifyFlag = 0

Post Semaphore
(SEND NEXT BLOCK)

Prepare run-time input
configuration registers

EnqueueResult
== LIST_FULL?

Yes

No

BlockCnt ==
START_CMD?

Start Driver (Auto)

Yes

No

SEND TASK - II

Post Semaphore (TRY
AGAIN SEND BLOCK)

Clear pending REVT
Channel Interrupt

Start Driver (Auto)

Enable REVT Channel
Interrupt

Figure 19 - TCP3D driver test – Send Task (part – I) flow diagram

The second part of the Send Task does the following:

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 32

1) Wait until the required notifications are received following the completion of both the
input lists (PING & PONG) and post semaphore to start the Receive Task.

2) Restart the driver, if it reaches PAUSE state before completing all decoding.
3) In case of split mode, there is a possibility of race condition in the notification which

might result to missing one notification. So, whenever a single notification is received we
check the last two block outputs to declare all decoding is complete.

RCV TASK

(eventCntr == 1)
&& (testMaxBlocks

== 1)

eventCntr >= 2
No Yes

pauseIntFlag = 0

Start Driver (Auto)

Semaphore
SEND WAIT?

Post Semaphore
(RCV START)

SEND TASK - II

No

Yes

testMode ==
SPLIT

Verify last HD byte with
reference for last two

code blocks

Yes

Matched outputs
Yes

Figure 20 - TCP3D driver test – Send Task (part – II) flow diagram

The Receive Task compares all the selected outputs with the expected values for each code block
in the test case and reports any errors with appropriate error messages. When the comparisons of
all code blocks are done, it will post Semaphore to pass the control to Tester Task which does the
de-initialization for this test and goes to the next test if any.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 33

RCV TASK

Semaphore
RCV START?

No

Yes

Last Block?

Yes

TESTER TASK

Compare Outputs with
reference

No

failed?

NoSet flag to indicate

Yes

Post Semaphore
(RCV DONE)

Figure 21 - TCP3D driver test – Receive Task flow diagram

The REVT channel call back function, shown in Figure 22, is called when the interrupts are
enabled either for the REVT or L2P channels. Because, the TCC value for both the channels
point to the REVT channel number at any given time. In any case, this function transfers the
control to the Send Task to take appropriate action based on the flags.

This function usage is shown in the second test in the test sequence diagram in Figure 17 in the
illustration of the LIST_FULL error case.

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 34

REVT CALL BACK

SEND TASK

pauseIntFlag = 1

sendBlockCnt >=
testMaxCnt

Post Semaphore
(SEND BLOCK)

Post Semaphore
(SEND WAIT)

Yes

Figure 22 - TCP3D driver test – REVT Channel Call Back Function

NOTIFY EVENT ISR

SEND TASK

eventCntr++

sendBlockCnt >=
testMaxCnt

Post Semaphore
(SEND BLOCK)

Post Semaphore
(SEND WAIT)

Yes

Figure 23 - TCP3D driver test – Notification ISR Function

7 Integration
The TCP3D driver depends on the following components:

a. EDMA3 LLD
b. CSL

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 35

These components need to be installed before the TCP3D driver can be integrated. The TCP3D
driver is released in source code and in pre-built library. Applications can decide how to use the
TCP3D driver.

The TCP3D driver release notes indicate the version of the above components which that release
is dependent upon. The next steps use the version numbers for illustrative purpose only.

7.1 Pre-built approach
In this approach the application developers decide to use the TCP3D driver pre-built libraries as
is. The following steps need to be done:

a. The application developers modify their application configuration file to use the TCP3D
package.

var Tcp3d = xdc.loadPackage('ti.drv.tcp3d');

b. Ensure that the XDCPATH is configured to have the path to the TCP3D package
c. This implies that XDC Configuration scripts will link the application using the TCP3D

Driver libraries (Module.xs)
d. The application authors need to provide an OSAL implementation file for TCP3D and

ensure that this linked with the application; failure to do so will results in linking errors.
The OSAL source file should have the following TCP3D OSAL functions implemented:

Void Osal_tcp3dLog(String fmt, ...)

Note: Since TCP3D depends upon EDMA3, the OSAL implementation should also have
their implementations. Please refer to the EDMA3 OSAL definitions for more information.

If the application is not using XDC then replace steps (a) and (b) above with the following steps
instead:

a. Append the include path to the top level TCP3D package directory
b. Make sure the TCP3D pre-built libraries are added to the application project and the

library search path is configured correctly.
This approach is highlighted in the TCP3D “example” projects.

7.2 Rebuild library
In this approach the application developers decide to use the TCP3D driver source code and add
these files to the application project to rebuild the TCP3D driver code base. The following steps
need to be redone:

a. Application developers should port the file “tcp3d_osal.h” to their operating system
environment. Developers are recommended to create a copy of this file and place it in

Texas Instruments Incorporated Software Design Specification
Revision B TCP3D Driver

 Page 36

their application directory. They should use the file which is provided in the TCP3D
installation only as a template. The goal here should be to map the Tcp3d_osalXXX
macros to the OS calls directly thus reducing the overhead of an API callout. For
example:

#define Tcp3d_osalLog System_printf

b. Application developers should port the file “tcp3d_drv_types.h” to the application

environment. Developers are recommended to create a copy of this file and place it in
their application directory.

c. Append the include path to the top level TCP3D package directory

d. Add the TCP3D driver files listed below from the src directory to the application build

files.

tcp3d_drv.c
tcp3d_reg.c

The approach above is highlighted in the TCP3D “test” projects.

8 Future Extensions
a. Need to add support for Single Map Decoder, if required by customers.

	1 Scope
	2 References
	3 Definitions
	4 Overview
	5 Design
	5.1 Goals
	5.2 TCP3D Driver
	5.2.1 Decoding process in the uplink bit processing chain
	5.2.2 Pseudo PaRAM Input List Approach
	5.2.3 Driver States
	5.2.4 EDMA Channel & PaRAM entry usage
	5.2.4.1 Data PaRAM Entries
	5.2.4.2 Control PaRAM entries

	5.2.5 Resource Requirements
	5.2.5.1 EDMA Channels requirements
	5.2.5.2 Memory requirements

	5.2.6 Input Configuration registers preparation
	5.2.7 Notification Mechanism

	5.3 TCP3D Driver Interface
	5.3.1 Initialization Sequence
	5.3.2 Enqueue Function
	5.3.3 Start Function
	5.3.4 Status & Control Functions

	5.4 OSAL
	5.4.1 Logging API

	6 Testing
	7 Integration
	7.1 Pre-built approach
	7.2 Rebuild library

	8 Future Extensions

