
Texas Instruments Incorporated

TI Confidential and Proprietary

Trace framework User Guide
Version 0.9

Copyright © 2012-2014 Texas Instruments Incorporated

All Rights Reserved

NOTICE OF CONFIDENTIAL AND PROPRIETARY INFORMATION

Information contained herein is subject to the terms of the Non-Disclosure Agreement

between Texas Instruments Incorporated and your company, and is of a highly sensitive

nature. It is confidential and proprietary to Texas Instruments Incorporated. It shall not

be distributed, reproduced, or disclosed orally or in written form, in whole or in part, to

any party other than the direct recipients without the express written consent of Texas

Instruments Incorporated.

Texas Instruments Incorporated

TI Confidential and Proprietary

Revision Record
Version No. Date Comments

0.1 February 13, 2012 Initial Version

0.2 February 15, 2012 Updated the ladder diagram

with the specific example

use case

0.3 February 17, 2012 Updated the document after

the code review inputs are

implemented

0.4 March 19, 2012 Updated the document for

API changes in

producer/consumer libraries

0.5 January 7, 2013 Updated the document for

new APIs in contract

creation

0.6 January 15, 2013 Updated the UG for new

APIs for performance

Optimization of Buffer

Exchange and Multi

instance UIA support

0.7 February 10, 2014 Updated for new Examples

0.8 February 19, 2014 Enhanced steps on how to

execute unit test

0.9 March 27, 2014 Added System Analyzer

Configuration for CCS

Texas Instruments Incorporated

TI Confidential and Proprietary

Texas Instruments Incorporated

TI Confidential and Proprietary

Table of Contents

1. Concept .. 6

2. Trace Framework ... 8

2.1. Ring Producer ... 8

2.2. Consumer .. 8

2.3. Transport Channel for Consumer .. 8

2.4. Contract ... 8

3. Migration Guide to UIA 1.1.2.23 or Higher .. 9

3.1. New APIs Added .. 9

3.2. Changes in the Application for LoggerStreamer ... 9

3.3. Changes in the Application for LoggerStreamer2 ... 9

4. Running Unit Test ..10

4.1 General guidelines to run the examples ..10

4.2 CCS Instructions ...10

Texas Instruments Incorporated

TI Confidential and Proprietary

Texas Instruments Incorporated

TI Confidential and Proprietary

1. Concept

Introduction

In a multicore environment there would be data generated by a producer in one core and

would need to be consumed by multiple consumers in other cores/same core.

Example: UIA log information to be consumed by ARM and System Analyzer.

The trace framework provides a mechanism to send the information to multiple

consumers for a given producer.

In trace framework, Producer populates the associated Ring buffer. Consumers consume

the ring buffer and send the data to external actual consumers (like System Analyzer in

CCS).

The below figure is an example system showing the producer, consumer and the transport

interconnected via the contract.

In the system core 0 has two producer instances which produce information on two

different rings. Core 0 also has a consumer instance (3) for producer-1. Core 2 has two

consumers, consumer (1) for core0’s producer 1, consumer (2) for core0’s producer 2.

Core 0 Core 1

Shared Memory

Contract1 Contract2 …….. Contract N

Producer-1

Producer-2 Consumer-1 Consumer-2 Consumer-3

Contract Base Address

Application
Application Application

Texas Instruments Incorporated

TI Confidential and Proprietary

The information exchange synchronization between producers and consumers are done

via the contract memory.

Each core can have multiple consumer Instances and Producer Instances. Each Producer

instance would be tied to a ring buffer and many consumer instances can consume data

from a ring buffer. Every consumer needs to have its own channel to send the data out,

which triggers the draining of the ring buffer.

Texas Instruments Incorporated

TI Confidential and Proprietary

2. Trace Framework

2.1. Ring Producer

The ring producer produces the trace/log information in a ring buffer and notifies the

consumers hooked to that ring when the ring buffers are ready. The producer fills up the

information in the ring buffer sequentially, servicing the slowest possible consumer for

that ring. So, a slowest consumer in the system can potentially make the fast consumers

to drop messages.

The producers and consumers handshake through a shared memory region called as

“Contract Memory”.

2.2. Consumer

The ring consumer reads the ring buffer from the producer and outputs it to the

appropriate transport channel. The consumer updates the necessary control messages to

the producer via the Contract.

2.3. Transport Channel for Consumer
Every Consumer instance for the ring buffer needs to have a transport channel. The

transport channel triggers the drain for the ring buffers thereby allowing a free ring buffer

to the producers.

2.4. Contract
This is a shared memory area between the producer and multiple consumers. Trace

framework library provides the APIs to create the contracts, producer and consumers for

the contract.

Please refer to docs/Doxygen/html/index.html for details on the API user guide and on

rebuilding trace framework libraries and examples.

Texas Instruments Incorporated

TI Confidential and Proprietary

3. Migration Guide to UIA 1.1.2.23 or Higher

3.1. New APIs Added
1. Void * tf_getLoggerStreamerContext(LoggerStreamer_handle) – API added to get

the producer handle to support optimal UIA buffer exchange performance for
LoggerStrreamer Interface

2. void * tf_getLoggerStreamer2Context(LoggerStreamer2_handle) – API added to get
the producer handle to support optimal UIA buffer exchange performance for
LoggerStrreamer2 Interface

3. Ptr tf_uiaProducerBufExchange2(LoggerStreamer2_Handle handle, uint8_t *full) –
API added to support multi instance UIA (loggerStreamer2 interface)

4. void tf_prodNotifyConsumers(tf_producer_HANDLE pHandle) – API added to
support optimal UIA buffer Exchange scheame with notification to registered
consumers

3.2. Changes in the Application for LoggerStreamer
1. Source files

Changes may be needed to align to performance optimizations of trace

framework as out lined in section 5.3.
2. .cfg file

 Needs to add below lines in the.cfg file for trace framework library along

with using the LoggerStreamer2 module and necessary configurations for

LoggerStreamer module.
var LoggerStreamer2 = xdc.useModule('ti.uia.sysbios.LoggerStreamer2');
var LoggerStreamer = xdc.useModule('ti.uia.sysbios.LoggerStreamer');

3.3. Changes in the Application for LoggerStreamer2
 Application needs to migrate to UIA 1.1.2.23 or higher versions for the System

Analyzer

 Application’s .cfg file would now need to be configured to use both loggerSTreamer
and LoggerStreamer2 as below

/* UIA 1.1.2.X onwards supports legacy loggerstreamer or multiintance
 loggerstreamer2 - use one of them in the configurations */

var LoggerStreamer2 = xdc.useModule('ti.uia.sysbios.LoggerStreamer2');
var LoggerStreamer = xdc.useModule('ti.uia.sysbios.LoggerStreamer');

 Application should make sure either LoggerStreamer or LoggerStreamer2 is created
for the system. There can be unpredicted behavior if both of them are created in
the system.

 Sample .cfg configurations
a. Sample Configurations for creating LoggerStreamer2 Objects with this new UIA

(Please refer to UIA Multi Instance NetCpConsumer example project’s .cfg file)
b. Sample Configuration for Creating LoggerStreamer Object with this new UIA (Please

refer to uiaprod_netcpconsumer example project’s .cfg file).
c. Sample configuration for creating the non UIA producer with Trace framework –

please refer to uia prod4Arm example project’s .cfg file

Texas Instruments Incorporated

TI Confidential and Proprietary

4. Running Unit Test

Trace framework provides DSP and ARM unit tests. Following use cases are
supported.

Type Produc
er

Consumer Test Executable

DSP ARM

UIA Producer/Consumer DSP DSP/ARM tfw_Uia_UnitTest_XXXXBiosTest
Project.out

tfwUiaArmConsumer.out

UIA Multi instance
Producer/Consumer

DSP DSP/ARM tfw_UiaMinst_UnitTest_XXXXBio
sTestProject.out

tfwUiaMinstArmConsumer.out

General
Producer/Consumer

DSP DSP tfw_GenProd_UnitTest_XXXXBio
sTestProject.out

N/A

CUIA
Producer/Consumer

ARM ARM N/A tfwcUiaProdConsumers

 Note: Please note that ARM producer and DSP consumers use case is not supported in

trace framework.

Note: ARM executables are not applicable for KeyStone1 devices like C6678, C7760 and

C6657.

4.1 General guidelines to run the examples

At this time, it is assumed that the DSP and ARM executables mentioned in the above table are
already built/available.

 Please update /traceframework/test/TFUnitTest/TFUnitTest_input.txt file for
Destination PC IP address and MAC Address.

 Load the DSP executable

 Setup System Analyzer every time a new DSP executable is loaded onto CCS.
Please refer to System Analyzer user guide on how to setup System Analyzer.

 Run the corresponding ARM executable from the ARM user space (if applicable).

 Run the corresponding DSP executable.

 Results are printed on the console for DSP and ARM executables.

4.2 CCS Instructions
1. DSP Producers/DSP Consumers along with optional ARM consumers.

a. Modify the IP and MAC addresses in TFUnitTest_input.txt (under
traceframework/TFUnitTest folder)

b. Import the Trace framework CCS projects that are built using
pdkProjectCreate script.

c. Build the Trace Framework Imported CCS projects and load the executables.

d. Create a UIA configuration file with these DSP test executables as the end
points and set up the event transport as IP/UDP where IP =
uiaSystemAnalyzerIPAddress and UDP port = 1235.

e. Load the executables through CCS on at least DSP Core0 and Core1
Note: Corresponding ARM consumer applications like tfwUiaArmConsumer.out and
tfwUiaMinstArmConsumer.out can be run before we execute the DSP side corresponding
producer application with the same name.

Texas Instruments Incorporated

TI Confidential and Proprietary

2. ARM Producers and ARM consumers
a. Modify the IP and MAC addresses in TFUnitTest_input.txt (under

traceframework/TFUnitTest folder)

b. Build the traceframework ARM examples and copy to file system.
c. Copy over the “cUIA Executable” executable that was created in the

above steps and store it in a folder.
d. In the Debug Perspective, open the System Analyzer Live Dialog (Tools /

System Analyzer / Live) create a UIA config file by clicking on the "Create

UIA Config File" button
e. If there is no event transport defined, right click on the table and select

"Add an event transport".
f. Double click on the event transport and select UDP as the Transport

Type, the IP address of the PC running System Analyzer as the address,
and set the port number to 1235.

g. If there is a control and status transport entry, and its type is not "None",
double click on it and set the transport type to "None".

h. If there is no endpoint defined, right click on the table and select "Add an
Endpoint".

i. Double click on the endpoint entry and enter the following:
 Name = CPU0 (or some other useful identifier that indicates which

CPU core will be running the test program)
 Endpoint Address = 0
 .out file - click the . button and navigate to the local copy of the

“cUIA Executable” executable
 .uia.xml file - click the . button and navigate to the local copy

under /traceframework/metadata folder and select cuia.uia.xml
 .rta.xml file - click the . button and navigate to the local copy

under /traceframework/metadata folder select cuia.rta.xml
 Clock Freq. (MHz): enter the speed of the timestamp you are

reading in the main.c file's getTimestamp function. (If this is
returning 0, then set it to the CPU clock speed in MHz - e.g. 1000
for a 1GHz device)

 Set Cycles per tick to the number of CPU cycles each tick of the
timestamp you are reading in the main.c file's getTimestamp
function (if this is returning 0, then set it to 1).

 Click OK to close the endpoint dialog
j. Click Save to save the UIA config file to some location (e.g. the folder

containing the local copy of the executable that you are running)

Back in the System Tools Live dialog, click button to the left of the "Create UIA
Config File" button and select the .usmxml file you just created.

Ensure the "Until data transfer is manually paused" radio button is selected, and click
Run.

