[PM] Move the LazyCallGraph printing functionality to a print method.
[opencl/llvm.git] / lib / Analysis / LazyCallGraph.cpp
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/InstVisitor.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/PassManager.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
19 using namespace llvm;
21 #define DEBUG_TYPE "lcg"
23 static void findCallees(
24     SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
25     SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
26     DenseMap<Function *, size_t> &CalleeIndexMap) {
27   while (!Worklist.empty()) {
28     Constant *C = Worklist.pop_back_val();
30     if (Function *F = dyn_cast<Function>(C)) {
31       // Note that we consider *any* function with a definition to be a viable
32       // edge. Even if the function's definition is subject to replacement by
33       // some other module (say, a weak definition) there may still be
34       // optimizations which essentially speculate based on the definition and
35       // a way to check that the specific definition is in fact the one being
36       // used. For example, this could be done by moving the weak definition to
37       // a strong (internal) definition and making the weak definition be an
38       // alias. Then a test of the address of the weak function against the new
39       // strong definition's address would be an effective way to determine the
40       // safety of optimizing a direct call edge.
41       if (!F->isDeclaration() &&
42           CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
43         DEBUG(dbgs() << "    Added callable function: " << F->getName()
44                      << "\n");
45         Callees.push_back(F);
46       }
47       continue;
48     }
50     for (Value *Op : C->operand_values())
51       if (Visited.insert(cast<Constant>(Op)).second)
52         Worklist.push_back(cast<Constant>(Op));
53   }
54 }
56 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
57     : G(&G), F(F), DFSNumber(0), LowLink(0) {
58   DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
59                << "' to the graph.\n");
61   SmallVector<Constant *, 16> Worklist;
62   SmallPtrSet<Constant *, 16> Visited;
63   // Find all the potential callees in this function. First walk the
64   // instructions and add every operand which is a constant to the worklist.
65   for (BasicBlock &BB : F)
66     for (Instruction &I : BB)
67       for (Value *Op : I.operand_values())
68         if (Constant *C = dyn_cast<Constant>(Op))
69           if (Visited.insert(C).second)
70             Worklist.push_back(C);
72   // We've collected all the constant (and thus potentially function or
73   // function containing) operands to all of the instructions in the function.
74   // Process them (recursively) collecting every function found.
75   findCallees(Worklist, Visited, Callees, CalleeIndexMap);
76 }
78 void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
79   if (Node *N = G->lookup(Callee))
80     return insertEdgeInternal(*N);
82   CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
83   Callees.push_back(&Callee);
84 }
86 void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
87   CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
88   Callees.push_back(&CalleeN);
89 }
91 void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
92   auto IndexMapI = CalleeIndexMap.find(&Callee);
93   assert(IndexMapI != CalleeIndexMap.end() &&
94          "Callee not in the callee set for this caller?");
96   Callees[IndexMapI->second] = nullptr;
97   CalleeIndexMap.erase(IndexMapI);
98 }
100 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
101   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
102                << "\n");
103   for (Function &F : M)
104     if (!F.isDeclaration() && !F.hasLocalLinkage())
105       if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
106         DEBUG(dbgs() << "  Adding '" << F.getName()
107                      << "' to entry set of the graph.\n");
108         EntryNodes.push_back(&F);
109       }
111   // Now add entry nodes for functions reachable via initializers to globals.
112   SmallVector<Constant *, 16> Worklist;
113   SmallPtrSet<Constant *, 16> Visited;
114   for (GlobalVariable &GV : M.globals())
115     if (GV.hasInitializer())
116       if (Visited.insert(GV.getInitializer()).second)
117         Worklist.push_back(GV.getInitializer());
119   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
120                   "entry set.\n");
121   findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
123   for (auto &Entry : EntryNodes) {
124     assert(!Entry.isNull() &&
125            "We can't have removed edges before we finish the constructor!");
126     if (Function *F = Entry.dyn_cast<Function *>())
127       SCCEntryNodes.push_back(F);
128     else
129       SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
130   }
133 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
134     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
135       EntryNodes(std::move(G.EntryNodes)),
136       EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
137       SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
138       DFSStack(std::move(G.DFSStack)),
139       SCCEntryNodes(std::move(G.SCCEntryNodes)),
140       NextDFSNumber(G.NextDFSNumber) {
141   updateGraphPtrs();
144 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
145   BPA = std::move(G.BPA);
146   NodeMap = std::move(G.NodeMap);
147   EntryNodes = std::move(G.EntryNodes);
148   EntryIndexMap = std::move(G.EntryIndexMap);
149   SCCBPA = std::move(G.SCCBPA);
150   SCCMap = std::move(G.SCCMap);
151   LeafSCCs = std::move(G.LeafSCCs);
152   DFSStack = std::move(G.DFSStack);
153   SCCEntryNodes = std::move(G.SCCEntryNodes);
154   NextDFSNumber = G.NextDFSNumber;
155   updateGraphPtrs();
156   return *this;
159 void LazyCallGraph::SCC::insert(Node &N) {
160   N.DFSNumber = N.LowLink = -1;
161   Nodes.push_back(&N);
162   G->SCCMap[&N] = this;
165 bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
166   // Walk up the parents of this SCC and verify that we eventually find C.
167   SmallVector<const SCC *, 4> AncestorWorklist;
168   AncestorWorklist.push_back(this);
169   do {
170     const SCC *AncestorC = AncestorWorklist.pop_back_val();
171     if (AncestorC->isChildOf(C))
172       return true;
173     for (const SCC *ParentC : AncestorC->ParentSCCs)
174       AncestorWorklist.push_back(ParentC);
175   } while (!AncestorWorklist.empty());
177   return false;
180 void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
181   // First insert it into the caller.
182   CallerN.insertEdgeInternal(CalleeN);
184   assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
185   assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
187   // Nothing changes about this SCC or any other.
190 void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
191   // First insert it into the caller.
192   CallerN.insertEdgeInternal(CalleeN);
194   assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
196   SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
197   assert(&CalleeC != this && "Callee must not be in this SCC.");
198   assert(CalleeC.isDescendantOf(*this) &&
199          "Callee must be a descendant of the Caller.");
201   // The only change required is to add this SCC to the parent set of the callee.
202   CalleeC.ParentSCCs.insert(this);
205 SmallVector<LazyCallGraph::SCC *, 1>
206 LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
207   // First insert it into the caller.
208   CallerN.insertEdgeInternal(CalleeN);
210   assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
212   SCC &CallerC = *G->SCCMap.lookup(&CallerN);
213   assert(&CallerC != this && "Caller must not be in this SCC.");
214   assert(CallerC.isDescendantOf(*this) &&
215          "Caller must be a descendant of the Callee.");
217   // The algorithm we use for merging SCCs based on the cycle introduced here
218   // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
219   // graph has the same cycle properties as the actual DAG of the SCCs, and
220   // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
221   // many cases which should prune the search space.
222   //
223   // FIXME: We can get this pruning behavior even after the incremental SCC
224   // formation by leaving behind (conservative) DFS numberings in the nodes,
225   // and pruning the search with them. These would need to be cleverly updated
226   // during the removal of intra-SCC edges, but could be preserved
227   // conservatively.
229   // The set of SCCs that are connected to the caller, and thus will
230   // participate in the merged connected component.
231   SmallPtrSet<SCC *, 8> ConnectedSCCs;
232   ConnectedSCCs.insert(this);
233   ConnectedSCCs.insert(&CallerC);
235   // We build up a DFS stack of the parents chains.
236   SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
237   SmallPtrSet<SCC *, 8> VisitedSCCs;
238   int ConnectedDepth = -1;
239   SCC *C = this;
240   parent_iterator I = parent_begin(), E = parent_end();
241   for (;;) {
242     while (I != E) {
243       SCC &ParentSCC = *I++;
245       // If we have already processed this parent SCC, skip it, and remember
246       // whether it was connected so we don't have to check the rest of the
247       // stack. This also handles when we reach a child of the 'this' SCC (the
248       // callee) which terminates the search.
249       if (ConnectedSCCs.count(&ParentSCC)) {
250         ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
251         continue;
252       }
253       if (VisitedSCCs.count(&ParentSCC))
254         continue;
256       // We fully explore the depth-first space, adding nodes to the connected
257       // set only as we pop them off, so "recurse" by rotating to the parent.
258       DFSSCCs.push_back(std::make_pair(C, I));
259       C = &ParentSCC;
260       I = ParentSCC.parent_begin();
261       E = ParentSCC.parent_end();
262     }
264     // If we've found a connection anywhere below this point on the stack (and
265     // thus up the parent graph from the caller), the current node needs to be
266     // added to the connected set now that we've processed all of its parents.
267     if ((int)DFSSCCs.size() == ConnectedDepth) {
268       --ConnectedDepth; // We're finished with this connection.
269       ConnectedSCCs.insert(C);
270     } else {
271       // Otherwise remember that its parents don't ever connect.
272       assert(ConnectedDepth < (int)DFSSCCs.size() &&
273              "Cannot have a connected depth greater than the DFS depth!");
274       VisitedSCCs.insert(C);
275     }
277     if (DFSSCCs.empty())
278       break; // We've walked all the parents of the caller transitively.
280     // Pop off the prior node and position to unwind the depth first recursion.
281     std::tie(C, I) = DFSSCCs.pop_back_val();
282     E = C->parent_end();
283   }
285   // Now that we have identified all of the SCCs which need to be merged into
286   // a connected set with the inserted edge, merge all of them into this SCC.
287   // FIXME: This operation currently creates ordering stability problems
288   // because we don't use stably ordered containers for the parent SCCs or the
289   // connected SCCs.
290   unsigned NewNodeBeginIdx = Nodes.size();
291   for (SCC *C : ConnectedSCCs) {
292     if (C == this)
293       continue;
294     for (SCC *ParentC : C->ParentSCCs)
295       if (!ConnectedSCCs.count(ParentC))
296         ParentSCCs.insert(ParentC);
297     C->ParentSCCs.clear();
299     for (Node *N : *C) {
300       for (Node &ChildN : *N) {
301         SCC &ChildC = *G->SCCMap.lookup(&ChildN);
302         if (&ChildC != C)
303           ChildC.ParentSCCs.erase(C);
304       }
305       G->SCCMap[N] = this;
306       Nodes.push_back(N);
307     }
308     C->Nodes.clear();
309   }
310   for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
311     for (Node &ChildN : **I) {
312       SCC &ChildC = *G->SCCMap.lookup(&ChildN);
313       if (&ChildC != this)
314         ChildC.ParentSCCs.insert(this);
315     }
317   // We return the list of SCCs which were merged so that callers can
318   // invalidate any data they have associated with those SCCs. Note that these
319   // SCCs are no longer in an interesting state (they are totally empty) but
320   // the pointers will remain stable for the life of the graph itself.
321   return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
324 void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
325   // First remove it from the node.
326   CallerN.removeEdgeInternal(CalleeN.getFunction());
328   assert(G->SCCMap.lookup(&CallerN) == this &&
329          "The caller must be a member of this SCC.");
331   SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
332   assert(&CalleeC != this &&
333          "This API only supports the rmoval of inter-SCC edges.");
335   assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
336              G->LeafSCCs.end() &&
337          "Cannot have a leaf SCC caller with a different SCC callee.");
339   bool HasOtherCallToCalleeC = false;
340   bool HasOtherCallOutsideSCC = false;
341   for (Node *N : *this) {
342     for (Node &OtherCalleeN : *N) {
343       SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
344       if (&OtherCalleeC == &CalleeC) {
345         HasOtherCallToCalleeC = true;
346         break;
347       }
348       if (&OtherCalleeC != this)
349         HasOtherCallOutsideSCC = true;
350     }
351     if (HasOtherCallToCalleeC)
352       break;
353   }
354   // Because the SCCs form a DAG, deleting such an edge cannot change the set
355   // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
356   // the caller no longer a parent of the callee. Walk the other call edges
357   // in the caller to tell.
358   if (!HasOtherCallToCalleeC) {
359     bool Removed = CalleeC.ParentSCCs.erase(this);
360     (void)Removed;
361     assert(Removed &&
362            "Did not find the caller SCC in the callee SCC's parent list!");
364     // It may orphan an SCC if it is the last edge reaching it, but that does
365     // not violate any invariants of the graph.
366     if (CalleeC.ParentSCCs.empty())
367       DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
368                    << " -> " << CalleeN.getFunction().getName()
369                    << " edge orphaned the callee's SCC!\n");
370   }
372   // It may make the Caller SCC a leaf SCC.
373   if (!HasOtherCallOutsideSCC)
374     G->LeafSCCs.push_back(this);
377 void LazyCallGraph::SCC::internalDFS(
378     SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
379     SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
380     SmallVectorImpl<SCC *> &ResultSCCs) {
381   Node::iterator I = N->begin();
382   N->LowLink = N->DFSNumber = 1;
383   int NextDFSNumber = 2;
384   for (;;) {
385     assert(N->DFSNumber != 0 && "We should always assign a DFS number "
386                                 "before processing a node.");
388     // We simulate recursion by popping out of the nested loop and continuing.
389     Node::iterator E = N->end();
390     while (I != E) {
391       Node &ChildN = *I;
392       if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
393         // Check if we have reached a node in the new (known connected) set of
394         // this SCC. If so, the entire stack is necessarily in that set and we
395         // can re-start.
396         if (ChildSCC == this) {
397           insert(*N);
398           while (!PendingSCCStack.empty())
399             insert(*PendingSCCStack.pop_back_val());
400           while (!DFSStack.empty())
401             insert(*DFSStack.pop_back_val().first);
402           return;
403         }
405         // If this child isn't currently in this SCC, no need to process it.
406         // However, we do need to remove this SCC from its SCC's parent set.
407         ChildSCC->ParentSCCs.erase(this);
408         ++I;
409         continue;
410       }
412       if (ChildN.DFSNumber == 0) {
413         // Mark that we should start at this child when next this node is the
414         // top of the stack. We don't start at the next child to ensure this
415         // child's lowlink is reflected.
416         DFSStack.push_back(std::make_pair(N, I));
418         // Continue, resetting to the child node.
419         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
420         N = &ChildN;
421         I = ChildN.begin();
422         E = ChildN.end();
423         continue;
424       }
426       // Track the lowest link of the children, if any are still in the stack.
427       // Any child not on the stack will have a LowLink of -1.
428       assert(ChildN.LowLink != 0 &&
429              "Low-link must not be zero with a non-zero DFS number.");
430       if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
431         N->LowLink = ChildN.LowLink;
432       ++I;
433     }
435     if (N->LowLink == N->DFSNumber) {
436       ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
437       if (DFSStack.empty())
438         return;
439     } else {
440       // At this point we know that N cannot ever be an SCC root. Its low-link
441       // is not its dfs-number, and we've processed all of its children. It is
442       // just sitting here waiting until some node further down the stack gets
443       // low-link == dfs-number and pops it off as well. Move it to the pending
444       // stack which is pulled into the next SCC to be formed.
445       PendingSCCStack.push_back(N);
447       assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
448     }
450     N = DFSStack.back().first;
451     I = DFSStack.back().second;
452     DFSStack.pop_back();
453   }
456 SmallVector<LazyCallGraph::SCC *, 1>
457 LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
458                                        Node &CalleeN) {
459   // First remove it from the node.
460   CallerN.removeEdgeInternal(CalleeN.getFunction());
462   // We return a list of the resulting *new* SCCs in postorder.
463   SmallVector<SCC *, 1> ResultSCCs;
465   // Direct recursion doesn't impact the SCC graph at all.
466   if (&CallerN == &CalleeN)
467     return ResultSCCs;
469   // The worklist is every node in the original SCC.
470   SmallVector<Node *, 1> Worklist;
471   Worklist.swap(Nodes);
472   for (Node *N : Worklist) {
473     // The nodes formerly in this SCC are no longer in any SCC.
474     N->DFSNumber = 0;
475     N->LowLink = 0;
476     G->SCCMap.erase(N);
477   }
478   assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
479                                 "edge between them that is within the SCC.");
481   // The callee can already reach every node in this SCC (by definition). It is
482   // the only node we know will stay inside this SCC. Everything which
483   // transitively reaches Callee will also remain in the SCC. To model this we
484   // incrementally add any chain of nodes which reaches something in the new
485   // node set to the new node set. This short circuits one side of the Tarjan's
486   // walk.
487   insert(CalleeN);
489   // We're going to do a full mini-Tarjan's walk using a local stack here.
490   SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
491   SmallVector<Node *, 4> PendingSCCStack;
492   do {
493     Node *N = Worklist.pop_back_val();
494     if (N->DFSNumber == 0)
495       internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
497     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
498     assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
499   } while (!Worklist.empty());
501   // Now we need to reconnect the current SCC to the graph.
502   bool IsLeafSCC = true;
503   for (Node *N : Nodes) {
504     for (Node &ChildN : *N) {
505       SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
506       if (&ChildSCC == this)
507         continue;
508       ChildSCC.ParentSCCs.insert(this);
509       IsLeafSCC = false;
510     }
511   }
512 #ifndef NDEBUG
513   if (!ResultSCCs.empty())
514     assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
515                          "SCCs by removing this edge.");
516   if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
517                    [&](SCC *C) { return C == this; }))
518     assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
519                          "SCCs before we removed this edge.");
520 #endif
521   // If this SCC stopped being a leaf through this edge removal, remove it from
522   // the leaf SCC list.
523   if (!IsLeafSCC && !ResultSCCs.empty())
524     G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
525                      G->LeafSCCs.end());
527   // Return the new list of SCCs.
528   return ResultSCCs;
531 void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
532   assert(SCCMap.empty() && DFSStack.empty() &&
533          "This method cannot be called after SCCs have been formed!");
535   return CallerN.insertEdgeInternal(Callee);
538 void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
539   assert(SCCMap.empty() && DFSStack.empty() &&
540          "This method cannot be called after SCCs have been formed!");
542   return CallerN.removeEdgeInternal(Callee);
545 static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
546                        SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
547   // Recurse depth first through the nodes.
548   for (LazyCallGraph::Node &ChildN : N)
549     if (Printed.insert(&ChildN).second)
550       printNodes(OS, ChildN, Printed);
552   OS << "  Call edges in function: " << N.getFunction().getName() << "\n";
553   for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
554     OS << "    -> " << I->getFunction().getName() << "\n";
556   OS << "\n";
559 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
560   ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
561   OS << "  SCC with " << SCCSize << " functions:\n";
563   for (LazyCallGraph::Node *N : SCC)
564     OS << "    " << N->getFunction().getName() << "\n";
566   OS << "\n";
569 void LazyCallGraph::print(raw_ostream &OS, Module &M) {
570   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
571      << "\n\n";
573   SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
574   for (LazyCallGraph::Node &N : *this)
575     if (Printed.insert(&N).second)
576       printNodes(OS, N, Printed);
578   for (LazyCallGraph::SCC &SCC : this->postorder_sccs())
579     printSCC(OS, SCC);
582 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
583   return *new (MappedN = BPA.Allocate()) Node(*this, F);
586 void LazyCallGraph::updateGraphPtrs() {
587   // Process all nodes updating the graph pointers.
588   {
589     SmallVector<Node *, 16> Worklist;
590     for (auto &Entry : EntryNodes)
591       if (Node *EntryN = Entry.dyn_cast<Node *>())
592         Worklist.push_back(EntryN);
594     while (!Worklist.empty()) {
595       Node *N = Worklist.pop_back_val();
596       N->G = this;
597       for (auto &Callee : N->Callees)
598         if (!Callee.isNull())
599           if (Node *CalleeN = Callee.dyn_cast<Node *>())
600             Worklist.push_back(CalleeN);
601     }
602   }
604   // Process all SCCs updating the graph pointers.
605   {
606     SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
608     while (!Worklist.empty()) {
609       SCC *C = Worklist.pop_back_val();
610       C->G = this;
611       Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
612                       C->ParentSCCs.end());
613     }
614   }
617 LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
618                                            SmallVectorImpl<Node *> &NodeStack) {
619   // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
620   // into it.
621   SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
623   while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
624     assert(NodeStack.back()->LowLink >= RootN->LowLink &&
625            "We cannot have a low link in an SCC lower than its root on the "
626            "stack!");
627     NewSCC->insert(*NodeStack.pop_back_val());
628   }
629   NewSCC->insert(*RootN);
631   // A final pass over all edges in the SCC (this remains linear as we only
632   // do this once when we build the SCC) to connect it to the parent sets of
633   // its children.
634   bool IsLeafSCC = true;
635   for (Node *SCCN : NewSCC->Nodes)
636     for (Node &SCCChildN : *SCCN) {
637       SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
638       if (&ChildSCC == NewSCC)
639         continue;
640       ChildSCC.ParentSCCs.insert(NewSCC);
641       IsLeafSCC = false;
642     }
644   // For the SCCs where we fine no child SCCs, add them to the leaf list.
645   if (IsLeafSCC)
646     LeafSCCs.push_back(NewSCC);
648   return NewSCC;
651 LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
652   Node *N;
653   Node::iterator I;
654   if (!DFSStack.empty()) {
655     N = DFSStack.back().first;
656     I = DFSStack.back().second;
657     DFSStack.pop_back();
658   } else {
659     // If we've handled all candidate entry nodes to the SCC forest, we're done.
660     do {
661       if (SCCEntryNodes.empty())
662         return nullptr;
664       N = &get(*SCCEntryNodes.pop_back_val());
665     } while (N->DFSNumber != 0);
666     I = N->begin();
667     N->LowLink = N->DFSNumber = 1;
668     NextDFSNumber = 2;
669   }
671   for (;;) {
672     assert(N->DFSNumber != 0 && "We should always assign a DFS number "
673                                 "before placing a node onto the stack.");
675     Node::iterator E = N->end();
676     while (I != E) {
677       Node &ChildN = *I;
678       if (ChildN.DFSNumber == 0) {
679         // Mark that we should start at this child when next this node is the
680         // top of the stack. We don't start at the next child to ensure this
681         // child's lowlink is reflected.
682         DFSStack.push_back(std::make_pair(N, N->begin()));
684         // Recurse onto this node via a tail call.
685         assert(!SCCMap.count(&ChildN) &&
686                "Found a node with 0 DFS number but already in an SCC!");
687         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
688         N = &ChildN;
689         I = ChildN.begin();
690         E = ChildN.end();
691         continue;
692       }
694       // Track the lowest link of the children, if any are still in the stack.
695       assert(ChildN.LowLink != 0 &&
696              "Low-link must not be zero with a non-zero DFS number.");
697       if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
698         N->LowLink = ChildN.LowLink;
699       ++I;
700     }
702     if (N->LowLink == N->DFSNumber)
703       // Form the new SCC out of the top of the DFS stack.
704       return formSCC(N, PendingSCCStack);
706     // At this point we know that N cannot ever be an SCC root. Its low-link
707     // is not its dfs-number, and we've processed all of its children. It is
708     // just sitting here waiting until some node further down the stack gets
709     // low-link == dfs-number and pops it off as well. Move it to the pending
710     // stack which is pulled into the next SCC to be formed.
711     PendingSCCStack.push_back(N);
713     assert(!DFSStack.empty() && "We never found a viable root!");
714     N = DFSStack.back().first;
715     I = DFSStack.back().second;
716     DFSStack.pop_back();
717   }
720 char LazyCallGraphAnalysis::PassID;
722 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
724 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
725                                                 ModuleAnalysisManager *AM) {
726   AM->getResult<LazyCallGraphAnalysis>(M).print(OS, M);
728   return PreservedAnalyses::all();