1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/CodeGen/GCMetadataPrinter.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBundle.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/DebugInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/MC/MCSection.h"
39 #include "llvm/MC/MCStreamer.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Format.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/Timer.h"
45 #include "llvm/Target/TargetFrameLowering.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetLoweringObjectFile.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Target/TargetRegisterInfo.h"
51 #include "llvm/Target/TargetSubtargetInfo.h"
52 #include "llvm/Transforms/Utils/GlobalStatus.h"
53 #include "WinCodeViewLineTables.h"
54 using namespace llvm;
56 static const char *const DWARFGroupName = "DWARF Emission";
57 static const char *const DbgTimerName = "Debug Info Emission";
58 static const char *const EHTimerName = "DWARF Exception Writer";
59 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
61 STATISTIC(EmittedInsts, "Number of machine instrs printed");
63 char AsmPrinter::ID = 0;
65 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
66 static gcp_map_type &getGCMap(void *&P) {
67 if (P == 0)
68 P = new gcp_map_type();
69 return *(gcp_map_type*)P;
70 }
73 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
74 /// value in log2 form. This rounds up to the preferred alignment if possible
75 /// and legal.
76 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
77 unsigned InBits = 0) {
78 unsigned NumBits = 0;
79 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
80 NumBits = TD.getPreferredAlignmentLog(GVar);
82 // If InBits is specified, round it to it.
83 if (InBits > NumBits)
84 NumBits = InBits;
86 // If the GV has a specified alignment, take it into account.
87 if (GV->getAlignment() == 0)
88 return NumBits;
90 unsigned GVAlign = Log2_32(GV->getAlignment());
92 // If the GVAlign is larger than NumBits, or if we are required to obey
93 // NumBits because the GV has an assigned section, obey it.
94 if (GVAlign > NumBits || GV->hasSection())
95 NumBits = GVAlign;
96 return NumBits;
97 }
99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
100 : MachineFunctionPass(ID),
101 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
102 OutContext(Streamer.getContext()),
103 OutStreamer(Streamer),
104 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
105 DD = 0; MMI = 0; LI = 0; MF = 0;
106 CurrentFnSym = CurrentFnSymForSize = 0;
107 GCMetadataPrinters = 0;
108 VerboseAsm = Streamer.isVerboseAsm();
109 }
111 AsmPrinter::~AsmPrinter() {
112 assert(DD == 0 && Handlers.empty() && "Debug/EH info didn't get finalized");
114 if (GCMetadataPrinters != 0) {
115 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
117 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
118 delete I->second;
119 delete &GCMap;
120 GCMetadataPrinters = 0;
121 }
123 delete &OutStreamer;
124 }
126 /// getFunctionNumber - Return a unique ID for the current function.
127 ///
128 unsigned AsmPrinter::getFunctionNumber() const {
129 return MF->getFunctionNumber();
130 }
132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
133 return TM.getTargetLowering()->getObjFileLowering();
134 }
136 /// getDataLayout - Return information about data layout.
137 const DataLayout &AsmPrinter::getDataLayout() const {
138 return *TM.getDataLayout();
139 }
141 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
142 return TM.getSubtarget<MCSubtargetInfo>();
143 }
145 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
146 S.EmitInstruction(Inst, getSubtargetInfo());
147 }
149 StringRef AsmPrinter::getTargetTriple() const {
150 return TM.getTargetTriple();
151 }
153 /// getCurrentSection() - Return the current section we are emitting to.
154 const MCSection *AsmPrinter::getCurrentSection() const {
155 return OutStreamer.getCurrentSection().first;
156 }
160 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
161 AU.setPreservesAll();
162 MachineFunctionPass::getAnalysisUsage(AU);
163 AU.addRequired<MachineModuleInfo>();
164 AU.addRequired<GCModuleInfo>();
165 if (isVerbose())
166 AU.addRequired<MachineLoopInfo>();
167 }
169 bool AsmPrinter::doInitialization(Module &M) {
170 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
171 MMI->AnalyzeModule(M);
173 // Initialize TargetLoweringObjectFile.
174 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
175 .Initialize(OutContext, TM);
177 OutStreamer.InitSections(false);
179 Mang = new Mangler(TM.getDataLayout());
181 // Allow the target to emit any magic that it wants at the start of the file.
182 EmitStartOfAsmFile(M);
184 // Very minimal debug info. It is ignored if we emit actual debug info. If we
185 // don't, this at least helps the user find where a global came from.
186 if (MAI->hasSingleParameterDotFile()) {
187 // .file "foo.c"
188 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
189 }
191 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
192 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
193 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
194 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
195 MP->beginAssembly(*this);
197 // Emit module-level inline asm if it exists.
198 if (!M.getModuleInlineAsm().empty()) {
199 OutStreamer.AddComment("Start of file scope inline assembly");
200 OutStreamer.AddBlankLine();
201 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
202 OutStreamer.AddComment("End of file scope inline assembly");
203 OutStreamer.AddBlankLine();
204 }
206 if (MAI->doesSupportDebugInformation()) {
207 if (Triple(TM.getTargetTriple()).getOS() == Triple::Win32) {
208 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
209 DbgTimerName,
210 CodeViewLineTablesGroupName));
211 } else {
212 DD = new DwarfDebug(this, &M);
213 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
214 }
215 }
217 DwarfException *DE = 0;
218 switch (MAI->getExceptionHandlingType()) {
219 case ExceptionHandling::None:
220 break;
221 case ExceptionHandling::SjLj:
222 case ExceptionHandling::DwarfCFI:
223 DE = new DwarfCFIException(this);
224 break;
225 case ExceptionHandling::ARM:
226 DE = new ARMException(this);
227 break;
228 case ExceptionHandling::Win64:
229 DE = new Win64Exception(this);
230 break;
231 }
232 if (DE)
233 Handlers.push_back(HandlerInfo(DE, EHTimerName, DWARFGroupName));
234 return false;
235 }
237 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
238 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
239 if (Linkage != GlobalValue::LinkOnceODRLinkage)
240 return false;
242 if (!MAI.hasWeakDefCanBeHiddenDirective())
243 return false;
245 if (GV->hasUnnamedAddr())
246 return true;
248 // This is only used for MachO, so right now it doesn't really matter how
249 // we handle alias. Revisit this once the MachO linker implements aliases.
250 if (isa<GlobalAlias>(GV))
251 return false;
253 // If it is a non constant variable, it needs to be uniqued across shared
254 // objects.
255 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
256 if (!Var->isConstant())
257 return false;
258 }
260 GlobalStatus GS;
261 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
262 return true;
264 return false;
265 }
267 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
268 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
269 switch (Linkage) {
270 case GlobalValue::CommonLinkage:
271 case GlobalValue::LinkOnceAnyLinkage:
272 case GlobalValue::LinkOnceODRLinkage:
273 case GlobalValue::WeakAnyLinkage:
274 case GlobalValue::WeakODRLinkage:
275 case GlobalValue::LinkerPrivateWeakLinkage:
276 if (MAI->hasWeakDefDirective()) {
277 // .globl _foo
278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
280 if (!canBeHidden(GV, *MAI))
281 // .weak_definition _foo
282 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
283 else
284 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
285 } else if (MAI->hasLinkOnceDirective()) {
286 // .globl _foo
287 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
288 //NOTE: linkonce is handled by the section the symbol was assigned to.
289 } else {
290 // .weak _foo
291 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
292 }
293 return;
294 case GlobalValue::AppendingLinkage:
295 // FIXME: appending linkage variables should go into a section of
296 // their name or something. For now, just emit them as external.
297 case GlobalValue::ExternalLinkage:
298 // If external or appending, declare as a global symbol.
299 // .globl _foo
300 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
301 return;
302 case GlobalValue::PrivateLinkage:
303 case GlobalValue::InternalLinkage:
304 case GlobalValue::LinkerPrivateLinkage:
305 return;
306 case GlobalValue::AvailableExternallyLinkage:
307 llvm_unreachable("Should never emit this");
308 case GlobalValue::ExternalWeakLinkage:
309 llvm_unreachable("Don't know how to emit these");
310 }
311 llvm_unreachable("Unknown linkage type!");
312 }
314 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
315 const GlobalValue *GV) const {
316 TM.getNameWithPrefix(Name, GV, *Mang);
317 }
319 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
320 return TM.getSymbol(GV, *Mang);
321 }
323 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
324 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
325 if (GV->hasInitializer()) {
326 // Check to see if this is a special global used by LLVM, if so, emit it.
327 if (EmitSpecialLLVMGlobal(GV))
328 return;
330 if (isVerbose()) {
331 GV->printAsOperand(OutStreamer.GetCommentOS(),
332 /*PrintType=*/false, GV->getParent());
333 OutStreamer.GetCommentOS() << '\n';
334 }
335 }
337 MCSymbol *GVSym = getSymbol(GV);
338 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
340 if (!GV->hasInitializer()) // External globals require no extra code.
341 return;
343 if (MAI->hasDotTypeDotSizeDirective())
344 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
346 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
348 const DataLayout *DL = TM.getDataLayout();
349 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
351 // If the alignment is specified, we *must* obey it. Overaligning a global
352 // with a specified alignment is a prompt way to break globals emitted to
353 // sections and expected to be contiguous (e.g. ObjC metadata).
354 unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
356 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
357 const HandlerInfo &OI = Handlers[I];
358 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled);
359 OI.Handler->setSymbolSize(GVSym, Size);
360 }
362 // Handle common and BSS local symbols (.lcomm).
363 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
364 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
365 unsigned Align = 1 << AlignLog;
367 // Handle common symbols.
368 if (GVKind.isCommon()) {
369 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
370 Align = 0;
372 // .comm _foo, 42, 4
373 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
374 return;
375 }
377 // Handle local BSS symbols.
378 if (MAI->hasMachoZeroFillDirective()) {
379 const MCSection *TheSection =
380 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
381 // .zerofill __DATA, __bss, _foo, 400, 5
382 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
383 return;
384 }
386 // Use .lcomm only if it supports user-specified alignment.
387 // Otherwise, while it would still be correct to use .lcomm in some
388 // cases (e.g. when Align == 1), the external assembler might enfore
389 // some -unknown- default alignment behavior, which could cause
390 // spurious differences between external and integrated assembler.
391 // Prefer to simply fall back to .local / .comm in this case.
392 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
393 // .lcomm _foo, 42
394 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
395 return;
396 }
398 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
399 Align = 0;
401 // .local _foo
402 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
403 // .comm _foo, 42, 4
404 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
405 return;
406 }
408 const MCSection *TheSection =
409 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
411 // Handle the zerofill directive on darwin, which is a special form of BSS
412 // emission.
413 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
414 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
416 // .globl _foo
417 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
418 // .zerofill __DATA, __common, _foo, 400, 5
419 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
420 return;
421 }
423 // Handle thread local data for mach-o which requires us to output an
424 // additional structure of data and mangle the original symbol so that we
425 // can reference it later.
426 //
427 // TODO: This should become an "emit thread local global" method on TLOF.
428 // All of this macho specific stuff should be sunk down into TLOFMachO and
429 // stuff like "TLSExtraDataSection" should no longer be part of the parent
430 // TLOF class. This will also make it more obvious that stuff like
431 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
432 // specific code.
433 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
434 // Emit the .tbss symbol
435 MCSymbol *MangSym =
436 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
438 if (GVKind.isThreadBSS()) {
439 TheSection = getObjFileLowering().getTLSBSSSection();
440 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
441 } else if (GVKind.isThreadData()) {
442 OutStreamer.SwitchSection(TheSection);
444 EmitAlignment(AlignLog, GV);
445 OutStreamer.EmitLabel(MangSym);
447 EmitGlobalConstant(GV->getInitializer());
448 }
450 OutStreamer.AddBlankLine();
452 // Emit the variable struct for the runtime.
453 const MCSection *TLVSect
454 = getObjFileLowering().getTLSExtraDataSection();
456 OutStreamer.SwitchSection(TLVSect);
457 // Emit the linkage here.
458 EmitLinkage(GV, GVSym);
459 OutStreamer.EmitLabel(GVSym);
461 // Three pointers in size:
462 // - __tlv_bootstrap - used to make sure support exists
463 // - spare pointer, used when mapped by the runtime
464 // - pointer to mangled symbol above with initializer
465 unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
466 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
467 PtrSize);
468 OutStreamer.EmitIntValue(0, PtrSize);
469 OutStreamer.EmitSymbolValue(MangSym, PtrSize);
471 OutStreamer.AddBlankLine();
472 return;
473 }
475 OutStreamer.SwitchSection(TheSection);
477 EmitLinkage(GV, GVSym);
478 EmitAlignment(AlignLog, GV);
480 OutStreamer.EmitLabel(GVSym);
482 EmitGlobalConstant(GV->getInitializer());
484 if (MAI->hasDotTypeDotSizeDirective())
485 // .size foo, 42
486 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
488 OutStreamer.AddBlankLine();
489 }
491 /// EmitFunctionHeader - This method emits the header for the current
492 /// function.
493 void AsmPrinter::EmitFunctionHeader() {
494 // Print out constants referenced by the function
495 EmitConstantPool();
497 // Print the 'header' of function.
498 const Function *F = MF->getFunction();
500 OutStreamer.SwitchSection(
501 getObjFileLowering().SectionForGlobal(F, *Mang, TM));
502 EmitVisibility(CurrentFnSym, F->getVisibility());
504 EmitLinkage(F, CurrentFnSym);
505 EmitAlignment(MF->getAlignment(), F);
507 if (MAI->hasDotTypeDotSizeDirective())
508 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
510 if (isVerbose()) {
511 F->printAsOperand(OutStreamer.GetCommentOS(),
512 /*PrintType=*/false, F->getParent());
513 OutStreamer.GetCommentOS() << '\n';
514 }
516 // Emit the CurrentFnSym. This is a virtual function to allow targets to
517 // do their wild and crazy things as required.
518 EmitFunctionEntryLabel();
520 // If the function had address-taken blocks that got deleted, then we have
521 // references to the dangling symbols. Emit them at the start of the function
522 // so that we don't get references to undefined symbols.
523 std::vector<MCSymbol*> DeadBlockSyms;
524 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
525 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
526 OutStreamer.AddComment("Address taken block that was later removed");
527 OutStreamer.EmitLabel(DeadBlockSyms[i]);
528 }
530 // Emit pre-function debug and/or EH information.
531 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
532 const HandlerInfo &OI = Handlers[I];
533 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled);
534 OI.Handler->beginFunction(MF);
535 }
537 // Emit the prefix data.
538 if (F->hasPrefixData())
539 EmitGlobalConstant(F->getPrefixData());
540 }
542 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
543 /// function. This can be overridden by targets as required to do custom stuff.
544 void AsmPrinter::EmitFunctionEntryLabel() {
545 // The function label could have already been emitted if two symbols end up
546 // conflicting due to asm renaming. Detect this and emit an error.
547 if (CurrentFnSym->isUndefined())
548 return OutStreamer.EmitLabel(CurrentFnSym);
550 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
551 "' label emitted multiple times to assembly file");
552 }
554 /// emitComments - Pretty-print comments for instructions.
555 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
556 const MachineFunction *MF = MI.getParent()->getParent();
557 const TargetMachine &TM = MF->getTarget();
559 // Check for spills and reloads
560 int FI;
562 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
564 // We assume a single instruction only has a spill or reload, not
565 // both.
566 const MachineMemOperand *MMO;
567 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
568 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
569 MMO = *MI.memoperands_begin();
570 CommentOS << MMO->getSize() << "-byte Reload\n";
571 }
572 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
573 if (FrameInfo->isSpillSlotObjectIndex(FI))
574 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
575 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
576 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
577 MMO = *MI.memoperands_begin();
578 CommentOS << MMO->getSize() << "-byte Spill\n";
579 }
580 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
581 if (FrameInfo->isSpillSlotObjectIndex(FI))
582 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
583 }
585 // Check for spill-induced copies
586 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
587 CommentOS << " Reload Reuse\n";
588 }
590 /// emitImplicitDef - This method emits the specified machine instruction
591 /// that is an implicit def.
592 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
593 unsigned RegNo = MI->getOperand(0).getReg();
594 OutStreamer.AddComment(Twine("implicit-def: ") +
595 TM.getRegisterInfo()->getName(RegNo));
596 OutStreamer.AddBlankLine();
597 }
599 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
600 std::string Str = "kill:";
601 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
602 const MachineOperand &Op = MI->getOperand(i);
603 assert(Op.isReg() && "KILL instruction must have only register operands");
604 Str += ' ';
605 Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
606 Str += (Op.isDef() ? "<def>" : "<kill>");
607 }
608 AP.OutStreamer.AddComment(Str);
609 AP.OutStreamer.AddBlankLine();
610 }
612 /// emitDebugValueComment - This method handles the target-independent form
613 /// of DBG_VALUE, returning true if it was able to do so. A false return
614 /// means the target will need to handle MI in EmitInstruction.
615 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
616 // This code handles only the 3-operand target-independent form.
617 if (MI->getNumOperands() != 3)
618 return false;
620 SmallString<128> Str;
621 raw_svector_ostream OS(Str);
622 OS << "DEBUG_VALUE: ";
624 DIVariable V(MI->getOperand(2).getMetadata());
625 if (V.getContext().isSubprogram()) {
626 StringRef Name = DISubprogram(V.getContext()).getDisplayName();
627 if (!Name.empty())
628 OS << Name << ":";
629 }
630 OS << V.getName() << " <- ";
632 // The second operand is only an offset if it's an immediate.
633 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
634 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
636 // Register or immediate value. Register 0 means undef.
637 if (MI->getOperand(0).isFPImm()) {
638 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
639 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
640 OS << (double)APF.convertToFloat();
641 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
642 OS << APF.convertToDouble();
643 } else {
644 // There is no good way to print long double. Convert a copy to
645 // double. Ah well, it's only a comment.
646 bool ignored;
647 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
648 &ignored);
649 OS << "(long double) " << APF.convertToDouble();
650 }
651 } else if (MI->getOperand(0).isImm()) {
652 OS << MI->getOperand(0).getImm();
653 } else if (MI->getOperand(0).isCImm()) {
654 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
655 } else {
656 unsigned Reg;
657 if (MI->getOperand(0).isReg()) {
658 Reg = MI->getOperand(0).getReg();
659 } else {
660 assert(MI->getOperand(0).isFI() && "Unknown operand type");
661 const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
662 Offset += TFI->getFrameIndexReference(*AP.MF,
663 MI->getOperand(0).getIndex(), Reg);
664 Deref = true;
665 }
666 if (Reg == 0) {
667 // Suppress offset, it is not meaningful here.
668 OS << "undef";
669 // NOTE: Want this comment at start of line, don't emit with AddComment.
670 AP.OutStreamer.emitRawComment(OS.str());
671 return true;
672 }
673 if (Deref)
674 OS << '[';
675 OS << AP.TM.getRegisterInfo()->getName(Reg);
676 }
678 if (Deref)
679 OS << '+' << Offset << ']';
681 // NOTE: Want this comment at start of line, don't emit with AddComment.
682 AP.OutStreamer.emitRawComment(OS.str());
683 return true;
684 }
686 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
687 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
688 MF->getFunction()->needsUnwindTableEntry())
689 return CFI_M_EH;
691 if (MMI->hasDebugInfo())
692 return CFI_M_Debug;
694 return CFI_M_None;
695 }
697 bool AsmPrinter::needsSEHMoves() {
698 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
699 MF->getFunction()->needsUnwindTableEntry();
700 }
702 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
703 const MCSymbol *Label = MI.getOperand(0).getMCSymbol();
705 ExceptionHandling::ExceptionsType ExceptionHandlingType =
706 MAI->getExceptionHandlingType();
707 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
708 ExceptionHandlingType != ExceptionHandling::ARM)
709 return;
711 if (needsCFIMoves() == CFI_M_None)
712 return;
714 if (MMI->getCompactUnwindEncoding() != 0)
715 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
717 const MachineModuleInfo &MMI = MF->getMMI();
718 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
719 bool FoundOne = false;
720 (void)FoundOne;
721 for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(),
722 E = Instrs.end(); I != E; ++I) {
723 if (I->getLabel() == Label) {
724 emitCFIInstruction(*I);
725 FoundOne = true;
726 }
727 }
728 assert(FoundOne);
729 }
731 /// EmitFunctionBody - This method emits the body and trailer for a
732 /// function.
733 void AsmPrinter::EmitFunctionBody() {
734 // Emit target-specific gunk before the function body.
735 EmitFunctionBodyStart();
737 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
739 // Print out code for the function.
740 bool HasAnyRealCode = false;
741 const MachineInstr *LastMI = 0;
742 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
743 I != E; ++I) {
744 // Print a label for the basic block.
745 EmitBasicBlockStart(I);
746 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
747 II != IE; ++II) {
748 LastMI = II;
750 // Print the assembly for the instruction.
751 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
752 !II->isDebugValue()) {
753 HasAnyRealCode = true;
754 ++EmittedInsts;
755 }
757 if (ShouldPrintDebugScopes) {
758 for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) {
759 const HandlerInfo &OI = Handlers[III];
760 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName,
761 TimePassesIsEnabled);
762 OI.Handler->beginInstruction(II);
763 }
764 }
766 if (isVerbose())
767 emitComments(*II, OutStreamer.GetCommentOS());
769 switch (II->getOpcode()) {
770 case TargetOpcode::PROLOG_LABEL:
771 emitPrologLabel(*II);
772 break;
774 case TargetOpcode::EH_LABEL:
775 case TargetOpcode::GC_LABEL:
776 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
777 break;
778 case TargetOpcode::INLINEASM:
779 EmitInlineAsm(II);
780 break;
781 case TargetOpcode::DBG_VALUE:
782 if (isVerbose()) {
783 if (!emitDebugValueComment(II, *this))
784 EmitInstruction(II);
785 }
786 break;
787 case TargetOpcode::IMPLICIT_DEF:
788 if (isVerbose()) emitImplicitDef(II);
789 break;
790 case TargetOpcode::KILL:
791 if (isVerbose()) emitKill(II, *this);
792 break;
793 default:
794 EmitInstruction(II);
795 break;
796 }
798 if (ShouldPrintDebugScopes) {
799 for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) {
800 const HandlerInfo &OI = Handlers[III];
801 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName,
802 TimePassesIsEnabled);
803 OI.Handler->endInstruction();
804 }
805 }
806 }
807 }
809 // If the last instruction was a prolog label, then we have a situation where
810 // we emitted a prolog but no function body. This results in the ending prolog
811 // label equaling the end of function label and an invalid "row" in the
812 // FDE. We need to emit a noop in this situation so that the FDE's rows are
813 // valid.
814 bool RequiresNoop = LastMI && LastMI->isPrologLabel();
816 // If the function is empty and the object file uses .subsections_via_symbols,
817 // then we need to emit *something* to the function body to prevent the
818 // labels from collapsing together. Just emit a noop.
819 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
820 MCInst Noop;
821 TM.getInstrInfo()->getNoopForMachoTarget(Noop);
822 if (Noop.getOpcode()) {
823 OutStreamer.AddComment("avoids zero-length function");
824 OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
825 } else // Target not mc-ized yet.
826 OutStreamer.EmitRawText(StringRef("\tnop\n"));
827 }
829 const Function *F = MF->getFunction();
830 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
831 const BasicBlock *BB = i;
832 if (!BB->hasAddressTaken())
833 continue;
834 MCSymbol *Sym = GetBlockAddressSymbol(BB);
835 if (Sym->isDefined())
836 continue;
837 OutStreamer.AddComment("Address of block that was removed by CodeGen");
838 OutStreamer.EmitLabel(Sym);
839 }
841 // Emit target-specific gunk after the function body.
842 EmitFunctionBodyEnd();
844 // If the target wants a .size directive for the size of the function, emit
845 // it.
846 if (MAI->hasDotTypeDotSizeDirective()) {
847 // Create a symbol for the end of function, so we can get the size as
848 // difference between the function label and the temp label.
849 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
850 OutStreamer.EmitLabel(FnEndLabel);
852 const MCExpr *SizeExp =
853 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
854 MCSymbolRefExpr::Create(CurrentFnSymForSize,
855 OutContext),
856 OutContext);
857 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
858 }
860 // Emit post-function debug and/or EH information.
861 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
862 const HandlerInfo &OI = Handlers[I];
863 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled);
864 OI.Handler->endFunction(MF);
865 }
866 MMI->EndFunction();
868 // Print out jump tables referenced by the function.
869 EmitJumpTableInfo();
871 OutStreamer.AddBlankLine();
872 }
874 /// EmitDwarfRegOp - Emit dwarf register operation.
875 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
876 bool Indirect) const {
877 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
878 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
879 bool isSubRegister = Reg < 0;
880 unsigned Idx = 0;
882 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
883 ++SR) {
884 Reg = TRI->getDwarfRegNum(*SR, false);
885 if (Reg >= 0)
886 Idx = TRI->getSubRegIndex(*SR, MLoc.getReg());
887 }
889 // FIXME: Handle cases like a super register being encoded as
890 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
892 // FIXME: We have no reasonable way of handling errors in here. The
893 // caller might be in the middle of an dwarf expression. We should
894 // probably assert that Reg >= 0 once debug info generation is more mature.
895 if (Reg < 0) {
896 OutStreamer.AddComment("nop (invalid dwarf register number)");
897 EmitInt8(dwarf::DW_OP_nop);
898 return;
899 }
901 if (MLoc.isIndirect() || Indirect) {
902 if (Reg < 32) {
903 OutStreamer.AddComment(
904 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
905 EmitInt8(dwarf::DW_OP_breg0 + Reg);
906 } else {
907 OutStreamer.AddComment("DW_OP_bregx");
908 EmitInt8(dwarf::DW_OP_bregx);
909 OutStreamer.AddComment(Twine(Reg));
910 EmitULEB128(Reg);
911 }
912 EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
913 if (MLoc.isIndirect() && Indirect)
914 EmitInt8(dwarf::DW_OP_deref);
915 } else {
916 if (Reg < 32) {
917 OutStreamer.AddComment(
918 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
919 EmitInt8(dwarf::DW_OP_reg0 + Reg);
920 } else {
921 OutStreamer.AddComment("DW_OP_regx");
922 EmitInt8(dwarf::DW_OP_regx);
923 OutStreamer.AddComment(Twine(Reg));
924 EmitULEB128(Reg);
925 }
926 }
928 // Emit Mask
929 if (isSubRegister) {
930 unsigned Size = TRI->getSubRegIdxSize(Idx);
931 unsigned Offset = TRI->getSubRegIdxOffset(Idx);
932 if (Offset > 0) {
933 OutStreamer.AddComment("DW_OP_bit_piece");
934 EmitInt8(dwarf::DW_OP_bit_piece);
935 OutStreamer.AddComment(Twine(Size));
936 EmitULEB128(Size);
937 OutStreamer.AddComment(Twine(Offset));
938 EmitULEB128(Offset);
939 } else {
940 OutStreamer.AddComment("DW_OP_piece");
941 EmitInt8(dwarf::DW_OP_piece);
942 unsigned ByteSize = Size / 8; // Assuming 8 bits per byte.
943 OutStreamer.AddComment(Twine(ByteSize));
944 EmitULEB128(ByteSize);
945 }
946 }
947 }
949 bool AsmPrinter::doFinalization(Module &M) {
950 // Emit global variables.
951 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
952 I != E; ++I)
953 EmitGlobalVariable(I);
955 // Emit visibility info for declarations
956 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
957 const Function &F = *I;
958 if (!F.isDeclaration())
959 continue;
960 GlobalValue::VisibilityTypes V = F.getVisibility();
961 if (V == GlobalValue::DefaultVisibility)
962 continue;
964 MCSymbol *Name = getSymbol(&F);
965 EmitVisibility(Name, V, false);
966 }
968 // Emit module flags.
969 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
970 M.getModuleFlagsMetadata(ModuleFlags);
971 if (!ModuleFlags.empty())
972 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
974 // Make sure we wrote out everything we need.
975 OutStreamer.Flush();
977 // Finalize debug and EH information.
978 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
979 const HandlerInfo &OI = Handlers[I];
980 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName,
981 TimePassesIsEnabled);
982 OI.Handler->endModule();
983 delete OI.Handler;
984 }
985 Handlers.clear();
986 DD = 0;
988 // If the target wants to know about weak references, print them all.
989 if (MAI->getWeakRefDirective()) {
990 // FIXME: This is not lazy, it would be nice to only print weak references
991 // to stuff that is actually used. Note that doing so would require targets
992 // to notice uses in operands (due to constant exprs etc). This should
993 // happen with the MC stuff eventually.
995 // Print out module-level global variables here.
996 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
997 I != E; ++I) {
998 if (!I->hasExternalWeakLinkage()) continue;
999 OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
1000 }
1002 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
1003 if (!I->hasExternalWeakLinkage()) continue;
1004 OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
1005 }
1006 }
1008 if (MAI->hasSetDirective()) {
1009 OutStreamer.AddBlankLine();
1010 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
1011 I != E; ++I) {
1012 MCSymbol *Name = getSymbol(I);
1014 const GlobalValue *GV = I->getAliasedGlobal();
1015 if (GV->isDeclaration()) {
1016 report_fatal_error(Name->getName() +
1017 ": Target doesn't support aliases to declarations");
1018 }
1020 MCSymbol *Target = getSymbol(GV);
1022 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
1023 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
1024 else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1025 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
1026 else
1027 assert(I->hasLocalLinkage() && "Invalid alias linkage");
1029 EmitVisibility(Name, I->getVisibility());
1031 // Emit the directives as assignments aka .set:
1032 OutStreamer.EmitAssignment(Name,
1033 MCSymbolRefExpr::Create(Target, OutContext));
1034 }
1035 }
1037 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1038 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1039 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1040 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
1041 MP->finishAssembly(*this);
1043 // Emit llvm.ident metadata in an '.ident' directive.
1044 EmitModuleIdents(M);
1046 // If we don't have any trampolines, then we don't require stack memory
1047 // to be executable. Some targets have a directive to declare this.
1048 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1049 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1050 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1051 OutStreamer.SwitchSection(S);
1053 // Allow the target to emit any magic that it wants at the end of the file,
1054 // after everything else has gone out.
1055 EmitEndOfAsmFile(M);
1057 delete Mang; Mang = 0;
1058 MMI = 0;
1060 OutStreamer.Finish();
1061 OutStreamer.reset();
1063 return false;
1064 }
1066 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1067 this->MF = &MF;
1068 // Get the function symbol.
1069 CurrentFnSym = getSymbol(MF.getFunction());
1070 CurrentFnSymForSize = CurrentFnSym;
1072 if (isVerbose())
1073 LI = &getAnalysis<MachineLoopInfo>();
1074 }
1076 namespace {
1077 // SectionCPs - Keep track the alignment, constpool entries per Section.
1078 struct SectionCPs {
1079 const MCSection *S;
1080 unsigned Alignment;
1081 SmallVector<unsigned, 4> CPEs;
1082 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1083 };
1084 }
1086 /// EmitConstantPool - Print to the current output stream assembly
1087 /// representations of the constants in the constant pool MCP. This is
1088 /// used to print out constants which have been "spilled to memory" by
1089 /// the code generator.
1090 ///
1091 void AsmPrinter::EmitConstantPool() {
1092 const MachineConstantPool *MCP = MF->getConstantPool();
1093 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1094 if (CP.empty()) return;
1096 // Calculate sections for constant pool entries. We collect entries to go into
1097 // the same section together to reduce amount of section switch statements.
1098 SmallVector<SectionCPs, 4> CPSections;
1099 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1100 const MachineConstantPoolEntry &CPE = CP[i];
1101 unsigned Align = CPE.getAlignment();
1103 SectionKind Kind;
1104 switch (CPE.getRelocationInfo()) {
1105 default: llvm_unreachable("Unknown section kind");
1106 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1107 case 1:
1108 Kind = SectionKind::getReadOnlyWithRelLocal();
1109 break;
1110 case 0:
1111 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1112 case 4: Kind = SectionKind::getMergeableConst4(); break;
1113 case 8: Kind = SectionKind::getMergeableConst8(); break;
1114 case 16: Kind = SectionKind::getMergeableConst16();break;
1115 default: Kind = SectionKind::getMergeableConst(); break;
1116 }
1117 }
1119 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1121 // The number of sections are small, just do a linear search from the
1122 // last section to the first.
1123 bool Found = false;
1124 unsigned SecIdx = CPSections.size();
1125 while (SecIdx != 0) {
1126 if (CPSections[--SecIdx].S == S) {
1127 Found = true;
1128 break;
1129 }
1130 }
1131 if (!Found) {
1132 SecIdx = CPSections.size();
1133 CPSections.push_back(SectionCPs(S, Align));
1134 }
1136 if (Align > CPSections[SecIdx].Alignment)
1137 CPSections[SecIdx].Alignment = Align;
1138 CPSections[SecIdx].CPEs.push_back(i);
1139 }
1141 // Now print stuff into the calculated sections.
1142 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1143 OutStreamer.SwitchSection(CPSections[i].S);
1144 EmitAlignment(Log2_32(CPSections[i].Alignment));
1146 unsigned Offset = 0;
1147 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1148 unsigned CPI = CPSections[i].CPEs[j];
1149 MachineConstantPoolEntry CPE = CP[CPI];
1151 // Emit inter-object padding for alignment.
1152 unsigned AlignMask = CPE.getAlignment() - 1;
1153 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1154 OutStreamer.EmitZeros(NewOffset - Offset);
1156 Type *Ty = CPE.getType();
1157 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1158 OutStreamer.EmitLabel(GetCPISymbol(CPI));
1160 if (CPE.isMachineConstantPoolEntry())
1161 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1162 else
1163 EmitGlobalConstant(CPE.Val.ConstVal);
1164 }
1165 }
1166 }
1168 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1169 /// by the current function to the current output stream.
1170 ///
1171 void AsmPrinter::EmitJumpTableInfo() {
1172 const DataLayout *DL = MF->getTarget().getDataLayout();
1173 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1174 if (MJTI == 0) return;
1175 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1176 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1177 if (JT.empty()) return;
1179 // Pick the directive to use to print the jump table entries, and switch to
1180 // the appropriate section.
1181 const Function *F = MF->getFunction();
1182 bool JTInDiffSection = false;
1183 if (// In PIC mode, we need to emit the jump table to the same section as the
1184 // function body itself, otherwise the label differences won't make sense.
1185 // FIXME: Need a better predicate for this: what about custom entries?
1186 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1187 // We should also do if the section name is NULL or function is declared
1188 // in discardable section
1189 // FIXME: this isn't the right predicate, should be based on the MCSection
1190 // for the function.
1191 F->isWeakForLinker()) {
1192 OutStreamer.SwitchSection(
1193 getObjFileLowering().SectionForGlobal(F, *Mang, TM));
1194 } else {
1195 // Otherwise, drop it in the readonly section.
1196 const MCSection *ReadOnlySection =
1197 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1198 OutStreamer.SwitchSection(ReadOnlySection);
1199 JTInDiffSection = true;
1200 }
1202 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1204 // Jump tables in code sections are marked with a data_region directive
1205 // where that's supported.
1206 if (!JTInDiffSection)
1207 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1209 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1210 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1212 // If this jump table was deleted, ignore it.
1213 if (JTBBs.empty()) continue;
1215 // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1216 // .set directive for each unique entry. This reduces the number of
1217 // relocations the assembler will generate for the jump table.
1218 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1219 MAI->hasSetDirective()) {
1220 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1221 const TargetLowering *TLI = TM.getTargetLowering();
1222 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1223 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1224 const MachineBasicBlock *MBB = JTBBs[ii];
1225 if (!EmittedSets.insert(MBB)) continue;
1227 // .set LJTSet, LBB32-base
1228 const MCExpr *LHS =
1229 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1230 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1231 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1232 }
1233 }
1235 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1236 // before each jump table. The first label is never referenced, but tells
1237 // the assembler and linker the extents of the jump table object. The
1238 // second label is actually referenced by the code.
1239 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
1240 // FIXME: This doesn't have to have any specific name, just any randomly
1241 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1242 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1244 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1246 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1247 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1248 }
1249 if (!JTInDiffSection)
1250 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1251 }
1253 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1254 /// current stream.
1255 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1256 const MachineBasicBlock *MBB,
1257 unsigned UID) const {
1258 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1259 const MCExpr *Value = 0;
1260 switch (MJTI->getEntryKind()) {
1261 case MachineJumpTableInfo::EK_Inline:
1262 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1263 case MachineJumpTableInfo::EK_Custom32:
1264 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1265 OutContext);
1266 break;
1267 case MachineJumpTableInfo::EK_BlockAddress:
1268 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1269 // .word LBB123
1270 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1271 break;
1272 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1273 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1274 // with a relocation as gp-relative, e.g.:
1275 // .gprel32 LBB123
1276 MCSymbol *MBBSym = MBB->getSymbol();
1277 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1278 return;
1279 }
1281 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1282 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1283 // with a relocation as gp-relative, e.g.:
1284 // .gpdword LBB123
1285 MCSymbol *MBBSym = MBB->getSymbol();
1286 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1287 return;
1288 }
1290 case MachineJumpTableInfo::EK_LabelDifference32: {
1291 // EK_LabelDifference32 - Each entry is the address of the block minus
1292 // the address of the jump table. This is used for PIC jump tables where
1293 // gprel32 is not supported. e.g.:
1294 // .word LBB123 - LJTI1_2
1295 // If the .set directive is supported, this is emitted as:
1296 // .set L4_5_set_123, LBB123 - LJTI1_2
1297 // .word L4_5_set_123
1299 // If we have emitted set directives for the jump table entries, print
1300 // them rather than the entries themselves. If we're emitting PIC, then
1301 // emit the table entries as differences between two text section labels.
1302 if (MAI->hasSetDirective()) {
1303 // If we used .set, reference the .set's symbol.
1304 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1305 OutContext);
1306 break;
1307 }
1308 // Otherwise, use the difference as the jump table entry.
1309 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1310 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1311 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1312 break;
1313 }
1314 }
1316 assert(Value && "Unknown entry kind!");
1318 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1319 OutStreamer.EmitValue(Value, EntrySize);
1320 }
1323 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1324 /// special global used by LLVM. If so, emit it and return true, otherwise
1325 /// do nothing and return false.
1326 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1327 if (GV->getName() == "llvm.used") {
1328 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1329 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1330 return true;
1331 }
1333 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1334 if (GV->getSection() == "llvm.metadata" ||
1335 GV->hasAvailableExternallyLinkage())
1336 return true;
1338 if (!GV->hasAppendingLinkage()) return false;
1340 assert(GV->hasInitializer() && "Not a special LLVM global!");
1342 if (GV->getName() == "llvm.global_ctors") {
1343 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1345 if (TM.getRelocationModel() == Reloc::Static &&
1346 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1347 StringRef Sym(".constructors_used");
1348 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1349 MCSA_Reference);
1350 }
1351 return true;
1352 }
1354 if (GV->getName() == "llvm.global_dtors") {
1355 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1357 if (TM.getRelocationModel() == Reloc::Static &&
1358 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1359 StringRef Sym(".destructors_used");
1360 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1361 MCSA_Reference);
1362 }
1363 return true;
1364 }
1366 return false;
1367 }
1369 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1370 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1371 /// is true, as being used with this directive.
1372 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1373 // Should be an array of 'i8*'.
1374 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1375 const GlobalValue *GV =
1376 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1377 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, *Mang, TM))
1378 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1379 }
1380 }
1382 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1383 /// priority.
1384 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1385 // Should be an array of '{ int, void ()* }' structs. The first value is the
1386 // init priority.
1387 if (!isa<ConstantArray>(List)) return;
1389 // Sanity check the structors list.
1390 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1391 if (!InitList) return; // Not an array!
1392 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1393 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1394 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1395 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1397 // Gather the structors in a form that's convenient for sorting by priority.
1398 typedef std::pair<unsigned, Constant *> Structor;
1399 SmallVector<Structor, 8> Structors;
1400 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1401 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1402 if (!CS) continue; // Malformed.
1403 if (CS->getOperand(1)->isNullValue())
1404 break; // Found a null terminator, skip the rest.
1405 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1406 if (!Priority) continue; // Malformed.
1407 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1408 CS->getOperand(1)));
1409 }
1411 // Emit the function pointers in the target-specific order
1412 const DataLayout *DL = TM.getDataLayout();
1413 unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1414 std::stable_sort(Structors.begin(), Structors.end(), less_first());
1415 for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1416 const MCSection *OutputSection =
1417 (isCtor ?
1418 getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1419 getObjFileLowering().getStaticDtorSection(Structors[i].first));
1420 OutStreamer.SwitchSection(OutputSection);
1421 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1422 EmitAlignment(Align);
1423 EmitXXStructor(Structors[i].second);
1424 }
1425 }
1427 void AsmPrinter::EmitModuleIdents(Module &M) {
1428 if (!MAI->hasIdentDirective())
1429 return;
1431 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1432 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1433 const MDNode *N = NMD->getOperand(i);
1434 assert(N->getNumOperands() == 1 &&
1435 "llvm.ident metadata entry can have only one operand");
1436 const MDString *S = cast<MDString>(N->getOperand(0));
1437 OutStreamer.EmitIdent(S->getString());
1438 }
1439 }
1440 }
1442 //===--------------------------------------------------------------------===//
1443 // Emission and print routines
1444 //
1446 /// EmitInt8 - Emit a byte directive and value.
1447 ///
1448 void AsmPrinter::EmitInt8(int Value) const {
1449 OutStreamer.EmitIntValue(Value, 1);
1450 }
1452 /// EmitInt16 - Emit a short directive and value.
1453 ///
1454 void AsmPrinter::EmitInt16(int Value) const {
1455 OutStreamer.EmitIntValue(Value, 2);
1456 }
1458 /// EmitInt32 - Emit a long directive and value.
1459 ///
1460 void AsmPrinter::EmitInt32(int Value) const {
1461 OutStreamer.EmitIntValue(Value, 4);
1462 }
1464 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1465 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1466 /// labels. This implicitly uses .set if it is available.
1467 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1468 unsigned Size) const {
1469 // Get the Hi-Lo expression.
1470 const MCExpr *Diff =
1471 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1472 MCSymbolRefExpr::Create(Lo, OutContext),
1473 OutContext);
1475 if (!MAI->hasSetDirective()) {
1476 OutStreamer.EmitValue(Diff, Size);
1477 return;
1478 }
1480 // Otherwise, emit with .set (aka assignment).
1481 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1482 OutStreamer.EmitAssignment(SetLabel, Diff);
1483 OutStreamer.EmitSymbolValue(SetLabel, Size);
1484 }
1486 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1487 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1488 /// specify the labels. This implicitly uses .set if it is available.
1489 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1490 const MCSymbol *Lo,
1491 unsigned Size) const {
1493 // Emit Hi+Offset - Lo
1494 // Get the Hi+Offset expression.
1495 const MCExpr *Plus =
1496 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1497 MCConstantExpr::Create(Offset, OutContext),
1498 OutContext);
1500 // Get the Hi+Offset-Lo expression.
1501 const MCExpr *Diff =
1502 MCBinaryExpr::CreateSub(Plus,
1503 MCSymbolRefExpr::Create(Lo, OutContext),
1504 OutContext);
1506 if (!MAI->hasSetDirective())
1507 OutStreamer.EmitValue(Diff, Size);
1508 else {
1509 // Otherwise, emit with .set (aka assignment).
1510 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1511 OutStreamer.EmitAssignment(SetLabel, Diff);
1512 OutStreamer.EmitSymbolValue(SetLabel, Size);
1513 }
1514 }
1516 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1517 /// where the size in bytes of the directive is specified by Size and Label
1518 /// specifies the label. This implicitly uses .set if it is available.
1519 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1520 unsigned Size,
1521 bool IsSectionRelative) const {
1522 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1523 OutStreamer.EmitCOFFSecRel32(Label);
1524 return;
1525 }
1527 // Emit Label+Offset (or just Label if Offset is zero)
1528 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1529 if (Offset)
1530 Expr = MCBinaryExpr::CreateAdd(
1531 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
1533 OutStreamer.EmitValue(Expr, Size);
1534 }
1536 //===----------------------------------------------------------------------===//
1538 // EmitAlignment - Emit an alignment directive to the specified power of
1539 // two boundary. For example, if you pass in 3 here, you will get an 8
1540 // byte alignment. If a global value is specified, and if that global has
1541 // an explicit alignment requested, it will override the alignment request
1542 // if required for correctness.
1543 //
1544 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1545 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1547 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1549 if (getCurrentSection()->getKind().isText())
1550 OutStreamer.EmitCodeAlignment(1 << NumBits);
1551 else
1552 OutStreamer.EmitValueToAlignment(1 << NumBits);
1553 }
1555 //===----------------------------------------------------------------------===//
1556 // Constant emission.
1557 //===----------------------------------------------------------------------===//
1559 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1560 ///
1561 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1562 MCContext &Ctx = AP.OutContext;
1564 if (CV->isNullValue() || isa<UndefValue>(CV))
1565 return MCConstantExpr::Create(0, Ctx);
1567 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1568 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1570 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1571 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
1573 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1574 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1576 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1577 if (CE == 0) {
1578 llvm_unreachable("Unknown constant value to lower!");
1579 }
1581 if (const MCExpr *RelocExpr =
1582 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang,
1583 AP.TM))
1584 return RelocExpr;
1586 switch (CE->getOpcode()) {
1587 default:
1588 // If the code isn't optimized, there may be outstanding folding
1589 // opportunities. Attempt to fold the expression using DataLayout as a
1590 // last resort before giving up.
1591 if (Constant *C =
1592 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1593 if (C != CE)
1594 return lowerConstant(C, AP);
1596 // Otherwise report the problem to the user.
1597 {
1598 std::string S;
1599 raw_string_ostream OS(S);
1600 OS << "Unsupported expression in static initializer: ";
1601 CE->printAsOperand(OS, /*PrintType=*/false,
1602 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1603 report_fatal_error(OS.str());
1604 }
1605 case Instruction::GetElementPtr: {
1606 const DataLayout &DL = *AP.TM.getDataLayout();
1607 // Generate a symbolic expression for the byte address
1608 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1609 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1611 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1612 if (!OffsetAI)
1613 return Base;
1615 int64_t Offset = OffsetAI.getSExtValue();
1616 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1617 Ctx);
1618 }
1620 case Instruction::Trunc:
1621 // We emit the value and depend on the assembler to truncate the generated
1622 // expression properly. This is important for differences between
1623 // blockaddress labels. Since the two labels are in the same function, it
1624 // is reasonable to treat their delta as a 32-bit value.
1625 // FALL THROUGH.
1626 case Instruction::BitCast:
1627 return lowerConstant(CE->getOperand(0), AP);
1629 case Instruction::IntToPtr: {
1630 const DataLayout &DL = *AP.TM.getDataLayout();
1631 // Handle casts to pointers by changing them into casts to the appropriate
1632 // integer type. This promotes constant folding and simplifies this code.
1633 Constant *Op = CE->getOperand(0);
1634 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1635 false/*ZExt*/);
1636 return lowerConstant(Op, AP);
1637 }
1639 case Instruction::PtrToInt: {
1640 const DataLayout &DL = *AP.TM.getDataLayout();
1641 // Support only foldable casts to/from pointers that can be eliminated by
1642 // changing the pointer to the appropriately sized integer type.
1643 Constant *Op = CE->getOperand(0);
1644 Type *Ty = CE->getType();
1646 const MCExpr *OpExpr = lowerConstant(Op, AP);
1648 // We can emit the pointer value into this slot if the slot is an
1649 // integer slot equal to the size of the pointer.
1650 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1651 return OpExpr;
1653 // Otherwise the pointer is smaller than the resultant integer, mask off
1654 // the high bits so we are sure to get a proper truncation if the input is
1655 // a constant expr.
1656 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1657 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1658 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1659 }
1661 // The MC library also has a right-shift operator, but it isn't consistently
1662 // signed or unsigned between different targets.
1663 case Instruction::Add:
1664 case Instruction::Sub:
1665 case Instruction::Mul:
1666 case Instruction::SDiv:
1667 case Instruction::SRem:
1668 case Instruction::Shl:
1669 case Instruction::And:
1670 case Instruction::Or:
1671 case Instruction::Xor: {
1672 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1673 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1674 switch (CE->getOpcode()) {
1675 default: llvm_unreachable("Unknown binary operator constant cast expr");
1676 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1677 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1678 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1679 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1680 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1681 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1682 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1683 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1684 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1685 }
1686 }
1687 }
1688 }
1690 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1692 /// isRepeatedByteSequence - Determine whether the given value is
1693 /// composed of a repeated sequence of identical bytes and return the
1694 /// byte value. If it is not a repeated sequence, return -1.
1695 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1696 StringRef Data = V->getRawDataValues();
1697 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1698 char C = Data[0];
1699 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1700 if (Data[i] != C) return -1;
1701 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1702 }
1705 /// isRepeatedByteSequence - Determine whether the given value is
1706 /// composed of a repeated sequence of identical bytes and return the
1707 /// byte value. If it is not a repeated sequence, return -1.
1708 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1710 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1711 if (CI->getBitWidth() > 64) return -1;
1713 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1714 uint64_t Value = CI->getZExtValue();
1716 // Make sure the constant is at least 8 bits long and has a power
1717 // of 2 bit width. This guarantees the constant bit width is
1718 // always a multiple of 8 bits, avoiding issues with padding out
1719 // to Size and other such corner cases.
1720 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1722 uint8_t Byte = static_cast<uint8_t>(Value);
1724 for (unsigned i = 1; i < Size; ++i) {
1725 Value >>= 8;
1726 if (static_cast<uint8_t>(Value) != Byte) return -1;
1727 }
1728 return Byte;
1729 }
1730 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1731 // Make sure all array elements are sequences of the same repeated
1732 // byte.
1733 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1734 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1735 if (Byte == -1) return -1;
1737 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1738 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1739 if (ThisByte == -1) return -1;
1740 if (Byte != ThisByte) return -1;
1741 }
1742 return Byte;
1743 }
1745 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1746 return isRepeatedByteSequence(CDS);
1748 return -1;
1749 }
1751 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1752 AsmPrinter &AP){
1754 // See if we can aggregate this into a .fill, if so, emit it as such.
1755 int Value = isRepeatedByteSequence(CDS, AP.TM);
1756 if (Value != -1) {
1757 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1758 // Don't emit a 1-byte object as a .fill.
1759 if (Bytes > 1)
1760 return AP.OutStreamer.EmitFill(Bytes, Value);
1761 }
1763 // If this can be emitted with .ascii/.asciz, emit it as such.
1764 if (CDS->isString())
1765 return AP.OutStreamer.EmitBytes(CDS->getAsString());
1767 // Otherwise, emit the values in successive locations.
1768 unsigned ElementByteSize = CDS->getElementByteSize();
1769 if (isa<IntegerType>(CDS->getElementType())) {
1770 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1771 if (AP.isVerbose())
1772 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1773 CDS->getElementAsInteger(i));
1774 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1775 ElementByteSize);
1776 }
1777 } else if (ElementByteSize == 4) {
1778 // FP Constants are printed as integer constants to avoid losing
1779 // precision.
1780 assert(CDS->getElementType()->isFloatTy());
1781 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1782 union {
1783 float F;
1784 uint32_t I;
1785 };
1787 F = CDS->getElementAsFloat(i);
1788 if (AP.isVerbose())
1789 AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1790 AP.OutStreamer.EmitIntValue(I, 4);
1791 }
1792 } else {
1793 assert(CDS->getElementType()->isDoubleTy());
1794 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1795 union {
1796 double F;
1797 uint64_t I;
1798 };
1800 F = CDS->getElementAsDouble(i);
1801 if (AP.isVerbose())
1802 AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1803 AP.OutStreamer.EmitIntValue(I, 8);
1804 }
1805 }
1807 const DataLayout &DL = *AP.TM.getDataLayout();
1808 unsigned Size = DL.getTypeAllocSize(CDS->getType());
1809 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1810 CDS->getNumElements();
1811 if (unsigned Padding = Size - EmittedSize)
1812 AP.OutStreamer.EmitZeros(Padding);
1814 }
1816 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1817 // See if we can aggregate some values. Make sure it can be
1818 // represented as a series of bytes of the constant value.
1819 int Value = isRepeatedByteSequence(CA, AP.TM);
1821 if (Value != -1) {
1822 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1823 AP.OutStreamer.EmitFill(Bytes, Value);
1824 }
1825 else {
1826 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1827 emitGlobalConstantImpl(CA->getOperand(i), AP);
1828 }
1829 }
1831 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1832 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1833 emitGlobalConstantImpl(CV->getOperand(i), AP);
1835 const DataLayout &DL = *AP.TM.getDataLayout();
1836 unsigned Size = DL.getTypeAllocSize(CV->getType());
1837 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1838 CV->getType()->getNumElements();
1839 if (unsigned Padding = Size - EmittedSize)
1840 AP.OutStreamer.EmitZeros(Padding);
1841 }
1843 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1844 // Print the fields in successive locations. Pad to align if needed!
1845 const DataLayout *DL = AP.TM.getDataLayout();
1846 unsigned Size = DL->getTypeAllocSize(CS->getType());
1847 const StructLayout *Layout = DL->getStructLayout(CS->getType());
1848 uint64_t SizeSoFar = 0;
1849 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1850 const Constant *Field = CS->getOperand(i);
1852 // Check if padding is needed and insert one or more 0s.
1853 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1854 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1855 - Layout->getElementOffset(i)) - FieldSize;
1856 SizeSoFar += FieldSize + PadSize;
1858 // Now print the actual field value.
1859 emitGlobalConstantImpl(Field, AP);
1861 // Insert padding - this may include padding to increase the size of the
1862 // current field up to the ABI size (if the struct is not packed) as well
1863 // as padding to ensure that the next field starts at the right offset.
1864 AP.OutStreamer.EmitZeros(PadSize);
1865 }
1866 assert(SizeSoFar == Layout->getSizeInBytes() &&
1867 "Layout of constant struct may be incorrect!");
1868 }
1870 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1871 APInt API = CFP->getValueAPF().bitcastToAPInt();
1873 // First print a comment with what we think the original floating-point value
1874 // should have been.
1875 if (AP.isVerbose()) {
1876 SmallString<8> StrVal;
1877 CFP->getValueAPF().toString(StrVal);
1879 CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1880 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1881 }
1883 // Now iterate through the APInt chunks, emitting them in endian-correct
1884 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1885 // floats).
1886 unsigned NumBytes = API.getBitWidth() / 8;
1887 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1888 const uint64_t *p = API.getRawData();
1890 // PPC's long double has odd notions of endianness compared to how LLVM
1891 // handles it: p[0] goes first for *big* endian on PPC.
1892 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1893 int Chunk = API.getNumWords() - 1;
1895 if (TrailingBytes)
1896 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1898 for (; Chunk >= 0; --Chunk)
1899 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1900 } else {
1901 unsigned Chunk;
1902 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1903 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1905 if (TrailingBytes)
1906 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1907 }
1909 // Emit the tail padding for the long double.
1910 const DataLayout &DL = *AP.TM.getDataLayout();
1911 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
1912 DL.getTypeStoreSize(CFP->getType()));
1913 }
1915 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1916 const DataLayout *DL = AP.TM.getDataLayout();
1917 unsigned BitWidth = CI->getBitWidth();
1919 // Copy the value as we may massage the layout for constants whose bit width
1920 // is not a multiple of 64-bits.
1921 APInt Realigned(CI->getValue());
1922 uint64_t ExtraBits = 0;
1923 unsigned ExtraBitsSize = BitWidth & 63;
1925 if (ExtraBitsSize) {
1926 // The bit width of the data is not a multiple of 64-bits.
1927 // The extra bits are expected to be at the end of the chunk of the memory.
1928 // Little endian:
1929 // * Nothing to be done, just record the extra bits to emit.
1930 // Big endian:
1931 // * Record the extra bits to emit.
1932 // * Realign the raw data to emit the chunks of 64-bits.
1933 if (DL->isBigEndian()) {
1934 // Basically the structure of the raw data is a chunk of 64-bits cells:
1935 // 0 1 BitWidth / 64
1936 // [chunk1][chunk2] ... [chunkN].
1937 // The most significant chunk is chunkN and it should be emitted first.
1938 // However, due to the alignment issue chunkN contains useless bits.
1939 // Realign the chunks so that they contain only useless information:
1940 // ExtraBits 0 1 (BitWidth / 64) - 1
1941 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1942 ExtraBits = Realigned.getRawData()[0] &
1943 (((uint64_t)-1) >> (64 - ExtraBitsSize));
1944 Realigned = Realigned.lshr(ExtraBitsSize);
1945 } else
1946 ExtraBits = Realigned.getRawData()[BitWidth / 64];
1947 }
1949 // We don't expect assemblers to support integer data directives
1950 // for more than 64 bits, so we emit the data in at most 64-bit
1951 // quantities at a time.
1952 const uint64_t *RawData = Realigned.getRawData();
1953 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1954 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1955 AP.OutStreamer.EmitIntValue(Val, 8);
1956 }
1958 if (ExtraBitsSize) {
1959 // Emit the extra bits after the 64-bits chunks.
1961 // Emit a directive that fills the expected size.
1962 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1963 Size -= (BitWidth / 64) * 8;
1964 assert(Size && Size * 8 >= ExtraBitsSize &&
1965 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1966 == ExtraBits && "Directive too small for extra bits.");
1967 AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1968 }
1969 }
1971 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1972 const DataLayout *DL = AP.TM.getDataLayout();
1973 uint64_t Size = DL->getTypeAllocSize(CV->getType());
1974 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1975 return AP.OutStreamer.EmitZeros(Size);
1977 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1978 switch (Size) {
1979 case 1:
1980 case 2:
1981 case 4:
1982 case 8:
1983 if (AP.isVerbose())
1984 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1985 CI->getZExtValue());
1986 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1987 return;
1988 default:
1989 emitGlobalConstantLargeInt(CI, AP);
1990 return;
1991 }
1992 }
1994 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1995 return emitGlobalConstantFP(CFP, AP);
1997 if (isa<ConstantPointerNull>(CV)) {
1998 AP.OutStreamer.EmitIntValue(0, Size);
1999 return;
2000 }
2002 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2003 return emitGlobalConstantDataSequential(CDS, AP);
2005 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2006 return emitGlobalConstantArray(CVA, AP);
2008 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2009 return emitGlobalConstantStruct(CVS, AP);
2011 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2012 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2013 // vectors).
2014 if (CE->getOpcode() == Instruction::BitCast)
2015 return emitGlobalConstantImpl(CE->getOperand(0), AP);
2017 if (Size > 8) {
2018 // If the constant expression's size is greater than 64-bits, then we have
2019 // to emit the value in chunks. Try to constant fold the value and emit it
2020 // that way.
2021 Constant *New = ConstantFoldConstantExpression(CE, DL);
2022 if (New && New != CE)
2023 return emitGlobalConstantImpl(New, AP);
2024 }
2025 }
2027 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2028 return emitGlobalConstantVector(V, AP);
2030 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2031 // thread the streamer with EmitValue.
2032 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
2033 }
2035 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2036 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
2037 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
2038 if (Size)
2039 emitGlobalConstantImpl(CV, *this);
2040 else if (MAI->hasSubsectionsViaSymbols()) {
2041 // If the global has zero size, emit a single byte so that two labels don't
2042 // look like they are at the same location.
2043 OutStreamer.EmitIntValue(0, 1);
2044 }
2045 }
2047 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2048 // Target doesn't support this yet!
2049 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2050 }
2052 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2053 if (Offset > 0)
2054 OS << '+' << Offset;
2055 else if (Offset < 0)
2056 OS << Offset;
2057 }
2059 //===----------------------------------------------------------------------===//
2060 // Symbol Lowering Routines.
2061 //===----------------------------------------------------------------------===//
2063 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
2064 /// temporary label with the specified stem and unique ID.
2065 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
2066 const DataLayout *DL = TM.getDataLayout();
2067 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
2068 Name + Twine(ID));
2069 }
2071 /// GetTempSymbol - Return an assembler temporary label with the specified
2072 /// stem.
2073 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
2074 const DataLayout *DL = TM.getDataLayout();
2075 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
2076 Name);
2077 }
2080 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2081 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2082 }
2084 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2085 return MMI->getAddrLabelSymbol(BB);
2086 }
2088 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2089 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2090 const DataLayout *DL = TM.getDataLayout();
2091 return OutContext.GetOrCreateSymbol
2092 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2093 + "_" + Twine(CPID));
2094 }
2096 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2097 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2098 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2099 }
2101 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2102 /// FIXME: privatize to AsmPrinter.
2103 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2104 const DataLayout *DL = TM.getDataLayout();
2105 return OutContext.GetOrCreateSymbol
2106 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2107 Twine(UID) + "_set_" + Twine(MBBID));
2108 }
2110 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2111 StringRef Suffix) const {
2112 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2113 TM);
2114 }
2116 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2117 /// ExternalSymbol.
2118 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2119 SmallString<60> NameStr;
2120 Mang->getNameWithPrefix(NameStr, Sym);
2121 return OutContext.GetOrCreateSymbol(NameStr.str());
2122 }
2126 /// PrintParentLoopComment - Print comments about parent loops of this one.
2127 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2128 unsigned FunctionNumber) {
2129 if (Loop == 0) return;
2130 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2131 OS.indent(Loop->getLoopDepth()*2)
2132 << "Parent Loop BB" << FunctionNumber << "_"
2133 << Loop->getHeader()->getNumber()
2134 << " Depth=" << Loop->getLoopDepth() << '\n';
2135 }
2138 /// PrintChildLoopComment - Print comments about child loops within
2139 /// the loop for this basic block, with nesting.
2140 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2141 unsigned FunctionNumber) {
2142 // Add child loop information
2143 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2144 OS.indent((*CL)->getLoopDepth()*2)
2145 << "Child Loop BB" << FunctionNumber << "_"
2146 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2147 << '\n';
2148 PrintChildLoopComment(OS, *CL, FunctionNumber);
2149 }
2150 }
2152 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2153 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2154 const MachineLoopInfo *LI,
2155 const AsmPrinter &AP) {
2156 // Add loop depth information
2157 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2158 if (Loop == 0) return;
2160 MachineBasicBlock *Header = Loop->getHeader();
2161 assert(Header && "No header for loop");
2163 // If this block is not a loop header, just print out what is the loop header
2164 // and return.
2165 if (Header != &MBB) {
2166 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
2167 Twine(AP.getFunctionNumber())+"_" +
2168 Twine(Loop->getHeader()->getNumber())+
2169 " Depth="+Twine(Loop->getLoopDepth()));
2170 return;
2171 }
2173 // Otherwise, it is a loop header. Print out information about child and
2174 // parent loops.
2175 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2177 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2179 OS << "=>";
2180 OS.indent(Loop->getLoopDepth()*2-2);
2182 OS << "This ";
2183 if (Loop->empty())
2184 OS << "Inner ";
2185 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2187 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2188 }
2191 /// EmitBasicBlockStart - This method prints the label for the specified
2192 /// MachineBasicBlock, an alignment (if present) and a comment describing
2193 /// it if appropriate.
2194 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2195 // Emit an alignment directive for this block, if needed.
2196 if (unsigned Align = MBB->getAlignment())
2197 EmitAlignment(Align);
2199 // If the block has its address taken, emit any labels that were used to
2200 // reference the block. It is possible that there is more than one label
2201 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2202 // the references were generated.
2203 if (MBB->hasAddressTaken()) {
2204 const BasicBlock *BB = MBB->getBasicBlock();
2205 if (isVerbose())
2206 OutStreamer.AddComment("Block address taken");
2208 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2210 for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2211 OutStreamer.EmitLabel(Syms[i]);
2212 }
2214 // Print some verbose block comments.
2215 if (isVerbose()) {
2216 if (const BasicBlock *BB = MBB->getBasicBlock())
2217 if (BB->hasName())
2218 OutStreamer.AddComment("%" + BB->getName());
2219 emitBasicBlockLoopComments(*MBB, LI, *this);
2220 }
2222 // Print the main label for the block.
2223 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2224 if (isVerbose()) {
2225 // NOTE: Want this comment at start of line, don't emit with AddComment.
2226 OutStreamer.emitRawComment(" BB#" + Twine(MBB->getNumber()) + ":", false);
2227 }
2228 } else {
2229 OutStreamer.EmitLabel(MBB->getSymbol());
2230 }
2231 }
2233 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2234 bool IsDefinition) const {
2235 MCSymbolAttr Attr = MCSA_Invalid;
2237 switch (Visibility) {
2238 default: break;
2239 case GlobalValue::HiddenVisibility:
2240 if (IsDefinition)
2241 Attr = MAI->getHiddenVisibilityAttr();
2242 else
2243 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2244 break;
2245 case GlobalValue::ProtectedVisibility:
2246 Attr = MAI->getProtectedVisibilityAttr();
2247 break;
2248 }
2250 if (Attr != MCSA_Invalid)
2251 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2252 }
2254 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2255 /// exactly one predecessor and the control transfer mechanism between
2256 /// the predecessor and this block is a fall-through.
2257 bool AsmPrinter::
2258 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2259 // If this is a landing pad, it isn't a fall through. If it has no preds,
2260 // then nothing falls through to it.
2261 if (MBB->isLandingPad() || MBB->pred_empty())
2262 return false;
2264 // If there isn't exactly one predecessor, it can't be a fall through.
2265 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2266 ++PI2;
2267 if (PI2 != MBB->pred_end())
2268 return false;
2270 // The predecessor has to be immediately before this block.
2271 MachineBasicBlock *Pred = *PI;
2273 if (!Pred->isLayoutSuccessor(MBB))
2274 return false;
2276 // If the block is completely empty, then it definitely does fall through.
2277 if (Pred->empty())
2278 return true;
2280 // Check the terminators in the previous blocks
2281 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2282 IE = Pred->end(); II != IE; ++II) {
2283 MachineInstr &MI = *II;
2285 // If it is not a simple branch, we are in a table somewhere.
2286 if (!MI.isBranch() || MI.isIndirectBranch())
2287 return false;
2289 // If we are the operands of one of the branches, this is not a fall
2290 // through. Note that targets with delay slots will usually bundle
2291 // terminators with the delay slot instruction.
2292 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2293 if (OP->isJTI())
2294 return false;
2295 if (OP->isMBB() && OP->getMBB() == MBB)
2296 return false;
2297 }
2298 }
2300 return true;
2301 }
2305 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2306 if (!S->usesMetadata())
2307 return 0;
2309 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2310 gcp_map_type::iterator GCPI = GCMap.find(S);
2311 if (GCPI != GCMap.end())
2312 return GCPI->second;
2314 const char *Name = S->getName().c_str();
2316 for (GCMetadataPrinterRegistry::iterator
2317 I = GCMetadataPrinterRegistry::begin(),
2318 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2319 if (strcmp(Name, I->getName()) == 0) {
2320 GCMetadataPrinter *GMP = I->instantiate();
2321 GMP->S = S;
2322 GCMap.insert(std::make_pair(S, GMP));
2323 return GMP;
2324 }
2326 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2327 }
2329 /// Pin vtable to this file.
2330 AsmPrinterHandler::~AsmPrinterHandler() {}