1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
42 #define DEBUG_TYPE "isel"
43 #include "llvm/CodeGen/FastISel.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/CodeGen/Analysis.h"
47 #include "llvm/CodeGen/FunctionLoweringInfo.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/DebugInfo.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetLibraryInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetMachine.h"
64 using namespace llvm;
66 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
67 "target-independent selector");
68 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
69 "target-specific selector");
70 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
72 /// startNewBlock - Set the current block to which generated machine
73 /// instructions will be appended, and clear the local CSE map.
74 ///
75 void FastISel::startNewBlock() {
76 LocalValueMap.clear();
78 EmitStartPt = 0;
80 // Advance the emit start point past any EH_LABEL instructions.
81 MachineBasicBlock::iterator
82 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
83 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
84 EmitStartPt = I;
85 ++I;
86 }
87 LastLocalValue = EmitStartPt;
88 }
90 bool FastISel::LowerArguments() {
91 if (!FuncInfo.CanLowerReturn)
92 // Fallback to SDISel argument lowering code to deal with sret pointer
93 // parameter.
94 return false;
96 if (!FastLowerArguments())
97 return false;
99 // Enter non-dead arguments into ValueMap for uses in non-entry BBs.
100 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
101 E = FuncInfo.Fn->arg_end(); I != E; ++I) {
102 if (!I->use_empty()) {
103 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
104 assert(VI != LocalValueMap.end() && "Missed an argument?");
105 FuncInfo.ValueMap[I] = VI->second;
106 }
107 }
108 return true;
109 }
111 void FastISel::flushLocalValueMap() {
112 LocalValueMap.clear();
113 LastLocalValue = EmitStartPt;
114 recomputeInsertPt();
115 }
117 bool FastISel::hasTrivialKill(const Value *V) const {
118 // Don't consider constants or arguments to have trivial kills.
119 const Instruction *I = dyn_cast<Instruction>(V);
120 if (!I)
121 return false;
123 // No-op casts are trivially coalesced by fast-isel.
124 if (const CastInst *Cast = dyn_cast<CastInst>(I))
125 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
126 !hasTrivialKill(Cast->getOperand(0)))
127 return false;
129 // GEPs with all zero indices are trivially coalesced by fast-isel.
130 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
131 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
132 return false;
134 // Only instructions with a single use in the same basic block are considered
135 // to have trivial kills.
136 return I->hasOneUse() &&
137 !(I->getOpcode() == Instruction::BitCast ||
138 I->getOpcode() == Instruction::PtrToInt ||
139 I->getOpcode() == Instruction::IntToPtr) &&
140 cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
141 }
143 unsigned FastISel::getRegForValue(const Value *V) {
144 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
145 // Don't handle non-simple values in FastISel.
146 if (!RealVT.isSimple())
147 return 0;
149 // Ignore illegal types. We must do this before looking up the value
150 // in ValueMap because Arguments are given virtual registers regardless
151 // of whether FastISel can handle them.
152 MVT VT = RealVT.getSimpleVT();
153 if (!TLI.isTypeLegal(VT)) {
154 // Handle integer promotions, though, because they're common and easy.
155 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
156 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
157 else
158 return 0;
159 }
161 // Look up the value to see if we already have a register for it.
162 unsigned Reg = lookUpRegForValue(V);
163 if (Reg != 0)
164 return Reg;
166 // In bottom-up mode, just create the virtual register which will be used
167 // to hold the value. It will be materialized later.
168 if (isa<Instruction>(V) &&
169 (!isa<AllocaInst>(V) ||
170 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
171 return FuncInfo.InitializeRegForValue(V);
173 SavePoint SaveInsertPt = enterLocalValueArea();
175 // Materialize the value in a register. Emit any instructions in the
176 // local value area.
177 Reg = materializeRegForValue(V, VT);
179 leaveLocalValueArea(SaveInsertPt);
181 return Reg;
182 }
184 /// materializeRegForValue - Helper for getRegForValue. This function is
185 /// called when the value isn't already available in a register and must
186 /// be materialized with new instructions.
187 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
188 unsigned Reg = 0;
190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
191 if (CI->getValue().getActiveBits() <= 64)
192 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
193 } else if (isa<AllocaInst>(V)) {
194 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
195 } else if (isa<ConstantPointerNull>(V)) {
196 // Translate this as an integer zero so that it can be
197 // local-CSE'd with actual integer zeros.
198 Reg =
199 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
200 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
201 if (CF->isNullValue()) {
202 Reg = TargetMaterializeFloatZero(CF);
203 } else {
204 // Try to emit the constant directly.
205 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
206 }
208 if (!Reg) {
209 // Try to emit the constant by using an integer constant with a cast.
210 const APFloat &Flt = CF->getValueAPF();
211 EVT IntVT = TLI.getPointerTy();
213 uint64_t x[2];
214 uint32_t IntBitWidth = IntVT.getSizeInBits();
215 bool isExact;
216 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
217 APFloat::rmTowardZero, &isExact);
218 if (isExact) {
219 APInt IntVal(IntBitWidth, x);
221 unsigned IntegerReg =
222 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
223 if (IntegerReg != 0)
224 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
225 IntegerReg, /*Kill=*/false);
226 }
227 }
228 } else if (const Operator *Op = dyn_cast<Operator>(V)) {
229 if (!SelectOperator(Op, Op->getOpcode()))
230 if (!isa<Instruction>(Op) ||
231 !TargetSelectInstruction(cast<Instruction>(Op)))
232 return 0;
233 Reg = lookUpRegForValue(Op);
234 } else if (isa<UndefValue>(V)) {
235 Reg = createResultReg(TLI.getRegClassFor(VT));
236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
237 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
238 }
240 // If target-independent code couldn't handle the value, give target-specific
241 // code a try.
242 if (!Reg && isa<Constant>(V))
243 Reg = TargetMaterializeConstant(cast<Constant>(V));
245 // Don't cache constant materializations in the general ValueMap.
246 // To do so would require tracking what uses they dominate.
247 if (Reg != 0) {
248 LocalValueMap[V] = Reg;
249 LastLocalValue = MRI.getVRegDef(Reg);
250 }
251 return Reg;
252 }
254 unsigned FastISel::lookUpRegForValue(const Value *V) {
255 // Look up the value to see if we already have a register for it. We
256 // cache values defined by Instructions across blocks, and other values
257 // only locally. This is because Instructions already have the SSA
258 // def-dominates-use requirement enforced.
259 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
260 if (I != FuncInfo.ValueMap.end())
261 return I->second;
262 return LocalValueMap[V];
263 }
265 /// UpdateValueMap - Update the value map to include the new mapping for this
266 /// instruction, or insert an extra copy to get the result in a previous
267 /// determined register.
268 /// NOTE: This is only necessary because we might select a block that uses
269 /// a value before we select the block that defines the value. It might be
270 /// possible to fix this by selecting blocks in reverse postorder.
271 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
272 if (!isa<Instruction>(I)) {
273 LocalValueMap[I] = Reg;
274 return;
275 }
277 unsigned &AssignedReg = FuncInfo.ValueMap[I];
278 if (AssignedReg == 0)
279 // Use the new register.
280 AssignedReg = Reg;
281 else if (Reg != AssignedReg) {
282 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
283 for (unsigned i = 0; i < NumRegs; i++)
284 FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
286 AssignedReg = Reg;
287 }
288 }
290 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
291 unsigned IdxN = getRegForValue(Idx);
292 if (IdxN == 0)
293 // Unhandled operand. Halt "fast" selection and bail.
294 return std::pair<unsigned, bool>(0, false);
296 bool IdxNIsKill = hasTrivialKill(Idx);
298 // If the index is smaller or larger than intptr_t, truncate or extend it.
299 MVT PtrVT = TLI.getPointerTy();
300 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
301 if (IdxVT.bitsLT(PtrVT)) {
302 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
303 IdxN, IdxNIsKill);
304 IdxNIsKill = true;
305 }
306 else if (IdxVT.bitsGT(PtrVT)) {
307 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
308 IdxN, IdxNIsKill);
309 IdxNIsKill = true;
310 }
311 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
312 }
314 void FastISel::recomputeInsertPt() {
315 if (getLastLocalValue()) {
316 FuncInfo.InsertPt = getLastLocalValue();
317 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
318 ++FuncInfo.InsertPt;
319 } else
320 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
322 // Now skip past any EH_LABELs, which must remain at the beginning.
323 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
324 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
325 ++FuncInfo.InsertPt;
326 }
328 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
329 MachineBasicBlock::iterator E) {
330 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
331 while (I != E) {
332 MachineInstr *Dead = &*I;
333 ++I;
334 Dead->eraseFromParent();
335 ++NumFastIselDead;
336 }
337 recomputeInsertPt();
338 }
340 FastISel::SavePoint FastISel::enterLocalValueArea() {
341 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
342 DebugLoc OldDL = DL;
343 recomputeInsertPt();
344 DL = DebugLoc();
345 SavePoint SP = { OldInsertPt, OldDL };
346 return SP;
347 }
349 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
350 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
351 LastLocalValue = llvm::prior(FuncInfo.InsertPt);
353 // Restore the previous insert position.
354 FuncInfo.InsertPt = OldInsertPt.InsertPt;
355 DL = OldInsertPt.DL;
356 }
358 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
359 /// which has an opcode which directly corresponds to the given ISD opcode.
360 ///
361 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
362 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
363 if (VT == MVT::Other || !VT.isSimple())
364 // Unhandled type. Halt "fast" selection and bail.
365 return false;
367 // We only handle legal types. For example, on x86-32 the instruction
368 // selector contains all of the 64-bit instructions from x86-64,
369 // under the assumption that i64 won't be used if the target doesn't
370 // support it.
371 if (!TLI.isTypeLegal(VT)) {
372 // MVT::i1 is special. Allow AND, OR, or XOR because they
373 // don't require additional zeroing, which makes them easy.
374 if (VT == MVT::i1 &&
375 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
376 ISDOpcode == ISD::XOR))
377 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
378 else
379 return false;
380 }
382 // Check if the first operand is a constant, and handle it as "ri". At -O0,
383 // we don't have anything that canonicalizes operand order.
384 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
385 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
386 unsigned Op1 = getRegForValue(I->getOperand(1));
387 if (Op1 == 0) return false;
389 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
391 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
392 Op1IsKill, CI->getZExtValue(),
393 VT.getSimpleVT());
394 if (ResultReg == 0) return false;
396 // We successfully emitted code for the given LLVM Instruction.
397 UpdateValueMap(I, ResultReg);
398 return true;
399 }
402 unsigned Op0 = getRegForValue(I->getOperand(0));
403 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
404 return false;
406 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
408 // Check if the second operand is a constant and handle it appropriately.
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
410 uint64_t Imm = CI->getZExtValue();
412 // Transform "sdiv exact X, 8" -> "sra X, 3".
413 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
414 cast<BinaryOperator>(I)->isExact() &&
415 isPowerOf2_64(Imm)) {
416 Imm = Log2_64(Imm);
417 ISDOpcode = ISD::SRA;
418 }
420 // Transform "urem x, pow2" -> "and x, pow2-1".
421 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
422 isPowerOf2_64(Imm)) {
423 --Imm;
424 ISDOpcode = ISD::AND;
425 }
427 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
428 Op0IsKill, Imm, VT.getSimpleVT());
429 if (ResultReg == 0) return false;
431 // We successfully emitted code for the given LLVM Instruction.
432 UpdateValueMap(I, ResultReg);
433 return true;
434 }
436 // Check if the second operand is a constant float.
437 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
438 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
439 ISDOpcode, Op0, Op0IsKill, CF);
440 if (ResultReg != 0) {
441 // We successfully emitted code for the given LLVM Instruction.
442 UpdateValueMap(I, ResultReg);
443 return true;
444 }
445 }
447 unsigned Op1 = getRegForValue(I->getOperand(1));
448 if (Op1 == 0)
449 // Unhandled operand. Halt "fast" selection and bail.
450 return false;
452 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
454 // Now we have both operands in registers. Emit the instruction.
455 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
456 ISDOpcode,
457 Op0, Op0IsKill,
458 Op1, Op1IsKill);
459 if (ResultReg == 0)
460 // Target-specific code wasn't able to find a machine opcode for
461 // the given ISD opcode and type. Halt "fast" selection and bail.
462 return false;
464 // We successfully emitted code for the given LLVM Instruction.
465 UpdateValueMap(I, ResultReg);
466 return true;
467 }
469 bool FastISel::SelectGetElementPtr(const User *I) {
470 unsigned N = getRegForValue(I->getOperand(0));
471 if (N == 0)
472 // Unhandled operand. Halt "fast" selection and bail.
473 return false;
475 bool NIsKill = hasTrivialKill(I->getOperand(0));
477 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
478 // into a single N = N + TotalOffset.
479 uint64_t TotalOffs = 0;
480 // FIXME: What's a good SWAG number for MaxOffs?
481 uint64_t MaxOffs = 2048;
482 Type *Ty = I->getOperand(0)->getType();
483 MVT VT = TLI.getPointerTy();
484 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
485 E = I->op_end(); OI != E; ++OI) {
486 const Value *Idx = *OI;
487 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
488 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
489 if (Field) {
490 // N = N + Offset
491 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
492 if (TotalOffs >= MaxOffs) {
493 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
494 if (N == 0)
495 // Unhandled operand. Halt "fast" selection and bail.
496 return false;
497 NIsKill = true;
498 TotalOffs = 0;
499 }
500 }
501 Ty = StTy->getElementType(Field);
502 } else {
503 Ty = cast<SequentialType>(Ty)->getElementType();
505 // If this is a constant subscript, handle it quickly.
506 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
507 if (CI->isZero()) continue;
508 // N = N + Offset
509 TotalOffs +=
510 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
511 if (TotalOffs >= MaxOffs) {
512 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
513 if (N == 0)
514 // Unhandled operand. Halt "fast" selection and bail.
515 return false;
516 NIsKill = true;
517 TotalOffs = 0;
518 }
519 continue;
520 }
521 if (TotalOffs) {
522 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
523 if (N == 0)
524 // Unhandled operand. Halt "fast" selection and bail.
525 return false;
526 NIsKill = true;
527 TotalOffs = 0;
528 }
530 // N = N + Idx * ElementSize;
531 uint64_t ElementSize = TD.getTypeAllocSize(Ty);
532 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
533 unsigned IdxN = Pair.first;
534 bool IdxNIsKill = Pair.second;
535 if (IdxN == 0)
536 // Unhandled operand. Halt "fast" selection and bail.
537 return false;
539 if (ElementSize != 1) {
540 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
541 if (IdxN == 0)
542 // Unhandled operand. Halt "fast" selection and bail.
543 return false;
544 IdxNIsKill = true;
545 }
546 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
547 if (N == 0)
548 // Unhandled operand. Halt "fast" selection and bail.
549 return false;
550 }
551 }
552 if (TotalOffs) {
553 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
554 if (N == 0)
555 // Unhandled operand. Halt "fast" selection and bail.
556 return false;
557 }
559 // We successfully emitted code for the given LLVM Instruction.
560 UpdateValueMap(I, N);
561 return true;
562 }
564 bool FastISel::SelectCall(const User *I) {
565 const CallInst *Call = cast<CallInst>(I);
567 // Handle simple inline asms.
568 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
569 // Don't attempt to handle constraints.
570 if (!IA->getConstraintString().empty())
571 return false;
573 unsigned ExtraInfo = 0;
574 if (IA->hasSideEffects())
575 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
576 if (IA->isAlignStack())
577 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
579 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
580 TII.get(TargetOpcode::INLINEASM))
581 .addExternalSymbol(IA->getAsmString().c_str())
582 .addImm(ExtraInfo);
583 return true;
584 }
586 MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
587 ComputeUsesVAFloatArgument(*Call, &MMI);
589 const Function *F = Call->getCalledFunction();
590 if (!F) return false;
592 // Handle selected intrinsic function calls.
593 switch (F->getIntrinsicID()) {
594 default: break;
595 // At -O0 we don't care about the lifetime intrinsics.
596 case Intrinsic::lifetime_start:
597 case Intrinsic::lifetime_end:
598 // The donothing intrinsic does, well, nothing.
599 case Intrinsic::donothing:
600 return true;
602 case Intrinsic::dbg_declare: {
603 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
604 if (!DIVariable(DI->getVariable()).Verify() ||
605 !FuncInfo.MF->getMMI().hasDebugInfo()) {
606 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
607 return true;
608 }
610 const Value *Address = DI->getAddress();
611 if (!Address || isa<UndefValue>(Address)) {
612 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
613 return true;
614 }
616 unsigned Reg = 0;
617 unsigned Offset = 0;
618 if (const Argument *Arg = dyn_cast<Argument>(Address)) {
619 // Some arguments' frame index is recorded during argument lowering.
620 Offset = FuncInfo.getArgumentFrameIndex(Arg);
621 if (Offset)
622 Reg = TRI.getFrameRegister(*FuncInfo.MF);
623 }
624 if (!Reg)
625 Reg = lookUpRegForValue(Address);
627 // If we have a VLA that has a "use" in a metadata node that's then used
628 // here but it has no other uses, then we have a problem. E.g.,
629 //
630 // int foo (const int *x) {
631 // char a[*x];
632 // return 0;
633 // }
634 //
635 // If we assign 'a' a vreg and fast isel later on has to use the selection
636 // DAG isel, it will want to copy the value to the vreg. However, there are
637 // no uses, which goes counter to what selection DAG isel expects.
638 if (!Reg && !Address->use_empty() && isa<Instruction>(Address) &&
639 (!isa<AllocaInst>(Address) ||
640 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
641 Reg = FuncInfo.InitializeRegForValue(Address);
643 if (Reg)
644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
645 TII.get(TargetOpcode::DBG_VALUE),
646 DI->getAddress()->getType()->isPointerTy(),
647 Reg, Offset, DI->getVariable());
648 else
649 // We can't yet handle anything else here because it would require
650 // generating code, thus altering codegen because of debug info.
651 DEBUG(dbgs() << "Dropping debug info for " << DI);
652 return true;
653 }
654 case Intrinsic::dbg_value: {
655 // This form of DBG_VALUE is target-independent.
656 const DbgValueInst *DI = cast<DbgValueInst>(Call);
657 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
658 const Value *V = DI->getValue();
659 if (!V) {
660 // Currently the optimizer can produce this; insert an undef to
661 // help debugging. Probably the optimizer should not do this.
662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
663 .addReg(0U).addImm(DI->getOffset())
664 .addMetadata(DI->getVariable());
665 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
666 if (CI->getBitWidth() > 64)
667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
668 .addCImm(CI).addImm(DI->getOffset())
669 .addMetadata(DI->getVariable());
670 else
671 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
672 .addImm(CI->getZExtValue()).addImm(DI->getOffset())
673 .addMetadata(DI->getVariable());
674 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
676 .addFPImm(CF).addImm(DI->getOffset())
677 .addMetadata(DI->getVariable());
678 } else if (unsigned Reg = lookUpRegForValue(V)) {
679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, DI->getOffset() != 0,
680 Reg, DI->getOffset(), DI->getVariable());
681 } else {
682 // We can't yet handle anything else here because it would require
683 // generating code, thus altering codegen because of debug info.
684 DEBUG(dbgs() << "Dropping debug info for " << DI);
685 }
686 return true;
687 }
688 case Intrinsic::objectsize: {
689 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
690 unsigned long long Res = CI->isZero() ? -1ULL : 0;
691 Constant *ResCI = ConstantInt::get(Call->getType(), Res);
692 unsigned ResultReg = getRegForValue(ResCI);
693 if (ResultReg == 0)
694 return false;
695 UpdateValueMap(Call, ResultReg);
696 return true;
697 }
698 case Intrinsic::expect: {
699 unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
700 if (ResultReg == 0)
701 return false;
702 UpdateValueMap(Call, ResultReg);
703 return true;
704 }
705 }
707 // Usually, it does not make sense to initialize a value,
708 // make an unrelated function call and use the value, because
709 // it tends to be spilled on the stack. So, we move the pointer
710 // to the last local value to the beginning of the block, so that
711 // all the values which have already been materialized,
712 // appear after the call. It also makes sense to skip intrinsics
713 // since they tend to be inlined.
714 if (!isa<IntrinsicInst>(Call))
715 flushLocalValueMap();
717 // An arbitrary call. Bail.
718 return false;
719 }
721 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
722 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
723 EVT DstVT = TLI.getValueType(I->getType());
725 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
726 DstVT == MVT::Other || !DstVT.isSimple())
727 // Unhandled type. Halt "fast" selection and bail.
728 return false;
730 // Check if the destination type is legal.
731 if (!TLI.isTypeLegal(DstVT))
732 return false;
734 // Check if the source operand is legal.
735 if (!TLI.isTypeLegal(SrcVT))
736 return false;
738 unsigned InputReg = getRegForValue(I->getOperand(0));
739 if (!InputReg)
740 // Unhandled operand. Halt "fast" selection and bail.
741 return false;
743 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
745 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
746 DstVT.getSimpleVT(),
747 Opcode,
748 InputReg, InputRegIsKill);
749 if (!ResultReg)
750 return false;
752 UpdateValueMap(I, ResultReg);
753 return true;
754 }
756 bool FastISel::SelectBitCast(const User *I) {
757 // If the bitcast doesn't change the type, just use the operand value.
758 if (I->getType() == I->getOperand(0)->getType()) {
759 unsigned Reg = getRegForValue(I->getOperand(0));
760 if (Reg == 0)
761 return false;
762 UpdateValueMap(I, Reg);
763 return true;
764 }
766 // Bitcasts of other values become reg-reg copies or BITCAST operators.
767 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
768 EVT DstEVT = TLI.getValueType(I->getType());
769 if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
770 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
771 // Unhandled type. Halt "fast" selection and bail.
772 return false;
774 MVT SrcVT = SrcEVT.getSimpleVT();
775 MVT DstVT = DstEVT.getSimpleVT();
776 unsigned Op0 = getRegForValue(I->getOperand(0));
777 if (Op0 == 0)
778 // Unhandled operand. Halt "fast" selection and bail.
779 return false;
781 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
783 // First, try to perform the bitcast by inserting a reg-reg copy.
784 unsigned ResultReg = 0;
785 if (SrcVT == DstVT) {
786 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
787 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
788 // Don't attempt a cross-class copy. It will likely fail.
789 if (SrcClass == DstClass) {
790 ResultReg = createResultReg(DstClass);
791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
792 ResultReg).addReg(Op0);
793 }
794 }
796 // If the reg-reg copy failed, select a BITCAST opcode.
797 if (!ResultReg)
798 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
800 if (!ResultReg)
801 return false;
803 UpdateValueMap(I, ResultReg);
804 return true;
805 }
807 bool
808 FastISel::SelectInstruction(const Instruction *I) {
809 // Just before the terminator instruction, insert instructions to
810 // feed PHI nodes in successor blocks.
811 if (isa<TerminatorInst>(I))
812 if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
813 return false;
815 DL = I->getDebugLoc();
817 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
819 // As a special case, don't handle calls to builtin library functions that
820 // may be translated directly to target instructions.
821 if (const CallInst *Call = dyn_cast<CallInst>(I)) {
822 const Function *F = Call->getCalledFunction();
823 LibFunc::Func Func;
824 if (F && !F->hasLocalLinkage() && F->hasName() &&
825 LibInfo->getLibFunc(F->getName(), Func) &&
826 LibInfo->hasOptimizedCodeGen(Func))
827 return false;
828 }
830 // First, try doing target-independent selection.
831 if (SelectOperator(I, I->getOpcode())) {
832 ++NumFastIselSuccessIndependent;
833 DL = DebugLoc();
834 return true;
835 }
836 // Remove dead code. However, ignore call instructions since we've flushed
837 // the local value map and recomputed the insert point.
838 if (!isa<CallInst>(I)) {
839 recomputeInsertPt();
840 if (SavedInsertPt != FuncInfo.InsertPt)
841 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
842 }
844 // Next, try calling the target to attempt to handle the instruction.
845 SavedInsertPt = FuncInfo.InsertPt;
846 if (TargetSelectInstruction(I)) {
847 ++NumFastIselSuccessTarget;
848 DL = DebugLoc();
849 return true;
850 }
851 // Check for dead code and remove as necessary.
852 recomputeInsertPt();
853 if (SavedInsertPt != FuncInfo.InsertPt)
854 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
856 DL = DebugLoc();
857 return false;
858 }
860 /// FastEmitBranch - Emit an unconditional branch to the given block,
861 /// unless it is the immediate (fall-through) successor, and update
862 /// the CFG.
863 void
864 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
866 if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
867 FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
868 // For more accurate line information if this is the only instruction
869 // in the block then emit it, otherwise we have the unconditional
870 // fall-through case, which needs no instructions.
871 } else {
872 // The unconditional branch case.
873 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
874 SmallVector<MachineOperand, 0>(), DL);
875 }
876 FuncInfo.MBB->addSuccessor(MSucc);
877 }
879 /// SelectFNeg - Emit an FNeg operation.
880 ///
881 bool
882 FastISel::SelectFNeg(const User *I) {
883 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
884 if (OpReg == 0) return false;
886 bool OpRegIsKill = hasTrivialKill(I);
888 // If the target has ISD::FNEG, use it.
889 EVT VT = TLI.getValueType(I->getType());
890 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
891 ISD::FNEG, OpReg, OpRegIsKill);
892 if (ResultReg != 0) {
893 UpdateValueMap(I, ResultReg);
894 return true;
895 }
897 // Bitcast the value to integer, twiddle the sign bit with xor,
898 // and then bitcast it back to floating-point.
899 if (VT.getSizeInBits() > 64) return false;
900 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
901 if (!TLI.isTypeLegal(IntVT))
902 return false;
904 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
905 ISD::BITCAST, OpReg, OpRegIsKill);
906 if (IntReg == 0)
907 return false;
909 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
910 IntReg, /*Kill=*/true,
911 UINT64_C(1) << (VT.getSizeInBits()-1),
912 IntVT.getSimpleVT());
913 if (IntResultReg == 0)
914 return false;
916 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
917 ISD::BITCAST, IntResultReg, /*Kill=*/true);
918 if (ResultReg == 0)
919 return false;
921 UpdateValueMap(I, ResultReg);
922 return true;
923 }
925 bool
926 FastISel::SelectExtractValue(const User *U) {
927 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
928 if (!EVI)
929 return false;
931 // Make sure we only try to handle extracts with a legal result. But also
932 // allow i1 because it's easy.
933 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
934 if (!RealVT.isSimple())
935 return false;
936 MVT VT = RealVT.getSimpleVT();
937 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
938 return false;
940 const Value *Op0 = EVI->getOperand(0);
941 Type *AggTy = Op0->getType();
943 // Get the base result register.
944 unsigned ResultReg;
945 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
946 if (I != FuncInfo.ValueMap.end())
947 ResultReg = I->second;
948 else if (isa<Instruction>(Op0))
949 ResultReg = FuncInfo.InitializeRegForValue(Op0);
950 else
951 return false; // fast-isel can't handle aggregate constants at the moment
953 // Get the actual result register, which is an offset from the base register.
954 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
956 SmallVector<EVT, 4> AggValueVTs;
957 ComputeValueVTs(TLI, AggTy, AggValueVTs);
959 for (unsigned i = 0; i < VTIndex; i++)
960 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
962 UpdateValueMap(EVI, ResultReg);
963 return true;
964 }
966 bool
967 FastISel::SelectOperator(const User *I, unsigned Opcode) {
968 switch (Opcode) {
969 case Instruction::Add:
970 return SelectBinaryOp(I, ISD::ADD);
971 case Instruction::FAdd:
972 return SelectBinaryOp(I, ISD::FADD);
973 case Instruction::Sub:
974 return SelectBinaryOp(I, ISD::SUB);
975 case Instruction::FSub:
976 // FNeg is currently represented in LLVM IR as a special case of FSub.
977 if (BinaryOperator::isFNeg(I))
978 return SelectFNeg(I);
979 return SelectBinaryOp(I, ISD::FSUB);
980 case Instruction::Mul:
981 return SelectBinaryOp(I, ISD::MUL);
982 case Instruction::FMul:
983 return SelectBinaryOp(I, ISD::FMUL);
984 case Instruction::SDiv:
985 return SelectBinaryOp(I, ISD::SDIV);
986 case Instruction::UDiv:
987 return SelectBinaryOp(I, ISD::UDIV);
988 case Instruction::FDiv:
989 return SelectBinaryOp(I, ISD::FDIV);
990 case Instruction::SRem:
991 return SelectBinaryOp(I, ISD::SREM);
992 case Instruction::URem:
993 return SelectBinaryOp(I, ISD::UREM);
994 case Instruction::FRem:
995 return SelectBinaryOp(I, ISD::FREM);
996 case Instruction::Shl:
997 return SelectBinaryOp(I, ISD::SHL);
998 case Instruction::LShr:
999 return SelectBinaryOp(I, ISD::SRL);
1000 case Instruction::AShr:
1001 return SelectBinaryOp(I, ISD::SRA);
1002 case Instruction::And:
1003 return SelectBinaryOp(I, ISD::AND);
1004 case Instruction::Or:
1005 return SelectBinaryOp(I, ISD::OR);
1006 case Instruction::Xor:
1007 return SelectBinaryOp(I, ISD::XOR);
1009 case Instruction::GetElementPtr:
1010 return SelectGetElementPtr(I);
1012 case Instruction::Br: {
1013 const BranchInst *BI = cast<BranchInst>(I);
1015 if (BI->isUnconditional()) {
1016 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1017 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1018 FastEmitBranch(MSucc, BI->getDebugLoc());
1019 return true;
1020 }
1022 // Conditional branches are not handed yet.
1023 // Halt "fast" selection and bail.
1024 return false;
1025 }
1027 case Instruction::Unreachable:
1028 // Nothing to emit.
1029 return true;
1031 case Instruction::Alloca:
1032 // FunctionLowering has the static-sized case covered.
1033 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1034 return true;
1036 // Dynamic-sized alloca is not handled yet.
1037 return false;
1039 case Instruction::Call:
1040 return SelectCall(I);
1042 case Instruction::BitCast:
1043 return SelectBitCast(I);
1045 case Instruction::FPToSI:
1046 return SelectCast(I, ISD::FP_TO_SINT);
1047 case Instruction::ZExt:
1048 return SelectCast(I, ISD::ZERO_EXTEND);
1049 case Instruction::SExt:
1050 return SelectCast(I, ISD::SIGN_EXTEND);
1051 case Instruction::Trunc:
1052 return SelectCast(I, ISD::TRUNCATE);
1053 case Instruction::SIToFP:
1054 return SelectCast(I, ISD::SINT_TO_FP);
1056 case Instruction::IntToPtr: // Deliberate fall-through.
1057 case Instruction::PtrToInt: {
1058 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1059 EVT DstVT = TLI.getValueType(I->getType());
1060 if (DstVT.bitsGT(SrcVT))
1061 return SelectCast(I, ISD::ZERO_EXTEND);
1062 if (DstVT.bitsLT(SrcVT))
1063 return SelectCast(I, ISD::TRUNCATE);
1064 unsigned Reg = getRegForValue(I->getOperand(0));
1065 if (Reg == 0) return false;
1066 UpdateValueMap(I, Reg);
1067 return true;
1068 }
1070 case Instruction::ExtractValue:
1071 return SelectExtractValue(I);
1073 case Instruction::PHI:
1074 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1076 default:
1077 // Unhandled instruction. Halt "fast" selection and bail.
1078 return false;
1079 }
1080 }
1082 FastISel::FastISel(FunctionLoweringInfo &funcInfo,
1083 const TargetLibraryInfo *libInfo)
1084 : FuncInfo(funcInfo),
1085 MRI(FuncInfo.MF->getRegInfo()),
1086 MFI(*FuncInfo.MF->getFrameInfo()),
1087 MCP(*FuncInfo.MF->getConstantPool()),
1088 TM(FuncInfo.MF->getTarget()),
1089 TD(*TM.getDataLayout()),
1090 TII(*TM.getInstrInfo()),
1091 TLI(*TM.getTargetLowering()),
1092 TRI(*TM.getRegisterInfo()),
1093 LibInfo(libInfo) {
1094 }
1096 FastISel::~FastISel() {}
1098 bool FastISel::FastLowerArguments() {
1099 return false;
1100 }
1102 unsigned FastISel::FastEmit_(MVT, MVT,
1103 unsigned) {
1104 return 0;
1105 }
1107 unsigned FastISel::FastEmit_r(MVT, MVT,
1108 unsigned,
1109 unsigned /*Op0*/, bool /*Op0IsKill*/) {
1110 return 0;
1111 }
1113 unsigned FastISel::FastEmit_rr(MVT, MVT,
1114 unsigned,
1115 unsigned /*Op0*/, bool /*Op0IsKill*/,
1116 unsigned /*Op1*/, bool /*Op1IsKill*/) {
1117 return 0;
1118 }
1120 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1121 return 0;
1122 }
1124 unsigned FastISel::FastEmit_f(MVT, MVT,
1125 unsigned, const ConstantFP * /*FPImm*/) {
1126 return 0;
1127 }
1129 unsigned FastISel::FastEmit_ri(MVT, MVT,
1130 unsigned,
1131 unsigned /*Op0*/, bool /*Op0IsKill*/,
1132 uint64_t /*Imm*/) {
1133 return 0;
1134 }
1136 unsigned FastISel::FastEmit_rf(MVT, MVT,
1137 unsigned,
1138 unsigned /*Op0*/, bool /*Op0IsKill*/,
1139 const ConstantFP * /*FPImm*/) {
1140 return 0;
1141 }
1143 unsigned FastISel::FastEmit_rri(MVT, MVT,
1144 unsigned,
1145 unsigned /*Op0*/, bool /*Op0IsKill*/,
1146 unsigned /*Op1*/, bool /*Op1IsKill*/,
1147 uint64_t /*Imm*/) {
1148 return 0;
1149 }
1151 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1152 /// to emit an instruction with an immediate operand using FastEmit_ri.
1153 /// If that fails, it materializes the immediate into a register and try
1154 /// FastEmit_rr instead.
1155 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1156 unsigned Op0, bool Op0IsKill,
1157 uint64_t Imm, MVT ImmType) {
1158 // If this is a multiply by a power of two, emit this as a shift left.
1159 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1160 Opcode = ISD::SHL;
1161 Imm = Log2_64(Imm);
1162 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1163 // div x, 8 -> srl x, 3
1164 Opcode = ISD::SRL;
1165 Imm = Log2_64(Imm);
1166 }
1168 // Horrible hack (to be removed), check to make sure shift amounts are
1169 // in-range.
1170 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1171 Imm >= VT.getSizeInBits())
1172 return 0;
1174 // First check if immediate type is legal. If not, we can't use the ri form.
1175 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1176 if (ResultReg != 0)
1177 return ResultReg;
1178 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1179 if (MaterialReg == 0) {
1180 // This is a bit ugly/slow, but failing here means falling out of
1181 // fast-isel, which would be very slow.
1182 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1183 VT.getSizeInBits());
1184 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1185 assert (MaterialReg != 0 && "Unable to materialize imm.");
1186 if (MaterialReg == 0) return 0;
1187 }
1188 return FastEmit_rr(VT, VT, Opcode,
1189 Op0, Op0IsKill,
1190 MaterialReg, /*Kill=*/true);
1191 }
1193 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1194 return MRI.createVirtualRegister(RC);
1195 }
1197 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1198 const TargetRegisterClass* RC) {
1199 unsigned ResultReg = createResultReg(RC);
1200 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1202 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1203 return ResultReg;
1204 }
1206 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1207 const TargetRegisterClass *RC,
1208 unsigned Op0, bool Op0IsKill) {
1209 unsigned ResultReg = createResultReg(RC);
1210 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1212 if (II.getNumDefs() >= 1)
1213 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1214 .addReg(Op0, Op0IsKill * RegState::Kill);
1215 else {
1216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1217 .addReg(Op0, Op0IsKill * RegState::Kill);
1218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1219 ResultReg).addReg(II.ImplicitDefs[0]);
1220 }
1222 return ResultReg;
1223 }
1225 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1226 const TargetRegisterClass *RC,
1227 unsigned Op0, bool Op0IsKill,
1228 unsigned Op1, bool Op1IsKill) {
1229 unsigned ResultReg = createResultReg(RC);
1230 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1232 if (II.getNumDefs() >= 1)
1233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1234 .addReg(Op0, Op0IsKill * RegState::Kill)
1235 .addReg(Op1, Op1IsKill * RegState::Kill);
1236 else {
1237 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1238 .addReg(Op0, Op0IsKill * RegState::Kill)
1239 .addReg(Op1, Op1IsKill * RegState::Kill);
1240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1241 ResultReg).addReg(II.ImplicitDefs[0]);
1242 }
1243 return ResultReg;
1244 }
1246 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1247 const TargetRegisterClass *RC,
1248 unsigned Op0, bool Op0IsKill,
1249 unsigned Op1, bool Op1IsKill,
1250 unsigned Op2, bool Op2IsKill) {
1251 unsigned ResultReg = createResultReg(RC);
1252 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1254 if (II.getNumDefs() >= 1)
1255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1256 .addReg(Op0, Op0IsKill * RegState::Kill)
1257 .addReg(Op1, Op1IsKill * RegState::Kill)
1258 .addReg(Op2, Op2IsKill * RegState::Kill);
1259 else {
1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1261 .addReg(Op0, Op0IsKill * RegState::Kill)
1262 .addReg(Op1, Op1IsKill * RegState::Kill)
1263 .addReg(Op2, Op2IsKill * RegState::Kill);
1264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1265 ResultReg).addReg(II.ImplicitDefs[0]);
1266 }
1267 return ResultReg;
1268 }
1270 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1271 const TargetRegisterClass *RC,
1272 unsigned Op0, bool Op0IsKill,
1273 uint64_t Imm) {
1274 unsigned ResultReg = createResultReg(RC);
1275 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1277 if (II.getNumDefs() >= 1)
1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1279 .addReg(Op0, Op0IsKill * RegState::Kill)
1280 .addImm(Imm);
1281 else {
1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1283 .addReg(Op0, Op0IsKill * RegState::Kill)
1284 .addImm(Imm);
1285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1286 ResultReg).addReg(II.ImplicitDefs[0]);
1287 }
1288 return ResultReg;
1289 }
1291 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1292 const TargetRegisterClass *RC,
1293 unsigned Op0, bool Op0IsKill,
1294 uint64_t Imm1, uint64_t Imm2) {
1295 unsigned ResultReg = createResultReg(RC);
1296 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1298 if (II.getNumDefs() >= 1)
1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1300 .addReg(Op0, Op0IsKill * RegState::Kill)
1301 .addImm(Imm1)
1302 .addImm(Imm2);
1303 else {
1304 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1305 .addReg(Op0, Op0IsKill * RegState::Kill)
1306 .addImm(Imm1)
1307 .addImm(Imm2);
1308 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1309 ResultReg).addReg(II.ImplicitDefs[0]);
1310 }
1311 return ResultReg;
1312 }
1314 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1315 const TargetRegisterClass *RC,
1316 unsigned Op0, bool Op0IsKill,
1317 const ConstantFP *FPImm) {
1318 unsigned ResultReg = createResultReg(RC);
1319 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1321 if (II.getNumDefs() >= 1)
1322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1323 .addReg(Op0, Op0IsKill * RegState::Kill)
1324 .addFPImm(FPImm);
1325 else {
1326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1327 .addReg(Op0, Op0IsKill * RegState::Kill)
1328 .addFPImm(FPImm);
1329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1330 ResultReg).addReg(II.ImplicitDefs[0]);
1331 }
1332 return ResultReg;
1333 }
1335 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1336 const TargetRegisterClass *RC,
1337 unsigned Op0, bool Op0IsKill,
1338 unsigned Op1, bool Op1IsKill,
1339 uint64_t Imm) {
1340 unsigned ResultReg = createResultReg(RC);
1341 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1343 if (II.getNumDefs() >= 1)
1344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1345 .addReg(Op0, Op0IsKill * RegState::Kill)
1346 .addReg(Op1, Op1IsKill * RegState::Kill)
1347 .addImm(Imm);
1348 else {
1349 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1350 .addReg(Op0, Op0IsKill * RegState::Kill)
1351 .addReg(Op1, Op1IsKill * RegState::Kill)
1352 .addImm(Imm);
1353 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1354 ResultReg).addReg(II.ImplicitDefs[0]);
1355 }
1356 return ResultReg;
1357 }
1359 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
1360 const TargetRegisterClass *RC,
1361 unsigned Op0, bool Op0IsKill,
1362 unsigned Op1, bool Op1IsKill,
1363 uint64_t Imm1, uint64_t Imm2) {
1364 unsigned ResultReg = createResultReg(RC);
1365 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1367 if (II.getNumDefs() >= 1)
1368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1369 .addReg(Op0, Op0IsKill * RegState::Kill)
1370 .addReg(Op1, Op1IsKill * RegState::Kill)
1371 .addImm(Imm1).addImm(Imm2);
1372 else {
1373 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1374 .addReg(Op0, Op0IsKill * RegState::Kill)
1375 .addReg(Op1, Op1IsKill * RegState::Kill)
1376 .addImm(Imm1).addImm(Imm2);
1377 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1378 ResultReg).addReg(II.ImplicitDefs[0]);
1379 }
1380 return ResultReg;
1381 }
1383 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1384 const TargetRegisterClass *RC,
1385 uint64_t Imm) {
1386 unsigned ResultReg = createResultReg(RC);
1387 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1389 if (II.getNumDefs() >= 1)
1390 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1391 else {
1392 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1394 ResultReg).addReg(II.ImplicitDefs[0]);
1395 }
1396 return ResultReg;
1397 }
1399 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1400 const TargetRegisterClass *RC,
1401 uint64_t Imm1, uint64_t Imm2) {
1402 unsigned ResultReg = createResultReg(RC);
1403 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1405 if (II.getNumDefs() >= 1)
1406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1407 .addImm(Imm1).addImm(Imm2);
1408 else {
1409 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1411 ResultReg).addReg(II.ImplicitDefs[0]);
1412 }
1413 return ResultReg;
1414 }
1416 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1417 unsigned Op0, bool Op0IsKill,
1418 uint32_t Idx) {
1419 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1420 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1421 "Cannot yet extract from physregs");
1422 const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1423 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1424 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1425 DL, TII.get(TargetOpcode::COPY), ResultReg)
1426 .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1427 return ResultReg;
1428 }
1430 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1431 /// with all but the least significant bit set to zero.
1432 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1433 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1434 }
1436 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1437 /// Emit code to ensure constants are copied into registers when needed.
1438 /// Remember the virtual registers that need to be added to the Machine PHI
1439 /// nodes as input. We cannot just directly add them, because expansion
1440 /// might result in multiple MBB's for one BB. As such, the start of the
1441 /// BB might correspond to a different MBB than the end.
1442 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1443 const TerminatorInst *TI = LLVMBB->getTerminator();
1445 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1446 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1448 // Check successor nodes' PHI nodes that expect a constant to be available
1449 // from this block.
1450 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1451 const BasicBlock *SuccBB = TI->getSuccessor(succ);
1452 if (!isa<PHINode>(SuccBB->begin())) continue;
1453 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1455 // If this terminator has multiple identical successors (common for
1456 // switches), only handle each succ once.
1457 if (!SuccsHandled.insert(SuccMBB)) continue;
1459 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1461 // At this point we know that there is a 1-1 correspondence between LLVM PHI
1462 // nodes and Machine PHI nodes, but the incoming operands have not been
1463 // emitted yet.
1464 for (BasicBlock::const_iterator I = SuccBB->begin();
1465 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1467 // Ignore dead phi's.
1468 if (PN->use_empty()) continue;
1470 // Only handle legal types. Two interesting things to note here. First,
1471 // by bailing out early, we may leave behind some dead instructions,
1472 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1473 // own moves. Second, this check is necessary because FastISel doesn't
1474 // use CreateRegs to create registers, so it always creates
1475 // exactly one register for each non-void instruction.
1476 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1477 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1478 // Handle integer promotions, though, because they're common and easy.
1479 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1480 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1481 else {
1482 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1483 return false;
1484 }
1485 }
1487 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1489 // Set the DebugLoc for the copy. Prefer the location of the operand
1490 // if there is one; use the location of the PHI otherwise.
1491 DL = PN->getDebugLoc();
1492 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1493 DL = Inst->getDebugLoc();
1495 unsigned Reg = getRegForValue(PHIOp);
1496 if (Reg == 0) {
1497 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1498 return false;
1499 }
1500 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1501 DL = DebugLoc();
1502 }
1503 }
1505 return true;
1506 }
1508 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
1509 assert(LI->hasOneUse() &&
1510 "tryToFoldLoad expected a LoadInst with a single use");
1511 // We know that the load has a single use, but don't know what it is. If it
1512 // isn't one of the folded instructions, then we can't succeed here. Handle
1513 // this by scanning the single-use users of the load until we get to FoldInst.
1514 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
1516 const Instruction *TheUser = LI->use_back();
1517 while (TheUser != FoldInst && // Scan up until we find FoldInst.
1518 // Stay in the right block.
1519 TheUser->getParent() == FoldInst->getParent() &&
1520 --MaxUsers) { // Don't scan too far.
1521 // If there are multiple or no uses of this instruction, then bail out.
1522 if (!TheUser->hasOneUse())
1523 return false;
1525 TheUser = TheUser->use_back();
1526 }
1528 // If we didn't find the fold instruction, then we failed to collapse the
1529 // sequence.
1530 if (TheUser != FoldInst)
1531 return false;
1533 // Don't try to fold volatile loads. Target has to deal with alignment
1534 // constraints.
1535 if (LI->isVolatile())
1536 return false;
1538 // Figure out which vreg this is going into. If there is no assigned vreg yet
1539 // then there actually was no reference to it. Perhaps the load is referenced
1540 // by a dead instruction.
1541 unsigned LoadReg = getRegForValue(LI);
1542 if (LoadReg == 0)
1543 return false;
1545 // We can't fold if this vreg has no uses or more than one use. Multiple uses
1546 // may mean that the instruction got lowered to multiple MIs, or the use of
1547 // the loaded value ended up being multiple operands of the result.
1548 if (!MRI.hasOneUse(LoadReg))
1549 return false;
1551 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
1552 MachineInstr *User = &*RI;
1554 // Set the insertion point properly. Folding the load can cause generation of
1555 // other random instructions (like sign extends) for addressing modes; make
1556 // sure they get inserted in a logical place before the new instruction.
1557 FuncInfo.InsertPt = User;
1558 FuncInfo.MBB = User->getParent();
1560 // Ask the target to try folding the load.
1561 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
1562 }