]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - opencl/llvm.git/blob - lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Now that we have the ReturnsTwice function attribute, this method is
[opencl/llvm.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/DebugInfo.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/LLVMContext.h"
29 #include "llvm/Module.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/GCMetadata.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetIntrinsicInfo.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetLowering.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Timer.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/ADT/PostOrderIterator.h"
54 #include "llvm/ADT/Statistic.h"
55 #include <algorithm>
56 using namespace llvm;
58 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
59 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
60 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
61 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
62 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64 static cl::opt<bool>
65 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66           cl::desc("Enable verbose messages in the \"fast\" "
67                    "instruction selector"));
68 static cl::opt<bool>
69 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70           cl::desc("Enable abort calls when \"fast\" instruction fails"));
72 static cl::opt<bool>
73 UseMBPI("use-mbpi",
74         cl::desc("use Machine Branch Probability Info"),
75         cl::init(true), cl::Hidden);
77 #ifndef NDEBUG
78 static cl::opt<bool>
79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80           cl::desc("Pop up a window to show dags before the first "
81                    "dag combine pass"));
82 static cl::opt<bool>
83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84           cl::desc("Pop up a window to show dags before legalize types"));
85 static cl::opt<bool>
86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87           cl::desc("Pop up a window to show dags before legalize"));
88 static cl::opt<bool>
89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90           cl::desc("Pop up a window to show dags before the second "
91                    "dag combine pass"));
92 static cl::opt<bool>
93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94           cl::desc("Pop up a window to show dags before the post legalize types"
95                    " dag combine pass"));
96 static cl::opt<bool>
97 ViewISelDAGs("view-isel-dags", cl::Hidden,
98           cl::desc("Pop up a window to show isel dags as they are selected"));
99 static cl::opt<bool>
100 ViewSchedDAGs("view-sched-dags", cl::Hidden,
101           cl::desc("Pop up a window to show sched dags as they are processed"));
102 static cl::opt<bool>
103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104       cl::desc("Pop up a window to show SUnit dags after they are processed"));
105 #else
106 static const bool ViewDAGCombine1 = false,
107                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                   ViewDAGCombine2 = false,
109                   ViewDAGCombineLT = false,
110                   ViewISelDAGs = false, ViewSchedDAGs = false,
111                   ViewSUnitDAGs = false;
112 #endif
114 //===---------------------------------------------------------------------===//
115 ///
116 /// RegisterScheduler class - Track the registration of instruction schedulers.
117 ///
118 //===---------------------------------------------------------------------===//
119 MachinePassRegistry RegisterScheduler::Registry;
121 //===---------------------------------------------------------------------===//
122 ///
123 /// ISHeuristic command line option for instruction schedulers.
124 ///
125 //===---------------------------------------------------------------------===//
126 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127                RegisterPassParser<RegisterScheduler> >
128 ISHeuristic("pre-RA-sched",
129             cl::init(&createDefaultScheduler),
130             cl::desc("Instruction schedulers available (before register"
131                      " allocation):"));
133 static RegisterScheduler
134 defaultListDAGScheduler("default", "Best scheduler for the target",
135                         createDefaultScheduler);
137 namespace llvm {
138   //===--------------------------------------------------------------------===//
139   /// createDefaultScheduler - This creates an instruction scheduler appropriate
140   /// for the target.
141   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                              CodeGenOpt::Level OptLevel) {
143     const TargetLowering &TLI = IS->getTargetLowering();
145     if (OptLevel == CodeGenOpt::None)
146       return createSourceListDAGScheduler(IS, OptLevel);
147     if (TLI.getSchedulingPreference() == Sched::Latency)
148       return createTDListDAGScheduler(IS, OptLevel);
149     if (TLI.getSchedulingPreference() == Sched::RegPressure)
150       return createBURRListDAGScheduler(IS, OptLevel);
151     if (TLI.getSchedulingPreference() == Sched::Hybrid)
152       return createHybridListDAGScheduler(IS, OptLevel);
153     assert(TLI.getSchedulingPreference() == Sched::ILP &&
154            "Unknown sched type!");
155     return createILPListDAGScheduler(IS, OptLevel);
156   }
159 // EmitInstrWithCustomInserter - This method should be implemented by targets
160 // that mark instructions with the 'usesCustomInserter' flag.  These
161 // instructions are special in various ways, which require special support to
162 // insert.  The specified MachineInstr is created but not inserted into any
163 // basic blocks, and this method is called to expand it into a sequence of
164 // instructions, potentially also creating new basic blocks and control flow.
165 // When new basic blocks are inserted and the edges from MBB to its successors
166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167 // DenseMap.
168 MachineBasicBlock *
169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170                                             MachineBasicBlock *MBB) const {
171 #ifndef NDEBUG
172   dbgs() << "If a target marks an instruction with "
173           "'usesCustomInserter', it must implement "
174           "TargetLowering::EmitInstrWithCustomInserter!";
175 #endif
176   llvm_unreachable(0);
177   return 0;
180 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
181                                                    SDNode *Node) const {
182   assert(!MI->getDesc().hasPostISelHook() &&
183          "If a target marks an instruction with 'hasPostISelHook', "
184          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
187 //===----------------------------------------------------------------------===//
188 // SelectionDAGISel code
189 //===----------------------------------------------------------------------===//
191 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
192                                    CodeGenOpt::Level OL) :
193   MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
194   FuncInfo(new FunctionLoweringInfo(TLI)),
195   CurDAG(new SelectionDAG(tm)),
196   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
197   GFI(),
198   OptLevel(OL),
199   DAGSize(0) {
200     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
201     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
202     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
203   }
205 SelectionDAGISel::~SelectionDAGISel() {
206   delete SDB;
207   delete CurDAG;
208   delete FuncInfo;
211 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
212   AU.addRequired<AliasAnalysis>();
213   AU.addPreserved<AliasAnalysis>();
214   AU.addRequired<GCModuleInfo>();
215   AU.addPreserved<GCModuleInfo>();
216   if (UseMBPI && OptLevel != CodeGenOpt::None)
217     AU.addRequired<BranchProbabilityInfo>();
218   MachineFunctionPass::getAnalysisUsage(AU);
221 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
222 /// may trap on it.  In this case we have to split the edge so that the path
223 /// through the predecessor block that doesn't go to the phi block doesn't
224 /// execute the possibly trapping instruction.
225 ///
226 /// This is required for correctness, so it must be done at -O0.
227 ///
228 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
229   // Loop for blocks with phi nodes.
230   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
231     PHINode *PN = dyn_cast<PHINode>(BB->begin());
232     if (PN == 0) continue;
234   ReprocessBlock:
235     // For each block with a PHI node, check to see if any of the input values
236     // are potentially trapping constant expressions.  Constant expressions are
237     // the only potentially trapping value that can occur as the argument to a
238     // PHI.
239     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
240       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
241         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
242         if (CE == 0 || !CE->canTrap()) continue;
244         // The only case we have to worry about is when the edge is critical.
245         // Since this block has a PHI Node, we assume it has multiple input
246         // edges: check to see if the pred has multiple successors.
247         BasicBlock *Pred = PN->getIncomingBlock(i);
248         if (Pred->getTerminator()->getNumSuccessors() == 1)
249           continue;
251         // Okay, we have to split this edge.
252         SplitCriticalEdge(Pred->getTerminator(),
253                           GetSuccessorNumber(Pred, BB), SDISel, true);
254         goto ReprocessBlock;
255       }
256   }
259 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
260   // Do some sanity-checking on the command-line options.
261   assert((!EnableFastISelVerbose || EnableFastISel) &&
262          "-fast-isel-verbose requires -fast-isel");
263   assert((!EnableFastISelAbort || EnableFastISel) &&
264          "-fast-isel-abort requires -fast-isel");
266   const Function &Fn = *mf.getFunction();
267   const TargetInstrInfo &TII = *TM.getInstrInfo();
268   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
270   MF = &mf;
271   RegInfo = &MF->getRegInfo();
272   AA = &getAnalysis<AliasAnalysis>();
273   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
275   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
277   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
279   CurDAG->init(*MF);
280   FuncInfo->set(Fn, *MF);
282   if (UseMBPI && OptLevel != CodeGenOpt::None)
283     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
284   else
285     FuncInfo->BPI = 0;
287   SDB->init(GFI, *AA);
289   SelectAllBasicBlocks(Fn);
291   // If the first basic block in the function has live ins that need to be
292   // copied into vregs, emit the copies into the top of the block before
293   // emitting the code for the block.
294   MachineBasicBlock *EntryMBB = MF->begin();
295   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
297   DenseMap<unsigned, unsigned> LiveInMap;
298   if (!FuncInfo->ArgDbgValues.empty())
299     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
300            E = RegInfo->livein_end(); LI != E; ++LI)
301       if (LI->second)
302         LiveInMap.insert(std::make_pair(LI->first, LI->second));
304   // Insert DBG_VALUE instructions for function arguments to the entry block.
305   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
306     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
307     unsigned Reg = MI->getOperand(0).getReg();
308     if (TargetRegisterInfo::isPhysicalRegister(Reg))
309       EntryMBB->insert(EntryMBB->begin(), MI);
310     else {
311       MachineInstr *Def = RegInfo->getVRegDef(Reg);
312       MachineBasicBlock::iterator InsertPos = Def;
313       // FIXME: VR def may not be in entry block.
314       Def->getParent()->insert(llvm::next(InsertPos), MI);
315     }
317     // If Reg is live-in then update debug info to track its copy in a vreg.
318     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
319     if (LDI != LiveInMap.end()) {
320       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
321       MachineBasicBlock::iterator InsertPos = Def;
322       const MDNode *Variable =
323         MI->getOperand(MI->getNumOperands()-1).getMetadata();
324       unsigned Offset = MI->getOperand(1).getImm();
325       // Def is never a terminator here, so it is ok to increment InsertPos.
326       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
327               TII.get(TargetOpcode::DBG_VALUE))
328         .addReg(LDI->second, RegState::Debug)
329         .addImm(Offset).addMetadata(Variable);
331       // If this vreg is directly copied into an exported register then
332       // that COPY instructions also need DBG_VALUE, if it is the only
333       // user of LDI->second.
334       MachineInstr *CopyUseMI = NULL;
335       for (MachineRegisterInfo::use_iterator
336              UI = RegInfo->use_begin(LDI->second);
337            MachineInstr *UseMI = UI.skipInstruction();) {
338         if (UseMI->isDebugValue()) continue;
339         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
340           CopyUseMI = UseMI; continue;
341         }
342         // Otherwise this is another use or second copy use.
343         CopyUseMI = NULL; break;
344       }
345       if (CopyUseMI) {
346         MachineInstr *NewMI =
347           BuildMI(*MF, CopyUseMI->getDebugLoc(),
348                   TII.get(TargetOpcode::DBG_VALUE))
349           .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
350           .addImm(Offset).addMetadata(Variable);
351         EntryMBB->insertAfter(CopyUseMI, NewMI);
352       }
353     }
354   }
356   // Determine if there are any calls in this machine function.
357   MachineFrameInfo *MFI = MF->getFrameInfo();
358   if (!MFI->hasCalls()) {
359     for (MachineFunction::const_iterator
360            I = MF->begin(), E = MF->end(); I != E; ++I) {
361       const MachineBasicBlock *MBB = I;
362       for (MachineBasicBlock::const_iterator
363              II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
364         const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
366         if ((MCID.isCall() && !MCID.isReturn()) ||
367             II->isStackAligningInlineAsm()) {
368           MFI->setHasCalls(true);
369           goto done;
370         }
371       }
372     }
373   done:;
374   }
376   // Determine if there is a call to setjmp in the machine function.
377   MF->setCallsSetJmp(Fn.hasFnAttr(Attribute::ReturnsTwice));
379   // Replace forward-declared registers with the registers containing
380   // the desired value.
381   MachineRegisterInfo &MRI = MF->getRegInfo();
382   for (DenseMap<unsigned, unsigned>::iterator
383        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
384        I != E; ++I) {
385     unsigned From = I->first;
386     unsigned To = I->second;
387     // If To is also scheduled to be replaced, find what its ultimate
388     // replacement is.
389     for (;;) {
390       DenseMap<unsigned, unsigned>::iterator J =
391         FuncInfo->RegFixups.find(To);
392       if (J == E) break;
393       To = J->second;
394     }
395     // Replace it.
396     MRI.replaceRegWith(From, To);
397   }
399   // Release function-specific state. SDB and CurDAG are already cleared
400   // at this point.
401   FuncInfo->clear();
403   return true;
406 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
407                                         BasicBlock::const_iterator End,
408                                         bool &HadTailCall) {
409   // Lower all of the non-terminator instructions. If a call is emitted
410   // as a tail call, cease emitting nodes for this block. Terminators
411   // are handled below.
412   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
413     SDB->visit(*I);
415   // Make sure the root of the DAG is up-to-date.
416   CurDAG->setRoot(SDB->getControlRoot());
417   HadTailCall = SDB->HasTailCall;
418   SDB->clear();
420   // Final step, emit the lowered DAG as machine code.
421   CodeGenAndEmitDAG();
424 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
425   SmallPtrSet<SDNode*, 128> VisitedNodes;
426   SmallVector<SDNode*, 128> Worklist;
428   Worklist.push_back(CurDAG->getRoot().getNode());
430   APInt Mask;
431   APInt KnownZero;
432   APInt KnownOne;
434   do {
435     SDNode *N = Worklist.pop_back_val();
437     // If we've already seen this node, ignore it.
438     if (!VisitedNodes.insert(N))
439       continue;
441     // Otherwise, add all chain operands to the worklist.
442     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
443       if (N->getOperand(i).getValueType() == MVT::Other)
444         Worklist.push_back(N->getOperand(i).getNode());
446     // If this is a CopyToReg with a vreg dest, process it.
447     if (N->getOpcode() != ISD::CopyToReg)
448       continue;
450     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
451     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
452       continue;
454     // Ignore non-scalar or non-integer values.
455     SDValue Src = N->getOperand(2);
456     EVT SrcVT = Src.getValueType();
457     if (!SrcVT.isInteger() || SrcVT.isVector())
458       continue;
460     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
461     Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
462     CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
463     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
464   } while (!Worklist.empty());
467 void SelectionDAGISel::CodeGenAndEmitDAG() {
468   std::string GroupName;
469   if (TimePassesIsEnabled)
470     GroupName = "Instruction Selection and Scheduling";
471   std::string BlockName;
472   int BlockNumber = -1;
473   (void)BlockNumber;
474 #ifdef NDEBUG
475   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
476       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
477       ViewSUnitDAGs)
478 #endif
479   {
480     BlockNumber = FuncInfo->MBB->getNumber();
481     BlockName = MF->getFunction()->getNameStr() + ":" +
482                 FuncInfo->MBB->getBasicBlock()->getNameStr();
483   }
484   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
485         << " '" << BlockName << "'\n"; CurDAG->dump());
487   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
489   // Run the DAG combiner in pre-legalize mode.
490   {
491     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
492     CurDAG->Combine(Unrestricted, *AA, OptLevel);
493   }
495   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
496         << " '" << BlockName << "'\n"; CurDAG->dump());
498   // Second step, hack on the DAG until it only uses operations and types that
499   // the target supports.
500   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
501                                                BlockName);
503   bool Changed;
504   {
505     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
506     Changed = CurDAG->LegalizeTypes();
507   }
509   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
510         << " '" << BlockName << "'\n"; CurDAG->dump());
512   if (Changed) {
513     if (ViewDAGCombineLT)
514       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
516     // Run the DAG combiner in post-type-legalize mode.
517     {
518       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
519                          TimePassesIsEnabled);
520       CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
521     }
523     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
524           << " '" << BlockName << "'\n"; CurDAG->dump());
525   }
527   {
528     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
529     Changed = CurDAG->LegalizeVectors();
530   }
532   if (Changed) {
533     {
534       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
535       CurDAG->LegalizeTypes();
536     }
538     if (ViewDAGCombineLT)
539       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
541     // Run the DAG combiner in post-type-legalize mode.
542     {
543       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
544                          TimePassesIsEnabled);
545       CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
546     }
548     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
549           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
550   }
552   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
554   {
555     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
556     CurDAG->Legalize();
557   }
559   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
560         << " '" << BlockName << "'\n"; CurDAG->dump());
562   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
564   // Run the DAG combiner in post-legalize mode.
565   {
566     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
567     CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
568   }
570   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
571         << " '" << BlockName << "'\n"; CurDAG->dump());
573   if (OptLevel != CodeGenOpt::None)
574     ComputeLiveOutVRegInfo();
576   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
578   // Third, instruction select all of the operations to machine code, adding the
579   // code to the MachineBasicBlock.
580   {
581     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
582     DoInstructionSelection();
583   }
585   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
586         << " '" << BlockName << "'\n"; CurDAG->dump());
588   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
590   // Schedule machine code.
591   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
592   {
593     NamedRegionTimer T("Instruction Scheduling", GroupName,
594                        TimePassesIsEnabled);
595     Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
596   }
598   if (ViewSUnitDAGs) Scheduler->viewGraph();
600   // Emit machine code to BB.  This can change 'BB' to the last block being
601   // inserted into.
602   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
603   {
604     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
606     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
607     FuncInfo->InsertPt = Scheduler->InsertPos;
608   }
610   // If the block was split, make sure we update any references that are used to
611   // update PHI nodes later on.
612   if (FirstMBB != LastMBB)
613     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
615   // Free the scheduler state.
616   {
617     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
618                        TimePassesIsEnabled);
619     delete Scheduler;
620   }
622   // Free the SelectionDAG state, now that we're finished with it.
623   CurDAG->clear();
626 void SelectionDAGISel::DoInstructionSelection() {
627   DEBUG(errs() << "===== Instruction selection begins: BB#"
628         << FuncInfo->MBB->getNumber()
629         << " '" << FuncInfo->MBB->getName() << "'\n");
631   PreprocessISelDAG();
633   // Select target instructions for the DAG.
634   {
635     // Number all nodes with a topological order and set DAGSize.
636     DAGSize = CurDAG->AssignTopologicalOrder();
638     // Create a dummy node (which is not added to allnodes), that adds
639     // a reference to the root node, preventing it from being deleted,
640     // and tracking any changes of the root.
641     HandleSDNode Dummy(CurDAG->getRoot());
642     ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
643     ++ISelPosition;
645     // The AllNodes list is now topological-sorted. Visit the
646     // nodes by starting at the end of the list (the root of the
647     // graph) and preceding back toward the beginning (the entry
648     // node).
649     while (ISelPosition != CurDAG->allnodes_begin()) {
650       SDNode *Node = --ISelPosition;
651       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
652       // but there are currently some corner cases that it misses. Also, this
653       // makes it theoretically possible to disable the DAGCombiner.
654       if (Node->use_empty())
655         continue;
657       SDNode *ResNode = Select(Node);
659       // FIXME: This is pretty gross.  'Select' should be changed to not return
660       // anything at all and this code should be nuked with a tactical strike.
662       // If node should not be replaced, continue with the next one.
663       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
664         continue;
665       // Replace node.
666       if (ResNode)
667         ReplaceUses(Node, ResNode);
669       // If after the replacement this node is not used any more,
670       // remove this dead node.
671       if (Node->use_empty()) { // Don't delete EntryToken, etc.
672         ISelUpdater ISU(ISelPosition);
673         CurDAG->RemoveDeadNode(Node, &ISU);
674       }
675     }
677     CurDAG->setRoot(Dummy.getValue());
678   }
680   DEBUG(errs() << "===== Instruction selection ends:\n");
682   PostprocessISelDAG();
685 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
686 /// do other setup for EH landing-pad blocks.
687 void SelectionDAGISel::PrepareEHLandingPad() {
688   MachineBasicBlock *MBB = FuncInfo->MBB;
690   // Add a label to mark the beginning of the landing pad.  Deletion of the
691   // landing pad can thus be detected via the MachineModuleInfo.
692   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
694   // Assign the call site to the landing pad's begin label.
695   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
696     
697   const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
698   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
699     .addSym(Label);
701   // Mark exception register as live in.
702   unsigned Reg = TLI.getExceptionAddressRegister();
703   if (Reg) MBB->addLiveIn(Reg);
705   // Mark exception selector register as live in.
706   Reg = TLI.getExceptionSelectorRegister();
707   if (Reg) MBB->addLiveIn(Reg);
709   // FIXME: Hack around an exception handling flaw (PR1508): the personality
710   // function and list of typeids logically belong to the invoke (or, if you
711   // like, the basic block containing the invoke), and need to be associated
712   // with it in the dwarf exception handling tables.  Currently however the
713   // information is provided by an intrinsic (eh.selector) that can be moved
714   // to unexpected places by the optimizers: if the unwind edge is critical,
715   // then breaking it can result in the intrinsics being in the successor of
716   // the landing pad, not the landing pad itself.  This results
717   // in exceptions not being caught because no typeids are associated with
718   // the invoke.  This may not be the only way things can go wrong, but it
719   // is the only way we try to work around for the moment.
720   const BasicBlock *LLVMBB = MBB->getBasicBlock();
721   const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
723   if (Br && Br->isUnconditional()) { // Critical edge?
724     BasicBlock::const_iterator I, E;
725     for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
726       if (isa<EHSelectorInst>(I))
727         break;
729     if (I == E)
730       // No catch info found - try to extract some from the successor.
731       CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
732   }
735 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
736 /// load into the specified FoldInst.  Note that we could have a sequence where
737 /// multiple LLVM IR instructions are folded into the same machineinstr.  For
738 /// example we could have:
739 ///   A: x = load i32 *P
740 ///   B: y = icmp A, 42
741 ///   C: br y, ...
742 ///
743 /// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
744 /// any other folded instructions) because it is between A and C.
745 ///
746 /// If we succeed in folding the load into the operation, return true.
747 ///
748 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
749                                              const Instruction *FoldInst,
750                                              FastISel *FastIS) {
751   // We know that the load has a single use, but don't know what it is.  If it
752   // isn't one of the folded instructions, then we can't succeed here.  Handle
753   // this by scanning the single-use users of the load until we get to FoldInst.
754   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
756   const Instruction *TheUser = LI->use_back();
757   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
758          // Stay in the right block.
759          TheUser->getParent() == FoldInst->getParent() &&
760          --MaxUsers) {  // Don't scan too far.
761     // If there are multiple or no uses of this instruction, then bail out.
762     if (!TheUser->hasOneUse())
763       return false;
765     TheUser = TheUser->use_back();
766   }
768   // If we didn't find the fold instruction, then we failed to collapse the
769   // sequence.
770   if (TheUser != FoldInst)
771     return false;
773   // Don't try to fold volatile loads.  Target has to deal with alignment
774   // constraints.
775   if (LI->isVolatile()) return false;
777   // Figure out which vreg this is going into.  If there is no assigned vreg yet
778   // then there actually was no reference to it.  Perhaps the load is referenced
779   // by a dead instruction.
780   unsigned LoadReg = FastIS->getRegForValue(LI);
781   if (LoadReg == 0)
782     return false;
784   // Check to see what the uses of this vreg are.  If it has no uses, or more
785   // than one use (at the machine instr level) then we can't fold it.
786   MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
787   if (RI == RegInfo->reg_end())
788     return false;
790   // See if there is exactly one use of the vreg.  If there are multiple uses,
791   // then the instruction got lowered to multiple machine instructions or the
792   // use of the loaded value ended up being multiple operands of the result, in
793   // either case, we can't fold this.
794   MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
795   if (PostRI != RegInfo->reg_end())
796     return false;
798   assert(RI.getOperand().isUse() &&
799          "The only use of the vreg must be a use, we haven't emitted the def!");
801   MachineInstr *User = &*RI;
803   // Set the insertion point properly.  Folding the load can cause generation of
804   // other random instructions (like sign extends) for addressing modes, make
805   // sure they get inserted in a logical place before the new instruction.
806   FuncInfo->InsertPt = User;
807   FuncInfo->MBB = User->getParent();
809   // Ask the target to try folding the load.
810   return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
813 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
814 /// side-effect free and is either dead or folded into a generated instruction.
815 /// Return false if it needs to be emitted.
816 static bool isFoldedOrDeadInstruction(const Instruction *I,
817                                       FunctionLoweringInfo *FuncInfo) {
818   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
819          !isa<TerminatorInst>(I) && // Terminators aren't folded.
820          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
821          !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
822          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
825 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
826   // Initialize the Fast-ISel state, if needed.
827   FastISel *FastIS = 0;
828   if (EnableFastISel)
829     FastIS = TLI.createFastISel(*FuncInfo);
831   // Iterate over all basic blocks in the function.
832   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
833   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
834        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
835     const BasicBlock *LLVMBB = *I;
837     if (OptLevel != CodeGenOpt::None) {
838       bool AllPredsVisited = true;
839       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
840            PI != PE; ++PI) {
841         if (!FuncInfo->VisitedBBs.count(*PI)) {
842           AllPredsVisited = false;
843           break;
844         }
845       }
847       if (AllPredsVisited) {
848         for (BasicBlock::const_iterator I = LLVMBB->begin();
849              isa<PHINode>(I); ++I)
850           FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
851       } else {
852         for (BasicBlock::const_iterator I = LLVMBB->begin();
853              isa<PHINode>(I); ++I)
854           FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
855       }
857       FuncInfo->VisitedBBs.insert(LLVMBB);
858     }
860     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
861     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
863     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
864     BasicBlock::const_iterator const End = LLVMBB->end();
865     BasicBlock::const_iterator BI = End;
867     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
869     // Setup an EH landing-pad block.
870     if (FuncInfo->MBB->isLandingPad())
871       PrepareEHLandingPad();
873     // Lower any arguments needed in this block if this is the entry block.
874     if (LLVMBB == &Fn.getEntryBlock())
875       LowerArguments(LLVMBB);
877     // Before doing SelectionDAG ISel, see if FastISel has been requested.
878     if (FastIS) {
879       FastIS->startNewBlock();
881       // Emit code for any incoming arguments. This must happen before
882       // beginning FastISel on the entry block.
883       if (LLVMBB == &Fn.getEntryBlock()) {
884         CurDAG->setRoot(SDB->getControlRoot());
885         SDB->clear();
886         CodeGenAndEmitDAG();
888         // If we inserted any instructions at the beginning, make a note of
889         // where they are, so we can be sure to emit subsequent instructions
890         // after them.
891         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
892           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
893         else
894           FastIS->setLastLocalValue(0);
895       }
897       // Do FastISel on as many instructions as possible.
898       for (; BI != Begin; --BI) {
899         const Instruction *Inst = llvm::prior(BI);
901         // If we no longer require this instruction, skip it.
902         if (isFoldedOrDeadInstruction(Inst, FuncInfo))
903           continue;
905         // Bottom-up: reset the insert pos at the top, after any local-value
906         // instructions.
907         FastIS->recomputeInsertPt();
909         // Try to select the instruction with FastISel.
910         if (FastIS->SelectInstruction(Inst)) {
911           ++NumFastIselSuccess;
912           // If fast isel succeeded, skip over all the folded instructions, and
913           // then see if there is a load right before the selected instructions.
914           // Try to fold the load if so.
915           const Instruction *BeforeInst = Inst;
916           while (BeforeInst != Begin) {
917             BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
918             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
919               break;
920           }
921           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
922               BeforeInst->hasOneUse() &&
923               TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
924             // If we succeeded, don't re-select the load.
925             BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
926           continue;
927         }
929         // Then handle certain instructions as single-LLVM-Instruction blocks.
930         if (isa<CallInst>(Inst)) {
931           ++NumFastIselFailures;
932           if (EnableFastISelVerbose || EnableFastISelAbort) {
933             dbgs() << "FastISel missed call: ";
934             Inst->dump();
935           }
937           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
938             unsigned &R = FuncInfo->ValueMap[Inst];
939             if (!R)
940               R = FuncInfo->CreateRegs(Inst->getType());
941           }
943           bool HadTailCall = false;
944           SelectBasicBlock(Inst, BI, HadTailCall);
946           // If the call was emitted as a tail call, we're done with the block.
947           if (HadTailCall) {
948             --BI;
949             break;
950           }
952           continue;
953         }
955         if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
956           // Don't abort, and use a different message for terminator misses.
957           ++NumFastIselFailures;
958           if (EnableFastISelVerbose || EnableFastISelAbort) {
959             dbgs() << "FastISel missed terminator: ";
960             Inst->dump();
961           }
962         } else {
963           ++NumFastIselFailures;
964           if (EnableFastISelVerbose || EnableFastISelAbort) {
965             dbgs() << "FastISel miss: ";
966             Inst->dump();
967           }
968           if (EnableFastISelAbort)
969             // The "fast" selector couldn't handle something and bailed.
970             // For the purpose of debugging, just abort.
971             llvm_unreachable("FastISel didn't select the entire block");
972         }
973         break;
974       }
976       FastIS->recomputeInsertPt();
977     }
979     if (Begin != BI)
980       ++NumDAGBlocks;
981     else
982       ++NumFastIselBlocks;
984     if (Begin != BI) {
985       // Run SelectionDAG instruction selection on the remainder of the block
986       // not handled by FastISel. If FastISel is not run, this is the entire
987       // block.
988       bool HadTailCall;
989       SelectBasicBlock(Begin, BI, HadTailCall);
990     }
992     FinishBasicBlock();
993     FuncInfo->PHINodesToUpdate.clear();
994   }
996   delete FastIS;
997   SDB->clearDanglingDebugInfo();
1000 void
1001 SelectionDAGISel::FinishBasicBlock() {
1003   DEBUG(dbgs() << "Total amount of phi nodes to update: "
1004                << FuncInfo->PHINodesToUpdate.size() << "\n";
1005         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1006           dbgs() << "Node " << i << " : ("
1007                  << FuncInfo->PHINodesToUpdate[i].first
1008                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1010   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1011   // PHI nodes in successors.
1012   if (SDB->SwitchCases.empty() &&
1013       SDB->JTCases.empty() &&
1014       SDB->BitTestCases.empty()) {
1015     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1016       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1017       assert(PHI->isPHI() &&
1018              "This is not a machine PHI node that we are updating!");
1019       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1020         continue;
1021       PHI->addOperand(
1022         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1023       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1024     }
1025     return;
1026   }
1028   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1029     // Lower header first, if it wasn't already lowered
1030     if (!SDB->BitTestCases[i].Emitted) {
1031       // Set the current basic block to the mbb we wish to insert the code into
1032       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1033       FuncInfo->InsertPt = FuncInfo->MBB->end();
1034       // Emit the code
1035       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1036       CurDAG->setRoot(SDB->getRoot());
1037       SDB->clear();
1038       CodeGenAndEmitDAG();
1039     }
1041     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1042       // Set the current basic block to the mbb we wish to insert the code into
1043       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1044       FuncInfo->InsertPt = FuncInfo->MBB->end();
1045       // Emit the code
1046       if (j+1 != ej)
1047         SDB->visitBitTestCase(SDB->BitTestCases[i],
1048                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
1049                               SDB->BitTestCases[i].Reg,
1050                               SDB->BitTestCases[i].Cases[j],
1051                               FuncInfo->MBB);
1052       else
1053         SDB->visitBitTestCase(SDB->BitTestCases[i],
1054                               SDB->BitTestCases[i].Default,
1055                               SDB->BitTestCases[i].Reg,
1056                               SDB->BitTestCases[i].Cases[j],
1057                               FuncInfo->MBB);
1060       CurDAG->setRoot(SDB->getRoot());
1061       SDB->clear();
1062       CodeGenAndEmitDAG();
1063     }
1065     // Update PHI Nodes
1066     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1067          pi != pe; ++pi) {
1068       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1069       MachineBasicBlock *PHIBB = PHI->getParent();
1070       assert(PHI->isPHI() &&
1071              "This is not a machine PHI node that we are updating!");
1072       // This is "default" BB. We have two jumps to it. From "header" BB and
1073       // from last "case" BB.
1074       if (PHIBB == SDB->BitTestCases[i].Default) {
1075         PHI->addOperand(MachineOperand::
1076                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1077                                   false));
1078         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1079         PHI->addOperand(MachineOperand::
1080                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1081                                   false));
1082         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1083                                                   back().ThisBB));
1084       }
1085       // One of "cases" BB.
1086       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1087            j != ej; ++j) {
1088         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1089         if (cBB->isSuccessor(PHIBB)) {
1090           PHI->addOperand(MachineOperand::
1091                           CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1092                                     false));
1093           PHI->addOperand(MachineOperand::CreateMBB(cBB));
1094         }
1095       }
1096     }
1097   }
1098   SDB->BitTestCases.clear();
1100   // If the JumpTable record is filled in, then we need to emit a jump table.
1101   // Updating the PHI nodes is tricky in this case, since we need to determine
1102   // whether the PHI is a successor of the range check MBB or the jump table MBB
1103   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1104     // Lower header first, if it wasn't already lowered
1105     if (!SDB->JTCases[i].first.Emitted) {
1106       // Set the current basic block to the mbb we wish to insert the code into
1107       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1108       FuncInfo->InsertPt = FuncInfo->MBB->end();
1109       // Emit the code
1110       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1111                                 FuncInfo->MBB);
1112       CurDAG->setRoot(SDB->getRoot());
1113       SDB->clear();
1114       CodeGenAndEmitDAG();
1115     }
1117     // Set the current basic block to the mbb we wish to insert the code into
1118     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1119     FuncInfo->InsertPt = FuncInfo->MBB->end();
1120     // Emit the code
1121     SDB->visitJumpTable(SDB->JTCases[i].second);
1122     CurDAG->setRoot(SDB->getRoot());
1123     SDB->clear();
1124     CodeGenAndEmitDAG();
1126     // Update PHI Nodes
1127     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1128          pi != pe; ++pi) {
1129       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1130       MachineBasicBlock *PHIBB = PHI->getParent();
1131       assert(PHI->isPHI() &&
1132              "This is not a machine PHI node that we are updating!");
1133       // "default" BB. We can go there only from header BB.
1134       if (PHIBB == SDB->JTCases[i].second.Default) {
1135         PHI->addOperand
1136           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1137                                      false));
1138         PHI->addOperand
1139           (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1140       }
1141       // JT BB. Just iterate over successors here
1142       if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1143         PHI->addOperand
1144           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1145                                      false));
1146         PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1147       }
1148     }
1149   }
1150   SDB->JTCases.clear();
1152   // If the switch block involved a branch to one of the actual successors, we
1153   // need to update PHI nodes in that block.
1154   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1155     MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1156     assert(PHI->isPHI() &&
1157            "This is not a machine PHI node that we are updating!");
1158     if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1159       PHI->addOperand(
1160         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1161       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1162     }
1163   }
1165   // If we generated any switch lowering information, build and codegen any
1166   // additional DAGs necessary.
1167   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1168     // Set the current basic block to the mbb we wish to insert the code into
1169     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1170     FuncInfo->InsertPt = FuncInfo->MBB->end();
1172     // Determine the unique successors.
1173     SmallVector<MachineBasicBlock *, 2> Succs;
1174     Succs.push_back(SDB->SwitchCases[i].TrueBB);
1175     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1176       Succs.push_back(SDB->SwitchCases[i].FalseBB);
1178     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1179     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1180     CurDAG->setRoot(SDB->getRoot());
1181     SDB->clear();
1182     CodeGenAndEmitDAG();
1184     // Remember the last block, now that any splitting is done, for use in
1185     // populating PHI nodes in successors.
1186     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1188     // Handle any PHI nodes in successors of this chunk, as if we were coming
1189     // from the original BB before switch expansion.  Note that PHI nodes can
1190     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1191     // handle them the right number of times.
1192     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1193       FuncInfo->MBB = Succs[i];
1194       FuncInfo->InsertPt = FuncInfo->MBB->end();
1195       // FuncInfo->MBB may have been removed from the CFG if a branch was
1196       // constant folded.
1197       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1198         for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1199              Phi != FuncInfo->MBB->end() && Phi->isPHI();
1200              ++Phi) {
1201           // This value for this PHI node is recorded in PHINodesToUpdate.
1202           for (unsigned pn = 0; ; ++pn) {
1203             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1204                    "Didn't find PHI entry!");
1205             if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1206               Phi->addOperand(MachineOperand::
1207                               CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1208                                         false));
1209               Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1210               break;
1211             }
1212           }
1213         }
1214       }
1215     }
1216   }
1217   SDB->SwitchCases.clear();
1221 /// Create the scheduler. If a specific scheduler was specified
1222 /// via the SchedulerRegistry, use it, otherwise select the
1223 /// one preferred by the target.
1224 ///
1225 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1226   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1228   if (!Ctor) {
1229     Ctor = ISHeuristic;
1230     RegisterScheduler::setDefault(Ctor);
1231   }
1233   return Ctor(this, OptLevel);
1236 //===----------------------------------------------------------------------===//
1237 // Helper functions used by the generated instruction selector.
1238 //===----------------------------------------------------------------------===//
1239 // Calls to these methods are generated by tblgen.
1241 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1242 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1243 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1244 /// specified in the .td file (e.g. 255).
1245 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1246                                     int64_t DesiredMaskS) const {
1247   const APInt &ActualMask = RHS->getAPIntValue();
1248   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1250   // If the actual mask exactly matches, success!
1251   if (ActualMask == DesiredMask)
1252     return true;
1254   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1255   if (ActualMask.intersects(~DesiredMask))
1256     return false;
1258   // Otherwise, the DAG Combiner may have proven that the value coming in is
1259   // either already zero or is not demanded.  Check for known zero input bits.
1260   APInt NeededMask = DesiredMask & ~ActualMask;
1261   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1262     return true;
1264   // TODO: check to see if missing bits are just not demanded.
1266   // Otherwise, this pattern doesn't match.
1267   return false;
1270 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1271 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1272 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1273 /// specified in the .td file (e.g. 255).
1274 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1275                                    int64_t DesiredMaskS) const {
1276   const APInt &ActualMask = RHS->getAPIntValue();
1277   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1279   // If the actual mask exactly matches, success!
1280   if (ActualMask == DesiredMask)
1281     return true;
1283   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1284   if (ActualMask.intersects(~DesiredMask))
1285     return false;
1287   // Otherwise, the DAG Combiner may have proven that the value coming in is
1288   // either already zero or is not demanded.  Check for known zero input bits.
1289   APInt NeededMask = DesiredMask & ~ActualMask;
1291   APInt KnownZero, KnownOne;
1292   CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1294   // If all the missing bits in the or are already known to be set, match!
1295   if ((NeededMask & KnownOne) == NeededMask)
1296     return true;
1298   // TODO: check to see if missing bits are just not demanded.
1300   // Otherwise, this pattern doesn't match.
1301   return false;
1305 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1306 /// by tblgen.  Others should not call it.
1307 void SelectionDAGISel::
1308 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1309   std::vector<SDValue> InOps;
1310   std::swap(InOps, Ops);
1312   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1313   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1314   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1315   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1317   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1318   if (InOps[e-1].getValueType() == MVT::Glue)
1319     --e;  // Don't process a glue operand if it is here.
1321   while (i != e) {
1322     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1323     if (!InlineAsm::isMemKind(Flags)) {
1324       // Just skip over this operand, copying the operands verbatim.
1325       Ops.insert(Ops.end(), InOps.begin()+i,
1326                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1327       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1328     } else {
1329       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1330              "Memory operand with multiple values?");
1331       // Otherwise, this is a memory operand.  Ask the target to select it.
1332       std::vector<SDValue> SelOps;
1333       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1334         report_fatal_error("Could not match memory address.  Inline asm"
1335                            " failure!");
1337       // Add this to the output node.
1338       unsigned NewFlags =
1339         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1340       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1341       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1342       i += 2;
1343     }
1344   }
1346   // Add the glue input back if present.
1347   if (e != InOps.size())
1348     Ops.push_back(InOps.back());
1351 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1352 /// SDNode.
1353 ///
1354 static SDNode *findGlueUse(SDNode *N) {
1355   unsigned FlagResNo = N->getNumValues()-1;
1356   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1357     SDUse &Use = I.getUse();
1358     if (Use.getResNo() == FlagResNo)
1359       return Use.getUser();
1360   }
1361   return NULL;
1364 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1365 /// This function recursively traverses up the operand chain, ignoring
1366 /// certain nodes.
1367 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1368                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1369                           bool IgnoreChains) {
1370   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1371   // greater than all of its (recursive) operands.  If we scan to a point where
1372   // 'use' is smaller than the node we're scanning for, then we know we will
1373   // never find it.
1374   //
1375   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1376   // happen because we scan down to newly selected nodes in the case of glue
1377   // uses.
1378   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1379     return false;
1381   // Don't revisit nodes if we already scanned it and didn't fail, we know we
1382   // won't fail if we scan it again.
1383   if (!Visited.insert(Use))
1384     return false;
1386   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1387     // Ignore chain uses, they are validated by HandleMergeInputChains.
1388     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1389       continue;
1391     SDNode *N = Use->getOperand(i).getNode();
1392     if (N == Def) {
1393       if (Use == ImmedUse || Use == Root)
1394         continue;  // We are not looking for immediate use.
1395       assert(N != Root);
1396       return true;
1397     }
1399     // Traverse up the operand chain.
1400     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1401       return true;
1402   }
1403   return false;
1406 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1407 /// operand node N of U during instruction selection that starts at Root.
1408 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1409                                           SDNode *Root) const {
1410   if (OptLevel == CodeGenOpt::None) return false;
1411   return N.hasOneUse();
1414 /// IsLegalToFold - Returns true if the specific operand node N of
1415 /// U can be folded during instruction selection that starts at Root.
1416 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1417                                      CodeGenOpt::Level OptLevel,
1418                                      bool IgnoreChains) {
1419   if (OptLevel == CodeGenOpt::None) return false;
1421   // If Root use can somehow reach N through a path that that doesn't contain
1422   // U then folding N would create a cycle. e.g. In the following
1423   // diagram, Root can reach N through X. If N is folded into into Root, then
1424   // X is both a predecessor and a successor of U.
1425   //
1426   //          [N*]           //
1427   //         ^   ^           //
1428   //        /     \          //
1429   //      [U*]    [X]?       //
1430   //        ^     ^          //
1431   //         \   /           //
1432   //          \ /            //
1433   //         [Root*]         //
1434   //
1435   // * indicates nodes to be folded together.
1436   //
1437   // If Root produces glue, then it gets (even more) interesting. Since it
1438   // will be "glued" together with its glue use in the scheduler, we need to
1439   // check if it might reach N.
1440   //
1441   //          [N*]           //
1442   //         ^   ^           //
1443   //        /     \          //
1444   //      [U*]    [X]?       //
1445   //        ^       ^        //
1446   //         \       \       //
1447   //          \      |       //
1448   //         [Root*] |       //
1449   //          ^      |       //
1450   //          f      |       //
1451   //          |      /       //
1452   //         [Y]    /        //
1453   //           ^   /         //
1454   //           f  /          //
1455   //           | /           //
1456   //          [GU]           //
1457   //
1458   // If GU (glue use) indirectly reaches N (the load), and Root folds N
1459   // (call it Fold), then X is a predecessor of GU and a successor of
1460   // Fold. But since Fold and GU are glued together, this will create
1461   // a cycle in the scheduling graph.
1463   // If the node has glue, walk down the graph to the "lowest" node in the
1464   // glueged set.
1465   EVT VT = Root->getValueType(Root->getNumValues()-1);
1466   while (VT == MVT::Glue) {
1467     SDNode *GU = findGlueUse(Root);
1468     if (GU == NULL)
1469       break;
1470     Root = GU;
1471     VT = Root->getValueType(Root->getNumValues()-1);
1473     // If our query node has a glue result with a use, we've walked up it.  If
1474     // the user (which has already been selected) has a chain or indirectly uses
1475     // the chain, our WalkChainUsers predicate will not consider it.  Because of
1476     // this, we cannot ignore chains in this predicate.
1477     IgnoreChains = false;
1478   }
1481   SmallPtrSet<SDNode*, 16> Visited;
1482   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1485 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1486   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1487   SelectInlineAsmMemoryOperands(Ops);
1489   std::vector<EVT> VTs;
1490   VTs.push_back(MVT::Other);
1491   VTs.push_back(MVT::Glue);
1492   SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1493                                 VTs, &Ops[0], Ops.size());
1494   New->setNodeId(-1);
1495   return New.getNode();
1498 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1499   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1502 /// GetVBR - decode a vbr encoding whose top bit is set.
1503 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1504 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1505   assert(Val >= 128 && "Not a VBR");
1506   Val &= 127;  // Remove first vbr bit.
1508   unsigned Shift = 7;
1509   uint64_t NextBits;
1510   do {
1511     NextBits = MatcherTable[Idx++];
1512     Val |= (NextBits&127) << Shift;
1513     Shift += 7;
1514   } while (NextBits & 128);
1516   return Val;
1520 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1521 /// interior glue and chain results to use the new glue and chain results.
1522 void SelectionDAGISel::
1523 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1524                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1525                     SDValue InputGlue,
1526                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1527                     bool isMorphNodeTo) {
1528   SmallVector<SDNode*, 4> NowDeadNodes;
1530   ISelUpdater ISU(ISelPosition);
1532   // Now that all the normal results are replaced, we replace the chain and
1533   // glue results if present.
1534   if (!ChainNodesMatched.empty()) {
1535     assert(InputChain.getNode() != 0 &&
1536            "Matched input chains but didn't produce a chain");
1537     // Loop over all of the nodes we matched that produced a chain result.
1538     // Replace all the chain results with the final chain we ended up with.
1539     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1540       SDNode *ChainNode = ChainNodesMatched[i];
1542       // If this node was already deleted, don't look at it.
1543       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1544         continue;
1546       // Don't replace the results of the root node if we're doing a
1547       // MorphNodeTo.
1548       if (ChainNode == NodeToMatch && isMorphNodeTo)
1549         continue;
1551       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1552       if (ChainVal.getValueType() == MVT::Glue)
1553         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1554       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1555       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1557       // If the node became dead and we haven't already seen it, delete it.
1558       if (ChainNode->use_empty() &&
1559           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1560         NowDeadNodes.push_back(ChainNode);
1561     }
1562   }
1564   // If the result produces glue, update any glue results in the matched
1565   // pattern with the glue result.
1566   if (InputGlue.getNode() != 0) {
1567     // Handle any interior nodes explicitly marked.
1568     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1569       SDNode *FRN = GlueResultNodesMatched[i];
1571       // If this node was already deleted, don't look at it.
1572       if (FRN->getOpcode() == ISD::DELETED_NODE)
1573         continue;
1575       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1576              "Doesn't have a glue result");
1577       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1578                                         InputGlue, &ISU);
1580       // If the node became dead and we haven't already seen it, delete it.
1581       if (FRN->use_empty() &&
1582           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1583         NowDeadNodes.push_back(FRN);
1584     }
1585   }
1587   if (!NowDeadNodes.empty())
1588     CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1590   DEBUG(errs() << "ISEL: Match complete!\n");
1593 enum ChainResult {
1594   CR_Simple,
1595   CR_InducesCycle,
1596   CR_LeadsToInteriorNode
1597 };
1599 /// WalkChainUsers - Walk down the users of the specified chained node that is
1600 /// part of the pattern we're matching, looking at all of the users we find.
1601 /// This determines whether something is an interior node, whether we have a
1602 /// non-pattern node in between two pattern nodes (which prevent folding because
1603 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1604 /// between pattern nodes (in which case the TF becomes part of the pattern).
1605 ///
1606 /// The walk we do here is guaranteed to be small because we quickly get down to
1607 /// already selected nodes "below" us.
1608 static ChainResult
1609 WalkChainUsers(SDNode *ChainedNode,
1610                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1611                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1612   ChainResult Result = CR_Simple;
1614   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1615          E = ChainedNode->use_end(); UI != E; ++UI) {
1616     // Make sure the use is of the chain, not some other value we produce.
1617     if (UI.getUse().getValueType() != MVT::Other) continue;
1619     SDNode *User = *UI;
1621     // If we see an already-selected machine node, then we've gone beyond the
1622     // pattern that we're selecting down into the already selected chunk of the
1623     // DAG.
1624     if (User->isMachineOpcode() ||
1625         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1626       continue;
1628     if (User->getOpcode() == ISD::CopyToReg ||
1629         User->getOpcode() == ISD::CopyFromReg ||
1630         User->getOpcode() == ISD::INLINEASM ||
1631         User->getOpcode() == ISD::EH_LABEL) {
1632       // If their node ID got reset to -1 then they've already been selected.
1633       // Treat them like a MachineOpcode.
1634       if (User->getNodeId() == -1)
1635         continue;
1636     }
1638     // If we have a TokenFactor, we handle it specially.
1639     if (User->getOpcode() != ISD::TokenFactor) {
1640       // If the node isn't a token factor and isn't part of our pattern, then it
1641       // must be a random chained node in between two nodes we're selecting.
1642       // This happens when we have something like:
1643       //   x = load ptr
1644       //   call
1645       //   y = x+4
1646       //   store y -> ptr
1647       // Because we structurally match the load/store as a read/modify/write,
1648       // but the call is chained between them.  We cannot fold in this case
1649       // because it would induce a cycle in the graph.
1650       if (!std::count(ChainedNodesInPattern.begin(),
1651                       ChainedNodesInPattern.end(), User))
1652         return CR_InducesCycle;
1654       // Otherwise we found a node that is part of our pattern.  For example in:
1655       //   x = load ptr
1656       //   y = x+4
1657       //   store y -> ptr
1658       // This would happen when we're scanning down from the load and see the
1659       // store as a user.  Record that there is a use of ChainedNode that is
1660       // part of the pattern and keep scanning uses.
1661       Result = CR_LeadsToInteriorNode;
1662       InteriorChainedNodes.push_back(User);
1663       continue;
1664     }
1666     // If we found a TokenFactor, there are two cases to consider: first if the
1667     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1668     // uses of the TF are in our pattern) we just want to ignore it.  Second,
1669     // the TokenFactor can be sandwiched in between two chained nodes, like so:
1670     //     [Load chain]
1671     //         ^
1672     //         |
1673     //       [Load]
1674     //       ^    ^
1675     //       |    \                    DAG's like cheese
1676     //      /       \                       do you?
1677     //     /         |
1678     // [TokenFactor] [Op]
1679     //     ^          ^
1680     //     |          |
1681     //      \        /
1682     //       \      /
1683     //       [Store]
1684     //
1685     // In this case, the TokenFactor becomes part of our match and we rewrite it
1686     // as a new TokenFactor.
1687     //
1688     // To distinguish these two cases, do a recursive walk down the uses.
1689     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1690     case CR_Simple:
1691       // If the uses of the TokenFactor are just already-selected nodes, ignore
1692       // it, it is "below" our pattern.
1693       continue;
1694     case CR_InducesCycle:
1695       // If the uses of the TokenFactor lead to nodes that are not part of our
1696       // pattern that are not selected, folding would turn this into a cycle,
1697       // bail out now.
1698       return CR_InducesCycle;
1699     case CR_LeadsToInteriorNode:
1700       break;  // Otherwise, keep processing.
1701     }
1703     // Okay, we know we're in the interesting interior case.  The TokenFactor
1704     // is now going to be considered part of the pattern so that we rewrite its
1705     // uses (it may have uses that are not part of the pattern) with the
1706     // ultimate chain result of the generated code.  We will also add its chain
1707     // inputs as inputs to the ultimate TokenFactor we create.
1708     Result = CR_LeadsToInteriorNode;
1709     ChainedNodesInPattern.push_back(User);
1710     InteriorChainedNodes.push_back(User);
1711     continue;
1712   }
1714   return Result;
1717 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1718 /// operation for when the pattern matched at least one node with a chains.  The
1719 /// input vector contains a list of all of the chained nodes that we match.  We
1720 /// must determine if this is a valid thing to cover (i.e. matching it won't
1721 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1722 /// be used as the input node chain for the generated nodes.
1723 static SDValue
1724 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1725                        SelectionDAG *CurDAG) {
1726   // Walk all of the chained nodes we've matched, recursively scanning down the
1727   // users of the chain result. This adds any TokenFactor nodes that are caught
1728   // in between chained nodes to the chained and interior nodes list.
1729   SmallVector<SDNode*, 3> InteriorChainedNodes;
1730   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1731     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1732                        InteriorChainedNodes) == CR_InducesCycle)
1733       return SDValue(); // Would induce a cycle.
1734   }
1736   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1737   // that we are interested in.  Form our input TokenFactor node.
1738   SmallVector<SDValue, 3> InputChains;
1739   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1740     // Add the input chain of this node to the InputChains list (which will be
1741     // the operands of the generated TokenFactor) if it's not an interior node.
1742     SDNode *N = ChainNodesMatched[i];
1743     if (N->getOpcode() != ISD::TokenFactor) {
1744       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1745         continue;
1747       // Otherwise, add the input chain.
1748       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1749       assert(InChain.getValueType() == MVT::Other && "Not a chain");
1750       InputChains.push_back(InChain);
1751       continue;
1752     }
1754     // If we have a token factor, we want to add all inputs of the token factor
1755     // that are not part of the pattern we're matching.
1756     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1757       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1758                       N->getOperand(op).getNode()))
1759         InputChains.push_back(N->getOperand(op));
1760     }
1761   }
1763   SDValue Res;
1764   if (InputChains.size() == 1)
1765     return InputChains[0];
1766   return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1767                          MVT::Other, &InputChains[0], InputChains.size());
1770 /// MorphNode - Handle morphing a node in place for the selector.
1771 SDNode *SelectionDAGISel::
1772 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1773           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1774   // It is possible we're using MorphNodeTo to replace a node with no
1775   // normal results with one that has a normal result (or we could be
1776   // adding a chain) and the input could have glue and chains as well.
1777   // In this case we need to shift the operands down.
1778   // FIXME: This is a horrible hack and broken in obscure cases, no worse
1779   // than the old isel though.
1780   int OldGlueResultNo = -1, OldChainResultNo = -1;
1782   unsigned NTMNumResults = Node->getNumValues();
1783   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1784     OldGlueResultNo = NTMNumResults-1;
1785     if (NTMNumResults != 1 &&
1786         Node->getValueType(NTMNumResults-2) == MVT::Other)
1787       OldChainResultNo = NTMNumResults-2;
1788   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1789     OldChainResultNo = NTMNumResults-1;
1791   // Call the underlying SelectionDAG routine to do the transmogrification. Note
1792   // that this deletes operands of the old node that become dead.
1793   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1795   // MorphNodeTo can operate in two ways: if an existing node with the
1796   // specified operands exists, it can just return it.  Otherwise, it
1797   // updates the node in place to have the requested operands.
1798   if (Res == Node) {
1799     // If we updated the node in place, reset the node ID.  To the isel,
1800     // this should be just like a newly allocated machine node.
1801     Res->setNodeId(-1);
1802   }
1804   unsigned ResNumResults = Res->getNumValues();
1805   // Move the glue if needed.
1806   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1807       (unsigned)OldGlueResultNo != ResNumResults-1)
1808     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1809                                       SDValue(Res, ResNumResults-1));
1811   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1812     --ResNumResults;
1814   // Move the chain reference if needed.
1815   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1816       (unsigned)OldChainResultNo != ResNumResults-1)
1817     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1818                                       SDValue(Res, ResNumResults-1));
1820   // Otherwise, no replacement happened because the node already exists. Replace
1821   // Uses of the old node with the new one.
1822   if (Res != Node)
1823     CurDAG->ReplaceAllUsesWith(Node, Res);
1825   return Res;
1828 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1829 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1830 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1831           SDValue N,
1832           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1833   // Accept if it is exactly the same as a previously recorded node.
1834   unsigned RecNo = MatcherTable[MatcherIndex++];
1835   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1836   return N == RecordedNodes[RecNo].first;
1839 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1840 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1841 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1842                       SelectionDAGISel &SDISel) {
1843   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1846 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
1847 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1848 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1849                    SelectionDAGISel &SDISel, SDNode *N) {
1850   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1853 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1854 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1855             SDNode *N) {
1856   uint16_t Opc = MatcherTable[MatcherIndex++];
1857   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1858   return N->getOpcode() == Opc;
1861 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1862 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1863           SDValue N, const TargetLowering &TLI) {
1864   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1865   if (N.getValueType() == VT) return true;
1867   // Handle the case when VT is iPTR.
1868   return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1871 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873                SDValue N, const TargetLowering &TLI,
1874                unsigned ChildNo) {
1875   if (ChildNo >= N.getNumOperands())
1876     return false;  // Match fails if out of range child #.
1877   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1881 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1882 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1883               SDValue N) {
1884   return cast<CondCodeSDNode>(N)->get() ==
1885       (ISD::CondCode)MatcherTable[MatcherIndex++];
1888 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1889 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1890                SDValue N, const TargetLowering &TLI) {
1891   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1892   if (cast<VTSDNode>(N)->getVT() == VT)
1893     return true;
1895   // Handle the case when VT is iPTR.
1896   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1899 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1900 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1901              SDValue N) {
1902   int64_t Val = MatcherTable[MatcherIndex++];
1903   if (Val & 128)
1904     Val = GetVBR(Val, MatcherTable, MatcherIndex);
1906   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1907   return C != 0 && C->getSExtValue() == Val;
1910 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1911 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1912             SDValue N, SelectionDAGISel &SDISel) {
1913   int64_t Val = MatcherTable[MatcherIndex++];
1914   if (Val & 128)
1915     Val = GetVBR(Val, MatcherTable, MatcherIndex);
1917   if (N->getOpcode() != ISD::AND) return false;
1919   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1920   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1923 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1924 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1925            SDValue N, SelectionDAGISel &SDISel) {
1926   int64_t Val = MatcherTable[MatcherIndex++];
1927   if (Val & 128)
1928     Val = GetVBR(Val, MatcherTable, MatcherIndex);
1930   if (N->getOpcode() != ISD::OR) return false;
1932   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1933   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1936 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
1937 /// scope, evaluate the current node.  If the current predicate is known to
1938 /// fail, set Result=true and return anything.  If the current predicate is
1939 /// known to pass, set Result=false and return the MatcherIndex to continue
1940 /// with.  If the current predicate is unknown, set Result=false and return the
1941 /// MatcherIndex to continue with.
1942 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1943                                        unsigned Index, SDValue N,
1944                                        bool &Result, SelectionDAGISel &SDISel,
1945                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1946   switch (Table[Index++]) {
1947   default:
1948     Result = false;
1949     return Index-1;  // Could not evaluate this predicate.
1950   case SelectionDAGISel::OPC_CheckSame:
1951     Result = !::CheckSame(Table, Index, N, RecordedNodes);
1952     return Index;
1953   case SelectionDAGISel::OPC_CheckPatternPredicate:
1954     Result = !::CheckPatternPredicate(Table, Index, SDISel);
1955     return Index;
1956   case SelectionDAGISel::OPC_CheckPredicate:
1957     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1958     return Index;
1959   case SelectionDAGISel::OPC_CheckOpcode:
1960     Result = !::CheckOpcode(Table, Index, N.getNode());
1961     return Index;
1962   case SelectionDAGISel::OPC_CheckType:
1963     Result = !::CheckType(Table, Index, N, SDISel.TLI);
1964     return Index;
1965   case SelectionDAGISel::OPC_CheckChild0Type:
1966   case SelectionDAGISel::OPC_CheckChild1Type:
1967   case SelectionDAGISel::OPC_CheckChild2Type:
1968   case SelectionDAGISel::OPC_CheckChild3Type:
1969   case SelectionDAGISel::OPC_CheckChild4Type:
1970   case SelectionDAGISel::OPC_CheckChild5Type:
1971   case SelectionDAGISel::OPC_CheckChild6Type:
1972   case SelectionDAGISel::OPC_CheckChild7Type:
1973     Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1974                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1975     return Index;
1976   case SelectionDAGISel::OPC_CheckCondCode:
1977     Result = !::CheckCondCode(Table, Index, N);
1978     return Index;
1979   case SelectionDAGISel::OPC_CheckValueType:
1980     Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1981     return Index;
1982   case SelectionDAGISel::OPC_CheckInteger:
1983     Result = !::CheckInteger(Table, Index, N);
1984     return Index;
1985   case SelectionDAGISel::OPC_CheckAndImm:
1986     Result = !::CheckAndImm(Table, Index, N, SDISel);
1987     return Index;
1988   case SelectionDAGISel::OPC_CheckOrImm:
1989     Result = !::CheckOrImm(Table, Index, N, SDISel);
1990     return Index;
1991   }
1994 namespace {
1996 struct MatchScope {
1997   /// FailIndex - If this match fails, this is the index to continue with.
1998   unsigned FailIndex;
2000   /// NodeStack - The node stack when the scope was formed.
2001   SmallVector<SDValue, 4> NodeStack;
2003   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2004   unsigned NumRecordedNodes;
2006   /// NumMatchedMemRefs - The number of matched memref entries.
2007   unsigned NumMatchedMemRefs;
2009   /// InputChain/InputGlue - The current chain/glue
2010   SDValue InputChain, InputGlue;
2012   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2013   bool HasChainNodesMatched, HasGlueResultNodesMatched;
2014 };
2018 SDNode *SelectionDAGISel::
2019 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2020                  unsigned TableSize) {
2021   // FIXME: Should these even be selected?  Handle these cases in the caller?
2022   switch (NodeToMatch->getOpcode()) {
2023   default:
2024     break;
2025   case ISD::EntryToken:       // These nodes remain the same.
2026   case ISD::BasicBlock:
2027   case ISD::Register:
2028   //case ISD::VALUETYPE:
2029   //case ISD::CONDCODE:
2030   case ISD::HANDLENODE:
2031   case ISD::MDNODE_SDNODE:
2032   case ISD::TargetConstant:
2033   case ISD::TargetConstantFP:
2034   case ISD::TargetConstantPool:
2035   case ISD::TargetFrameIndex:
2036   case ISD::TargetExternalSymbol:
2037   case ISD::TargetBlockAddress:
2038   case ISD::TargetJumpTable:
2039   case ISD::TargetGlobalTLSAddress:
2040   case ISD::TargetGlobalAddress:
2041   case ISD::TokenFactor:
2042   case ISD::CopyFromReg:
2043   case ISD::CopyToReg:
2044   case ISD::EH_LABEL:
2045     NodeToMatch->setNodeId(-1); // Mark selected.
2046     return 0;
2047   case ISD::AssertSext:
2048   case ISD::AssertZext:
2049     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2050                                       NodeToMatch->getOperand(0));
2051     return 0;
2052   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2053   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2054   }
2056   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2058   // Set up the node stack with NodeToMatch as the only node on the stack.
2059   SmallVector<SDValue, 8> NodeStack;
2060   SDValue N = SDValue(NodeToMatch, 0);
2061   NodeStack.push_back(N);
2063   // MatchScopes - Scopes used when matching, if a match failure happens, this
2064   // indicates where to continue checking.
2065   SmallVector<MatchScope, 8> MatchScopes;
2067   // RecordedNodes - This is the set of nodes that have been recorded by the
2068   // state machine.  The second value is the parent of the node, or null if the
2069   // root is recorded.
2070   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2072   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2073   // pattern.
2074   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2076   // These are the current input chain and glue for use when generating nodes.
2077   // Various Emit operations change these.  For example, emitting a copytoreg
2078   // uses and updates these.
2079   SDValue InputChain, InputGlue;
2081   // ChainNodesMatched - If a pattern matches nodes that have input/output
2082   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2083   // which ones they are.  The result is captured into this list so that we can
2084   // update the chain results when the pattern is complete.
2085   SmallVector<SDNode*, 3> ChainNodesMatched;
2086   SmallVector<SDNode*, 3> GlueResultNodesMatched;
2088   DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2089         NodeToMatch->dump(CurDAG);
2090         errs() << '\n');
2092   // Determine where to start the interpreter.  Normally we start at opcode #0,
2093   // but if the state machine starts with an OPC_SwitchOpcode, then we
2094   // accelerate the first lookup (which is guaranteed to be hot) with the
2095   // OpcodeOffset table.
2096   unsigned MatcherIndex = 0;
2098   if (!OpcodeOffset.empty()) {
2099     // Already computed the OpcodeOffset table, just index into it.
2100     if (N.getOpcode() < OpcodeOffset.size())
2101       MatcherIndex = OpcodeOffset[N.getOpcode()];
2102     DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2104   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2105     // Otherwise, the table isn't computed, but the state machine does start
2106     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2107     // is the first time we're selecting an instruction.
2108     unsigned Idx = 1;
2109     while (1) {
2110       // Get the size of this case.
2111       unsigned CaseSize = MatcherTable[Idx++];
2112       if (CaseSize & 128)
2113         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2114       if (CaseSize == 0) break;
2116       // Get the opcode, add the index to the table.
2117       uint16_t Opc = MatcherTable[Idx++];
2118       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2119       if (Opc >= OpcodeOffset.size())
2120         OpcodeOffset.resize((Opc+1)*2);
2121       OpcodeOffset[Opc] = Idx;
2122       Idx += CaseSize;
2123     }
2125     // Okay, do the lookup for the first opcode.
2126     if (N.getOpcode() < OpcodeOffset.size())
2127       MatcherIndex = OpcodeOffset[N.getOpcode()];
2128   }
2130   while (1) {
2131     assert(MatcherIndex < TableSize && "Invalid index");
2132 #ifndef NDEBUG
2133     unsigned CurrentOpcodeIndex = MatcherIndex;
2134 #endif
2135     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2136     switch (Opcode) {
2137     case OPC_Scope: {
2138       // Okay, the semantics of this operation are that we should push a scope
2139       // then evaluate the first child.  However, pushing a scope only to have
2140       // the first check fail (which then pops it) is inefficient.  If we can
2141       // determine immediately that the first check (or first several) will
2142       // immediately fail, don't even bother pushing a scope for them.
2143       unsigned FailIndex;
2145       while (1) {
2146         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2147         if (NumToSkip & 128)
2148           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2149         // Found the end of the scope with no match.
2150         if (NumToSkip == 0) {
2151           FailIndex = 0;
2152           break;
2153         }
2155         FailIndex = MatcherIndex+NumToSkip;
2157         unsigned MatcherIndexOfPredicate = MatcherIndex;
2158         (void)MatcherIndexOfPredicate; // silence warning.
2160         // If we can't evaluate this predicate without pushing a scope (e.g. if
2161         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2162         // push the scope and evaluate the full predicate chain.
2163         bool Result;
2164         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2165                                               Result, *this, RecordedNodes);
2166         if (!Result)
2167           break;
2169         DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2170                      << "index " << MatcherIndexOfPredicate
2171                      << ", continuing at " << FailIndex << "\n");
2172         ++NumDAGIselRetries;
2174         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2175         // move to the next case.
2176         MatcherIndex = FailIndex;
2177       }
2179       // If the whole scope failed to match, bail.
2180       if (FailIndex == 0) break;
2182       // Push a MatchScope which indicates where to go if the first child fails
2183       // to match.
2184       MatchScope NewEntry;
2185       NewEntry.FailIndex = FailIndex;
2186       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2187       NewEntry.NumRecordedNodes = RecordedNodes.size();
2188       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2189       NewEntry.InputChain = InputChain;
2190       NewEntry.InputGlue = InputGlue;
2191       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2192       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2193       MatchScopes.push_back(NewEntry);
2194       continue;
2195     }
2196     case OPC_RecordNode: {
2197       // Remember this node, it may end up being an operand in the pattern.
2198       SDNode *Parent = 0;
2199       if (NodeStack.size() > 1)
2200         Parent = NodeStack[NodeStack.size()-2].getNode();
2201       RecordedNodes.push_back(std::make_pair(N, Parent));
2202       continue;
2203     }
2205     case OPC_RecordChild0: case OPC_RecordChild1:
2206     case OPC_RecordChild2: case OPC_RecordChild3:
2207     case OPC_RecordChild4: case OPC_RecordChild5:
2208     case OPC_RecordChild6: case OPC_RecordChild7: {
2209       unsigned ChildNo = Opcode-OPC_RecordChild0;
2210       if (ChildNo >= N.getNumOperands())
2211         break;  // Match fails if out of range child #.
2213       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2214                                              N.getNode()));
2215       continue;
2216     }
2217     case OPC_RecordMemRef:
2218       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2219       continue;
2221     case OPC_CaptureGlueInput:
2222       // If the current node has an input glue, capture it in InputGlue.
2223       if (N->getNumOperands() != 0 &&
2224           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2225         InputGlue = N->getOperand(N->getNumOperands()-1);
2226       continue;
2228     case OPC_MoveChild: {
2229       unsigned ChildNo = MatcherTable[MatcherIndex++];
2230       if (ChildNo >= N.getNumOperands())
2231         break;  // Match fails if out of range child #.
2232       N = N.getOperand(ChildNo);
2233       NodeStack.push_back(N);
2234       continue;
2235     }
2237     case OPC_MoveParent:
2238       // Pop the current node off the NodeStack.
2239       NodeStack.pop_back();
2240       assert(!NodeStack.empty() && "Node stack imbalance!");
2241       N = NodeStack.back();
2242       continue;
2244     case OPC_CheckSame:
2245       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2246       continue;
2247     case OPC_CheckPatternPredicate:
2248       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2249       continue;
2250     case OPC_CheckPredicate:
2251       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2252                                 N.getNode()))
2253         break;
2254       continue;
2255     case OPC_CheckComplexPat: {
2256       unsigned CPNum = MatcherTable[MatcherIndex++];
2257       unsigned RecNo = MatcherTable[MatcherIndex++];
2258       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2259       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2260                                RecordedNodes[RecNo].first, CPNum,
2261                                RecordedNodes))
2262         break;
2263       continue;
2264     }
2265     case OPC_CheckOpcode:
2266       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2267       continue;
2269     case OPC_CheckType:
2270       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2271       continue;
2273     case OPC_SwitchOpcode: {
2274       unsigned CurNodeOpcode = N.getOpcode();
2275       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2276       unsigned CaseSize;
2277       while (1) {
2278         // Get the size of this case.
2279         CaseSize = MatcherTable[MatcherIndex++];
2280         if (CaseSize & 128)
2281           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2282         if (CaseSize == 0) break;
2284         uint16_t Opc = MatcherTable[MatcherIndex++];
2285         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2287         // If the opcode matches, then we will execute this case.
2288         if (CurNodeOpcode == Opc)
2289           break;
2291         // Otherwise, skip over this case.
2292         MatcherIndex += CaseSize;
2293       }
2295       // If no cases matched, bail out.
2296       if (CaseSize == 0) break;
2298       // Otherwise, execute the case we found.
2299       DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2300                    << " to " << MatcherIndex << "\n");
2301       continue;
2302     }
2304     case OPC_SwitchType: {
2305       MVT CurNodeVT = N.getValueType().getSimpleVT();
2306       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2307       unsigned CaseSize;
2308       while (1) {
2309         // Get the size of this case.
2310         CaseSize = MatcherTable[MatcherIndex++];
2311         if (CaseSize & 128)
2312           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2313         if (CaseSize == 0) break;
2315         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2316         if (CaseVT == MVT::iPTR)
2317           CaseVT = TLI.getPointerTy();
2319         // If the VT matches, then we will execute this case.
2320         if (CurNodeVT == CaseVT)
2321           break;
2323         // Otherwise, skip over this case.
2324         MatcherIndex += CaseSize;
2325       }
2327       // If no cases matched, bail out.
2328       if (CaseSize == 0) break;
2330       // Otherwise, execute the case we found.
2331       DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2332                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2333       continue;
2334     }
2335     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2336     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2337     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2338     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2339       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2340                             Opcode-OPC_CheckChild0Type))
2341         break;
2342       continue;
2343     case OPC_CheckCondCode:
2344       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2345       continue;
2346     case OPC_CheckValueType:
2347       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2348       continue;
2349     case OPC_CheckInteger:
2350       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2351       continue;
2352     case OPC_CheckAndImm:
2353       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2354       continue;
2355     case OPC_CheckOrImm:
2356       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2357       continue;
2359     case OPC_CheckFoldableChainNode: {
2360       assert(NodeStack.size() != 1 && "No parent node");
2361       // Verify that all intermediate nodes between the root and this one have
2362       // a single use.
2363       bool HasMultipleUses = false;
2364       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2365         if (!NodeStack[i].hasOneUse()) {
2366           HasMultipleUses = true;
2367           break;
2368         }
2369       if (HasMultipleUses) break;
2371       // Check to see that the target thinks this is profitable to fold and that
2372       // we can fold it without inducing cycles in the graph.
2373       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2374                               NodeToMatch) ||
2375           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2376                          NodeToMatch, OptLevel,
2377                          true/*We validate our own chains*/))
2378         break;
2380       continue;
2381     }
2382     case OPC_EmitInteger: {
2383       MVT::SimpleValueType VT =
2384         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2385       int64_t Val = MatcherTable[MatcherIndex++];
2386       if (Val & 128)
2387         Val = GetVBR(Val, MatcherTable, MatcherIndex);
2388       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2389                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2390       continue;
2391     }
2392     case OPC_EmitRegister: {
2393       MVT::SimpleValueType VT =
2394         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2395       unsigned RegNo = MatcherTable[MatcherIndex++];
2396       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2397                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2398       continue;
2399     }
2400     case OPC_EmitRegister2: {
2401       // For targets w/ more than 256 register names, the register enum
2402       // values are stored in two bytes in the matcher table (just like
2403       // opcodes).
2404       MVT::SimpleValueType VT =
2405         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2406       unsigned RegNo = MatcherTable[MatcherIndex++];
2407       RegNo |= MatcherTable[MatcherIndex++] << 8;
2408       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2409                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2410       continue;
2411     }
2413     case OPC_EmitConvertToTarget:  {
2414       // Convert from IMM/FPIMM to target version.
2415       unsigned RecNo = MatcherTable[MatcherIndex++];
2416       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2417       SDValue Imm = RecordedNodes[RecNo].first;
2419       if (Imm->getOpcode() == ISD::Constant) {
2420         int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2421         Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2422       } else if (Imm->getOpcode() == ISD::ConstantFP) {
2423         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2424         Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2425       }
2427       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2428       continue;
2429     }
2431     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2432     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2433       // These are space-optimized forms of OPC_EmitMergeInputChains.
2434       assert(InputChain.getNode() == 0 &&
2435              "EmitMergeInputChains should be the first chain producing node");
2436       assert(ChainNodesMatched.empty() &&
2437              "Should only have one EmitMergeInputChains per match");
2439       // Read all of the chained nodes.
2440       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2441       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2442       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2444       // FIXME: What if other value results of the node have uses not matched
2445       // by this pattern?
2446       if (ChainNodesMatched.back() != NodeToMatch &&
2447           !RecordedNodes[RecNo].first.hasOneUse()) {
2448         ChainNodesMatched.clear();
2449         break;
2450       }
2452       // Merge the input chains if they are not intra-pattern references.
2453       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2455       if (InputChain.getNode() == 0)
2456         break;  // Failed to merge.
2457       continue;
2458     }
2460     case OPC_EmitMergeInputChains: {
2461       assert(InputChain.getNode() == 0 &&
2462              "EmitMergeInputChains should be the first chain producing node");
2463       // This node gets a list of nodes we matched in the input that have
2464       // chains.  We want to token factor all of the input chains to these nodes
2465       // together.  However, if any of the input chains is actually one of the
2466       // nodes matched in this pattern, then we have an intra-match reference.
2467       // Ignore these because the newly token factored chain should not refer to
2468       // the old nodes.
2469       unsigned NumChains = MatcherTable[MatcherIndex++];
2470       assert(NumChains != 0 && "Can't TF zero chains");
2472       assert(ChainNodesMatched.empty() &&
2473              "Should only have one EmitMergeInputChains per match");
2475       // Read all of the chained nodes.
2476       for (unsigned i = 0; i != NumChains; ++i) {
2477         unsigned RecNo = MatcherTable[MatcherIndex++];
2478         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2479         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2481         // FIXME: What if other value results of the node have uses not matched
2482         // by this pattern?
2483         if (ChainNodesMatched.back() != NodeToMatch &&
2484             !RecordedNodes[RecNo].first.hasOneUse()) {
2485           ChainNodesMatched.clear();
2486           break;
2487         }
2488       }
2490       // If the inner loop broke out, the match fails.
2491       if (ChainNodesMatched.empty())
2492         break;
2494       // Merge the input chains if they are not intra-pattern references.
2495       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2497       if (InputChain.getNode() == 0)
2498         break;  // Failed to merge.
2500       continue;
2501     }
2503     case OPC_EmitCopyToReg: {
2504       unsigned RecNo = MatcherTable[MatcherIndex++];
2505       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2506       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2508       if (InputChain.getNode() == 0)
2509         InputChain = CurDAG->getEntryNode();
2511       InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2512                                         DestPhysReg, RecordedNodes[RecNo].first,
2513                                         InputGlue);
2515       InputGlue = InputChain.getValue(1);
2516       continue;
2517     }
2519     case OPC_EmitNodeXForm: {
2520       unsigned XFormNo = MatcherTable[MatcherIndex++];
2521       unsigned RecNo = MatcherTable[MatcherIndex++];
2522       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2523       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2524       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2525       continue;
2526     }
2528     case OPC_EmitNode:
2529     case OPC_MorphNodeTo: {
2530       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2531       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2532       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2533       // Get the result VT list.
2534       unsigned NumVTs = MatcherTable[MatcherIndex++];
2535       SmallVector<EVT, 4> VTs;
2536       for (unsigned i = 0; i != NumVTs; ++i) {
2537         MVT::SimpleValueType VT =
2538           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2539         if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2540         VTs.push_back(VT);
2541       }
2543       if (EmitNodeInfo & OPFL_Chain)
2544         VTs.push_back(MVT::Other);
2545       if (EmitNodeInfo & OPFL_GlueOutput)
2546         VTs.push_back(MVT::Glue);
2548       // This is hot code, so optimize the two most common cases of 1 and 2
2549       // results.
2550       SDVTList VTList;
2551       if (VTs.size() == 1)
2552         VTList = CurDAG->getVTList(VTs[0]);
2553       else if (VTs.size() == 2)
2554         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2555       else
2556         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2558       // Get the operand list.
2559       unsigned NumOps = MatcherTable[MatcherIndex++];
2560       SmallVector<SDValue, 8> Ops;
2561       for (unsigned i = 0; i != NumOps; ++i) {
2562         unsigned RecNo = MatcherTable[MatcherIndex++];
2563         if (RecNo & 128)
2564           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2566         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2567         Ops.push_back(RecordedNodes[RecNo].first);
2568       }
2570       // If there are variadic operands to add, handle them now.
2571       if (EmitNodeInfo & OPFL_VariadicInfo) {
2572         // Determine the start index to copy from.
2573         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2574         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2575         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2576                "Invalid variadic node");
2577         // Copy all of the variadic operands, not including a potential glue
2578         // input.
2579         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2580              i != e; ++i) {
2581           SDValue V = NodeToMatch->getOperand(i);
2582           if (V.getValueType() == MVT::Glue) break;
2583           Ops.push_back(V);
2584         }
2585       }
2587       // If this has chain/glue inputs, add them.
2588       if (EmitNodeInfo & OPFL_Chain)
2589         Ops.push_back(InputChain);
2590       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2591         Ops.push_back(InputGlue);
2593       // Create the node.
2594       SDNode *Res = 0;
2595       if (Opcode != OPC_MorphNodeTo) {
2596         // If this is a normal EmitNode command, just create the new node and
2597         // add the results to the RecordedNodes list.
2598         Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2599                                      VTList, Ops.data(), Ops.size());
2601         // Add all the non-glue/non-chain results to the RecordedNodes list.
2602         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2603           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2604           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2605                                                              (SDNode*) 0));
2606         }
2608       } else {
2609         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2610                         EmitNodeInfo);
2611       }
2613       // If the node had chain/glue results, update our notion of the current
2614       // chain and glue.
2615       if (EmitNodeInfo & OPFL_GlueOutput) {
2616         InputGlue = SDValue(Res, VTs.size()-1);
2617         if (EmitNodeInfo & OPFL_Chain)
2618           InputChain = SDValue(Res, VTs.size()-2);
2619       } else if (EmitNodeInfo & OPFL_Chain)
2620         InputChain = SDValue(Res, VTs.size()-1);
2622       // If the OPFL_MemRefs glue is set on this node, slap all of the
2623       // accumulated memrefs onto it.
2624       //
2625       // FIXME: This is vastly incorrect for patterns with multiple outputs
2626       // instructions that access memory and for ComplexPatterns that match
2627       // loads.
2628       if (EmitNodeInfo & OPFL_MemRefs) {
2629         // Only attach load or store memory operands if the generated
2630         // instruction may load or store.
2631         const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2632         bool mayLoad = MCID.mayLoad();
2633         bool mayStore = MCID.mayStore();
2635         unsigned NumMemRefs = 0;
2636         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2637              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2638           if ((*I)->isLoad()) {
2639             if (mayLoad)
2640               ++NumMemRefs;
2641           } else if ((*I)->isStore()) {
2642             if (mayStore)
2643               ++NumMemRefs;
2644           } else {
2645             ++NumMemRefs;
2646           }
2647         }
2649         MachineSDNode::mmo_iterator MemRefs =
2650           MF->allocateMemRefsArray(NumMemRefs);
2652         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2653         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2654              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2655           if ((*I)->isLoad()) {
2656             if (mayLoad)
2657               *MemRefsPos++ = *I;
2658           } else if ((*I)->isStore()) {
2659             if (mayStore)
2660               *MemRefsPos++ = *I;
2661           } else {
2662             *MemRefsPos++ = *I;
2663           }
2664         }
2666         cast<MachineSDNode>(Res)
2667           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2668       }
2670       DEBUG(errs() << "  "
2671                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2672                    << " node: "; Res->dump(CurDAG); errs() << "\n");
2674       // If this was a MorphNodeTo then we're completely done!
2675       if (Opcode == OPC_MorphNodeTo) {
2676         // Update chain and glue uses.
2677         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2678                             InputGlue, GlueResultNodesMatched, true);
2679         return Res;
2680       }
2682       continue;
2683     }
2685     case OPC_MarkGlueResults: {
2686       unsigned NumNodes = MatcherTable[MatcherIndex++];
2688       // Read and remember all the glue-result nodes.
2689       for (unsigned i = 0; i != NumNodes; ++i) {
2690         unsigned RecNo = MatcherTable[MatcherIndex++];
2691         if (RecNo & 128)
2692           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2694         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2695         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2696       }
2697       continue;
2698     }
2700     case OPC_CompleteMatch: {
2701       // The match has been completed, and any new nodes (if any) have been
2702       // created.  Patch up references to the matched dag to use the newly
2703       // created nodes.
2704       unsigned NumResults = MatcherTable[MatcherIndex++];
2706       for (unsigned i = 0; i != NumResults; ++i) {
2707         unsigned ResSlot = MatcherTable[MatcherIndex++];
2708         if (ResSlot & 128)
2709           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2711         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2712         SDValue Res = RecordedNodes[ResSlot].first;
2714         assert(i < NodeToMatch->getNumValues() &&
2715                NodeToMatch->getValueType(i) != MVT::Other &&
2716                NodeToMatch->getValueType(i) != MVT::Glue &&
2717                "Invalid number of results to complete!");
2718         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2719                 NodeToMatch->getValueType(i) == MVT::iPTR ||
2720                 Res.getValueType() == MVT::iPTR ||
2721                 NodeToMatch->getValueType(i).getSizeInBits() ==
2722                     Res.getValueType().getSizeInBits()) &&
2723                "invalid replacement");
2724         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2725       }
2727       // If the root node defines glue, add it to the glue nodes to update list.
2728       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2729         GlueResultNodesMatched.push_back(NodeToMatch);
2731       // Update chain and glue uses.
2732       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2733                           InputGlue, GlueResultNodesMatched, false);
2735       assert(NodeToMatch->use_empty() &&
2736              "Didn't replace all uses of the node?");
2738       // FIXME: We just return here, which interacts correctly with SelectRoot
2739       // above.  We should fix this to not return an SDNode* anymore.
2740       return 0;
2741     }
2742     }
2744     // If the code reached this point, then the match failed.  See if there is
2745     // another child to try in the current 'Scope', otherwise pop it until we
2746     // find a case to check.
2747     DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2748     ++NumDAGIselRetries;
2749     while (1) {
2750       if (MatchScopes.empty()) {
2751         CannotYetSelect(NodeToMatch);
2752         return 0;
2753       }
2755       // Restore the interpreter state back to the point where the scope was
2756       // formed.
2757       MatchScope &LastScope = MatchScopes.back();
2758       RecordedNodes.resize(LastScope.NumRecordedNodes);
2759       NodeStack.clear();
2760       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2761       N = NodeStack.back();
2763       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2764         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2765       MatcherIndex = LastScope.FailIndex;
2767       DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2769       InputChain = LastScope.InputChain;
2770       InputGlue = LastScope.InputGlue;
2771       if (!LastScope.HasChainNodesMatched)
2772         ChainNodesMatched.clear();
2773       if (!LastScope.HasGlueResultNodesMatched)
2774         GlueResultNodesMatched.clear();
2776       // Check to see what the offset is at the new MatcherIndex.  If it is zero
2777       // we have reached the end of this scope, otherwise we have another child
2778       // in the current scope to try.
2779       unsigned NumToSkip = MatcherTable[MatcherIndex++];
2780       if (NumToSkip & 128)
2781         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2783       // If we have another child in this scope to match, update FailIndex and
2784       // try it.
2785       if (NumToSkip != 0) {
2786         LastScope.FailIndex = MatcherIndex+NumToSkip;
2787         break;
2788       }
2790       // End of this scope, pop it and try the next child in the containing
2791       // scope.
2792       MatchScopes.pop_back();
2793     }
2794   }
2799 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2800   std::string msg;
2801   raw_string_ostream Msg(msg);
2802   Msg << "Cannot select: ";
2804   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2805       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2806       N->getOpcode() != ISD::INTRINSIC_VOID) {
2807     N->printrFull(Msg, CurDAG);
2808   } else {
2809     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2810     unsigned iid =
2811       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2812     if (iid < Intrinsic::num_intrinsics)
2813       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2814     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2815       Msg << "target intrinsic %" << TII->getName(iid);
2816     else
2817       Msg << "unknown intrinsic #" << iid;
2818   }
2819   report_fatal_error(Msg.str());
2822 char SelectionDAGISel::ID = 0;